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a b s t r a c t

Motivated by problems in conservation biology we study genetic dynamics in structured populations of
diploid organisms (monoecious or dioecious). Our analysis provides an analytical framework that unifies
substantial parts of previous work in terms of exact identity by descent (IBD) and identity by state (IBS)
recursions. We provide exact conditions under which two structured haploid and diploid populations are
equivalent, and some sufficient conditions under which a dioecious diploid population can be treated as a
monoecious diploid one. The IBD recursions are used for computing local andmetapopulation inbreeding
and coancestry effective population sizes and for predictions of several types of fixation indices over
different time horizons.
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1. Introduction

The effective size Ne is the most widely used parameter to
quantify rate of loss of genetic variation. The concept was first in-
troduced by Wright (1931, 1938) as the size of a homogeneous
population without mutation or selection and binomial variation
of offspring numbers that has the same expected change of some
genetic characteristic (e.g. inbreeding) per generation as the stud-
ied one. Many versions of Ne have been developed since, as re-
viewed for instance by Crow and Denniston (1988), Caballero
(1994), Wang and Caballero (1999), Waples (2002, 2010), and
Charlesworth (2009).

One of the most important applications of Ne is conservation
biology (Allendorf and Ryman, 2002; Traill et al., 2010), and the
present work was initiated from practical, real life conservation
and management questions. Over the last centuries the rate of
extinction of species and populations has increased by three or-
ders of magnitude as compared to ‘‘normal’’, background extinc-
tion rates (Pimm et al., 2014), and many natural animal and plant
populations are declining in size and are becoming fragmented
over space (Groom et al., 2005). Numerous empirical studies have
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documented loss of genetic variation in such reduced and/or frag-
mented populations (e.g., Larson et al., 2002, Nabata et al., 2004
and Kettle, 2014) as well as associated negative effects such as in-
breeding depression (Frankham, 2005; Liberg et al., 2005; Räikkö-
nen et al., 2006, 2009).

General conservation genetic rules of thumb for the geneti-
cally effective population sizes required to avoid excessive rates
of inbreeding and drift were suggested over three decades ago
(Franklin, 1980), and the so-called 50/500 rule is now widely es-
tablished (Jamieson and Allendorf, 2012), suggesting an Ne > 50
for short term conservation and Ne > 500 for long term conser-
vation. However, this rule refers to single, isolated populations.
Analytical approaches for understanding and computing Ne for
subdivided so-called metapopulations (Levins, 1970; Harrison and
Hastings, 1996) have not been available, where separated subpop-
ulationsmay vary in size and even become extinct/recolonized.We
initiated work to develop such analytical means, and recently pre-
sented a general approach for modelling effective size in subdi-
vided populations over time (Hössjer et al., 2014) under a haploid
assumption typical formany population geneticsmodels. Here, we
extend this work for diploid organisms. This involves four major
mathematical contributions:

First, we provide a framework for a large class of diploid (mo-
noecious or dioecious) structured and time-varying populations in
Sections 2 and 3. We use a very general definition of a structured
population as one consisting of several different subpopulations,
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where individuals within each subpopulation share some features.
This includes many settings that have not been dealt with before
in a unified way, such as spatial subdivision into geographical sub-
units or demes of arbitrary size and possibly asymmetric migra-
tion, an age-structured population with sex-specific survival and
birth rates for the various age classes, or a pedigree of arbitrary
form. Subpopulations can either be small or large, with sizes vary-
ing froman infinitely large continent to single individuals of a pedi-
gree (cf. Crow and Kimura, 1970, Chapter 3). It is possible in this
context to consider a pedigree whose individuals are distinct sub-
populations,with occasional immigration from larger ‘‘background
populations’’. The individuals have either unknown or known sex,
withmale and female gametes that are distinguishable or not. Time
dynamics is defined through a reproduction cycle that allows for
mating, selfing or cloning. Since the number of subpopulationsmay
vary with time, it is also possible to incorporate subpopulation ex-
tinction and recolonization into our model.

Second, we use exact matrix analytic techniques to find recur-
sions for probabilities that two alleles share a common ancestor
identity by descent (IBD) or identity by state (IBS) in Sections 2, 3
and 7. Within our studied class of subdivided diploid populations,
this requires a separate treatment for pairs of genes drawn from the
same individual, from different individuals of the same subpopula-
tion, or from different subpopulations. In particular, a general way
of exploiting symmetries of the model is introduced in Section 4 in
order to reduce dimensionality.

Third, we compare the diploid IBD-recursions with the corre-
sponding haploid ones in Section 5. We find exact conditions in
terms of randommating, random selfing and random coalescence,
under which a monoecious diploid recursion is equivalent to the
corresponding haploid recursion of Hössjer et al. (2014). We also
give some sufficient conditions under which a diploid dioecious
population can be reduced to a diploid monoecious one, where
each pair of subpopulations of males and females, that represent
different geographic demes or age classes, has been replaced by
one monoecious subpopulation. We believe these results are im-
portant for at least two reasons. It gives theoretical insights into
how the genetic composition of a population is affected by diploidy
and two sexes, and it provides guidelines when computationally
more feasible models (either monoecious diploid or haploid) can
be used, with little or no loss of information.

Fourth, we use the diploid IBD- and IBS-recursions to compute
effective sizes in Section 6. The effective size of a subdivided pop-
ulation is not captured by one single number though, since mi-
gration causes inbreeding to increase at a time varying rate. We
therefore define the effective size as a time varying curve, as in
Hössjer et al. (2014), so that short and long term effects of ge-
netic drift and migration are captured. In addition, the diploid
framework of this paper makes it possible to treat inbreeding and
coancestry effective sizes separately, which is crucial for accurate
modelling of inbreeding depression. It is also possible to incorpo-
rate local and global effective sizes by varying the weights of sub-
populations.

Fifth, in Section 7 we use the diploid IBD- and IBS-recursions
to predict various measures of subpopulation differentiation and
departures fromHardy–Weinberg proportions, over different time
horizons. Wright (1943, 1951) introduced a number of fixation in-
dices for populations that are structured in a way of being geo-
graphically subdivided. Of these FST is a measure of subpopulation
differentiation that quantifies genetic variation among subpopula-
tions (S) within the total population (T ), whereas FIS and FIT both
quantify genetic variation within individuals (I) relative to sub-
populations or the total population. These fixation indices were
originally defined for biallelic genes, and later generalized tomulti-
allelic and multilocus settings by Nei (1973, 1977), Wright (1978),
Chakraborty (1993) and Nagylaki (1998a). In this paper we com-
pute predictions of FIS , FIT and the coefficient of gene differentia-
tion GST , which is the multiallelic version of FST .
We conclude with a discussion in Section 8, give mathematical
details and some further examples in a supplementarymaterial SM
(see Appendix A), and summarize the most important notation in
Table 1.

2. Model

Consider a diploid population evolving in discrete time t =

0, 1, 2, . . . . We will sometimes refer to t as a generation, although
our setup is more general and incorporates overlapping genera-
tions. The population consists of st subpopulations at time t , which
may represent geographic regions (demes), age classes or even sin-
gle individuals. The model is either monoecious or dioecious, and
in the latter case all individuals of a subpopulation must have the
same sex.

Let Nti be the local census size of subpopulation i at time t .
Each individual carries two copies of a portion of DNA that is small
enough to neglect recombinations. It is located at a specific point
that we refer to as a gene, so that subpopulation i has 2Nti gene
copies at time point t . Backward migration is specified in terms
of Bti,k, the fraction of genes of individuals in subpopulation i at
time t that originate from subpopulation k at time t −1. The corre-
sponding number 2NtiBti,k of genes from k is a non-negative inte-
ger. (Throughout the paper we use commas in order to distinguish
indices of different time points.) For some models and subpopula-
tions i, a local effective sizeNeti at time t can be specified in order to
quantify the amount of genetic drift within i if it had been isolated.
For some applications the model simplifies if Neti replaces Nti, but
for models with overlapping generations there is no natural defi-
nition of Neti when i represents an adult age class. For this reason
we use Nti rather than Neti as a generic parameter.

Three types of fertilization are possible, either the same individ-
ual passes on its two genes to the offspring, which is then a geneti-
cally identical copy of the parent (cloning), or one individual passes
on two genes to the offspring, drawn randomly with replacement
(selfing), or each of two distinct individuals randomly passes on
one of its two genes to the offspring (mating). When Bti,k > 0, we
let cti,kθti,k, (1−cti,k)θti,k and 1−θti,k be fractions of gametes of sub-
population i and time t that originate from k, that were reproduced
through cloning, selfing and mating, respectively. Notice that sur-
vival of an individual can be regarded as a special case of cloning,
where the parent has no more than one offspring—itself. The over-
all fraction of individuals produced through selfing or cloning in
subpopulation i at time t is

θti =

st
k=1

Bti,kθti,k. (1)

Among all 2
st

i=1 Nti gene copies that exist at time point t ,
consider two distinct ones. Let fti be the probability that they are
IBD when picked from the same individual of subpopulation i, and
ftij the probability that they are IBD when drawn from different
individuals of subpopulations i and j. Several definitions of IBD
are possible, but here we mean that the two genes originate from
the same ancestral gene of a founder generation, whether or not
any mutations have occurred since then. If follows that fti is the
inbreeding coefficient of individuals of subpopulation i and time
point t , whereas ftij is the kinship coefficient, also referred to as
the coefficient of consanguinity or coancestry of individuals from
i and j, see Chapter 3 of Crow and Kimura (1970). Inbreeding and
coancestry within subpopulations put a bound on the amount of
coancestry between subpopulations, in that

0 ≤ ftij ≤


2Nti − 2
2Nti

ftii +
1

2Nti
(fti + 1)

 
2Ntj − 2
2Ntj

ftjj +
1

2Ntj
(ftj + 1)


(2)

for all i ≠ j, see the SM for a proof.
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Table 1
Notation for parameters.

Symbol Definition

st Number of subpopulations at time t
rt Number of single individuals at time t
i, j, k, l Subpopulation numbers at time t (for i, j) or t − 1 (for k, l)
ti Subpopulation i at time t . When Nti = 1, it specifies uniquely one individual.
a, b Type of gene pair denoting subpopulation origin within or between individuals at time t (for a) or t − 1 (for b)
Tt Type space of all gene pairs a at time t
dt Number of gene pair types a at time t
Nti Local census size of subpopulation i at time t
µ(t−1)k,i Forward migration rate, i.e. expected number of gametes that individuals of subpopulation k and time t − 1 transmit to subpopulation i of

time t
ν(t−1)k,i Mutation probability for a gamete produced in subpopulation k at time t − 1 and transmitted to subpopulation i of time t
Bti,k Backward migration probability for gametes of subpopulation i at time t to originate from k
θti Fraction of offspring in subpopulation i at time t produced by selfing or cloning
θti,k Fraction of genes produced by selfing or cloning, among those of subpopulation i at time t with parents from k
θ rel
ti,k Fraction of genes produced by selfing or cloning, among those of subpopulation i at time t with parents from k, relative to fraction of other

genes in iwith its parent in k
cti,k Fraction of genes produced by cloning, among those of subpopulation i at time t with parents from k that were produced by selfing or

cloning
Bti,l|k Mating function for individuals of subpopulation i at time t when male and female gametes cannot be distinguished: Probability that one

parent from k picks a spouse from l
Qti,k Joint backward migration probability for two genes within an individual of subpopulation i at time t to have both parental genes within the

same individual of subpopulation k
Qti,kl Joint backward migration probability for two genes within an individual of subpopulation i at time t to have its two parental genes in

different individuals of subpopulations k and l
Qtij,kl Joint backward migration probability for two genes of different individuals of subpopulations i and j at time t to have their parental genes

in subpopulations k and l
σ(t−1)k,ij Roughly the coefficient of covariation of the number of gametes an individual of subpopulation k and time t − 1 transmits to

subpopulations i and j of time t
ptij,k Coalescence probability, for a gene pair from subpopulations i and j at time t that both have their parental genes in k, to have these parental

genes within the same individual
µx

(t−1)k,i Sex-specific forward migration rate. Expected number of gametes of sex x ∈ {m, f } (male or female) individuals of subpopulation k and
time t − 1 transmit to subpopulation i of time t

Bx
ti,k Backward migration probability for gametes of sex x of subpopulation i at time t to originate from k

B̃x
ti,k Backward migration probability for gametes of sex x that belong to mating individuals of subpopulation i at time t to originate from k

Bf |m
ti,l|k Mating function for individuals of subpopulation i at time t when male and female gametes can be distinguished: Probability that a male

parent from k picks a female parent from l
Q xy
tij,kl Joint backward migration probability for two genes of different individuals of subpopulations i and j of time t to have sexes x and y, and

their parental genes in subpopulations k and l
σ

xy
(t−1)k,ij Roughly the coefficient of covariation of the number of gametes of sexes x and y an individual of subpopulation k and time t − 1 transmits

to subpopulations i and j of time t
pxytij,k Coalescence probability, for a gene pair from subpopulations i and j at time t with sexes x and y, both of whose parental genes are in k, to

have the parental genes from the same individual
ξ(t−1)kr,i Number of gametes that individual r of subpopulation k at time t − 1 passes on to subpopulation i the next time point
η(t−1)kr,i Number of gametes that individual r of subpopulation k at time t − 1 produces through mating and passes on to subpopulation i the next

time point
θ(t−1)kr,i Number of offspring that individual r of subpopulation k at time t − 1 produces through selfing and passes on to subpopulation i the next

time point
ξ x
(t−1)kr,i Number of gametes of sex x that individual r of subpopulation k at time t − 1 passes on to subpopulation i the next time point

ηx
(t−1)kr,i Number of gametes of sex x that individual r of subpopulation k at time t − 1 produces through mating and passes on to subpopulation i

the next time point
fti Inbreeding coefficient of individuals from subpopulation i at time t .
ftii Coefficient of coancestry of two different individuals from subpopulation i at time t
ftij Coefficient of coancestry of two individuals from subpopulations i ≠ j at time t
hti Non-IBD (non-IBS) probability for pairs of genes in individuals of subpopulation i at time t
htij Non-IBD (non-IBS) probability for pairs of genes from different individuals in subpopulations i, j at time t
hIt Non-IBD (non-IBS) probability for pairs of genes drawn from same individual at time t
hSt Non-IBD (non-IBS) probability for pairs of genes drawn from same subpopulation at time t
hTt Non-IBD (non-IBS) probability for pairs of genes drawn from the total population at time t
ht Column vector of non-IBD (or non-IBS) probabilities for all types of gene pairs at time t
Hti Non-IBS probability for a gene pair within an individual of subpopulation i at time t , conditionally on allele frequencies at time t
Htij Non-IBS probability for two genes from different individuals in subpopulations i and j at time t , conditionally on allele frequencies at time t
Qt Matrix (Qta,b) with backward migration probabilities for pairs of genes
Dt Matrix (Dta,b) in recursion for non-IBD probabilities
At Matrix (Ata,b) in recursion for predicted non-IBS probabilities
Vt Matrix (Vta,b) with non-mutation probabilities for pairs of genes
wi Weight assigned to subpopulation i
Wta Weight assigned to gene pair a at time t
Wt Row vector (Wta) with weights for all gene pairs a
Ne([t1, t2]) Effective size over time interval [t1, t2]
NeI ([t1, t2]) Inbreeding effective size over time interval [t1, t2]
NeSd ([t1, t2]) Coancestry effective size within subpopulations over time interval [t1, t2]
NeD([t1, t2]) Coancestry effective size between subpopulations over time interval [t1, t2]
NeE Eigenvalue effective size

(continued on next page)
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Table 1 (continued)

Symbol Definition

Neti Number of breeders of subpopulation i at time t , and (approximately) local effective size of i at time t , if i is isolated
FSTt Fixation index of subpopulations within total population, time t
GSTt Coefficient of gene differentiation of subpopulations within total population, time t
gSTt Prediction of coefficient of gene differentiation at time t
FITt Fixation index of individuals within total population, time t
FISt Fixation index of individuals within subpopulations, time t
fXYt Prediction of fixation index at time t (XY ∈ {IT , IS})
Ptcir Frequency of allele c in individual r of subpopulation i at time t
Ptci Frequency of allele c in subpopulation i at time t
Ptc Frequency of allele c in total population (as specified by the subpopulation weights), time t
We introduce a state space

Tt = It ∪ St ∪ Dt

= {1, . . . , st} ∪ {ii, 1 ≤ i ≤ st ,Nti ≥ 2}
∪ {ij, 1 ≤ i ≠ j ≤ st} (3)

at time t that represents all possible ways to pick the two
genes, either from the same individual (It ), from two different
individuals of the same subpopulation (St ), or from two different
subpopulations (Dt ). The state space has

dt = st + (st − rt) + st(st − 1) (4)

elements at time t , with rt the number of subpopulations with one
single individual (Nti = 1).

It is mathematically more convenient to use probabilities hti =

1 − fti and htij = 1 − ftij that two distinct genes are not IBD when
drawn from the same individual of subpopulation i or different
individuals of subpopulations i and j. Write a ∈ Tt and b ∈ Tt−1
for an arbitrary type at times t and t − 1, and gather all non-IBD
probabilities at time t into a column vector ht = (hta; a ∈ Tt)

′ of
length dt . Below we will derive a joint linear time recursion

ht = Dtht−1, t = 1, 2, 3, . . . (5)

for all inbreeding and coancestry (within and between subpopu-
lations) coefficients. Each element Dta,b of the dt × dt−1 matrix
Dt = (Dta,b; a ∈ Tt , b ∈ Tt−1) is the probability, for a randomly
drawn pair of genes of type a at time t to have different parental
genes at time t − 1 of type b. We may interpret Dt as part of a
transition matrix of a structured coalescent for pairs of genes. This
is a Markov chain that runs backwards in time, with absorption
equivalent to coalescence on the gene level. ThematrixDt contains
transition probabilities between all non-absorbing states, that is,
between all pairs of genes before they coalesce.

In component form we rewrite (5) as

hta =


b∈Tt−1

Dta,bh(t−1)b (6)

for all a ∈ Tt . It will be seen in Section 4 that the state space in
(5)–(6) can be reduced, due to the symmetry requirement

htij = htji (7)

on all non-IBD probabilities such that i ≠ j. The IBD recursion
in (5)–(6) is homogeneous. In Section 7 we consider an extension
based on IBS sharing that is inhomogeneous due to mutations.

3. Reproduction cycle

Recursion (5) depends on the form of the reproduction cycle be-
tween time points t −1 and t , and in particular on how individuals
are interpreted. Four major cases will be discussed:
I An essentially haploid and monoecious model, where repro-
duction is defined on the gene (not individual) level. Then
genes are randomly paired up to form individuals at each time
point, within all subpopulations, when trying tomimic a diploid
model.
II A diploid model where individuals are monoecious and isoga-
mous, and gametes cannot bemorphologically distinguished as
male and female.

III A diploid model where individuals are monoecious, but their
male and female gametes can be morphologically distin-
guished.

IV A diploid model where individuals are dioecious, so that their
sex is well defined and also accounted for in the model. Their
male and female gametes can also be morphologically distin-
guished.

Since individuals of a haploid model are formed randomly from
pairs of genes, when mimicking a diploid population, there is
no cloning but a random amount of selfing for I, as will be
specified below. Cloning may occur for models II–IV (e.g. when
generations are overlapping), there is no restriction on the amount
of selfing for models II and III, but no selfing occurs for model IV
(although mathematically, the theory allows for this). Cases II and
III are biologically equivalent, but differ in the available amount
of information. This distinction is important, for instance, when
migration patterns or reproductive variability between male and
female gametes differ.

In the next three subsections we treat Case I, Case II and Case
III + IV, respectively.

3.1. Haploid models

Haploid models for subdivided populations have been treated
bymany authors, startingwith the seminalwork ofMalécot (1951).
Here we include it as a point of reference for comparison with
diploid models. We will assume that migration rates are fixed, so
that parental subpopulations of genes from different individuals
are drawn without replacement in accordance with the backward
migration rates Bti,k, see Sved and Latter (1977), Wang (1997a),
Hössjer et al. (2013) and Hössjer and Ryman (2014).

When two distinct genes are drawn from the population, it suf-
fices to compute their non-IBD probability depending on which
pair of subpopulations i and j they belong to. Indeed, since genes
are paired up randomly to individuals (when trying to mimic a
diploid situation), the non-IBD probability for two geneswithin the
same individual will be the same, whether they belong to the same
individual or not. For this reason, we can merge states i and ii of
state space (3) without loss of information, and obtain a reduced
one

T
hapl
t = {ij; 1 ≤ i, j ≤ st}

of size s2t at time t , corresponding to all ordered pairs of subpop-
ulations, and with hapl short for haploid. In particular, htii is the
non-IBD probability of two distinct genes from i, whether they be-
long to the same individual or not. (In Section 4 we will consider
state space reduction more generally.)

The non-IBD vector ht has length s2t and the matrix Dt =

(Dta,b) = (Dtij,kl) of the non-IBD recursion is of dimension s2t ×s2t−1,
since a = ij ∈ T

hapl
t and b = kl ∈ T

hapl
t−1 . Hössjer and Ryman
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(2014) provided non-IBD recursions for fixedmigration rateswhen
the number of subpopulations st = s is constant over time. Their
results can easily be extended to scenarios where st depends on t ,
with

Dtij,kl = Qtij,kl(1 − ptij,k)δ{k=l} , (8)

where δA equals 1 if A holds, and 0 if not. The first term

Qtij,kl = Bti,k
2NtjBtj,l − δ{i=j,k=l}

2Ntj − δ{i=j}
≈ Bti,kBtj,l (9)

on the right hand side of (8) is a backwardmigration probability for
a random pair of different genes of subpopulations i and j at time
t to have their parental genes from subpopulations k and l at time
t−1. The approximation in (9) holds for large populations, and cor-
responds to drawing parental subpopulations multinomially with
replacement. The second quantity ptij,k is only defined when k = l.
It is the coalescence probability for a pair of genes from subpopu-
lations i and j at time t , to have the same parental gene in subpop-
ulation k, given that both parental genes originate from the same
subpopulation k.

Suppose in particular that Ne(t−1)k ≤ N(t−1)k breeders are cho-
sen randomly among all individuals in subpopulation k at time
point t−1. Then different offspring choose parental genes in k ran-
domlywith replacement among the 2Ne,t−1,k genes of the breeders.
This leads to

ptij,k =
1

2Ne(t−1)k
, if Qtij,kk > 0, (10)

so that the coalescence probability only depends on the parental
subpopulation k, not the subpopulations i and j of the offspring. In
particular, when subpopulation k is isolated, Ne(t−1)k can be inter-
preted as a local inbreeding effective size of k between time points
t − 1 and t .

3.2. Diploid models with indistinguishable male and female gametes

Monoecious isogamous diploids correspond to Case II above
and Cases 1 and 2 of the reproduction scenarios treated by Crow
and Denniston (1988) for homogeneous populations, and Balloux
et al. (2003) for the island model with mating, selfing and cloning.
In the SM we prove that the elements of Dt are given by

Dta,b =



Qti,k
1 + ctik

2
, a = i, b = k,

Qti,kl, a = i, b = kl,
Qtij,kk(1 − ptii,k), a = ij, b = kk,
Qtij,kl, a = ij, b = kl, k ≠ l,

Qtij,kk
ptij,k
2

, a = ij, b = k.

(11)

The first quantity on the right hand side of (11), Qta,b, is a back-
ward migration probability for a random pair of different genes
of type a at time t to have their two parental genes as a pair of
type b at time t − 1, before possible coalescence events of genes to
originate from the same individual, are taken into account. Coales-
cence events of a haploid model are always between genes, but for
diploid models they occur both at the individual and gene level.
The terms (1 + ctik)/2 and 1/2 of the first and fifth equations of
(11) are coalescence probabilities at the gene level, whereas pta,b
is a coalescence probability for individuals, defined when a ∉ It
and b ∈ It−1. It is the probability for a pair genes of type a, from
different individuals at time t , to have their two parental genes in
the same individual of type b = k (but not necessarily the same
gene), given that both parental genes originate from the same sub-
population k. Fig. 1 illustrates backwardmigration and coalescence
probabilities in more detail.
It is proved in the SM that fixed migration rates lead to back-
ward migration probabilities of the form

Qti,k = θti,kBti,k,

Qti,kl = (1 − θti,k)Bti,kBti,l|k,

Qtij,kl =
2NtjBti,kBtj,l − δ{i=j,k=l}(Bti,k + Qti,k) − δ{i=j}Qti,kl

2Ntj − 2δ{i=j}

≈ Bti,kBtj,l,

(12)

for pairs of genes, where the first equation corresponds to selfing/
cloning, the second to mating and the third to backward migration
for pairs of genes from different individuals. The approximation in
the last equation of (12) is accurate for large populations and ne-
glects that genes are drawn without replacement.

For haploid models, backward migration probabilities for pairs
of genes are uniquely determined by those for single genes, cf.
(9). For diploid models we also need to know how gametes unite
throughmating, the so called mating rule for how the two parents’
subpopulations are chosen. It can either be expressed throughQti,kl,
the fraction of ordered pairs of gametes in i at time t , among those
that united through mating, that originated from k and l respec-
tively. Without loss of generality wemay assume that Qti,kl = Qti,lk
whenever k ≠ l, so that

s
l=1 Qti,kl = Bti,k(1 − θti,k) is the total

fraction of mating gametes in i whose parents lived in k. It follows
from (12) that

Bti,l|k =
Qti,kl

Bti,k(1 − θti,k)
(13)

is the conditional probability that the homologous gene of a ga-
mete in subpopulation i at time t is from subpopulation l, given
that the parent of the first gene is from subpopulation k. Formula
(13) provides an alternative (and equivalent) definition of themat-
ing rule, which is convenient to use for

Bti,l|k = δ{l=k}, (mating before migration), (14)

i.e. when the two homologous genes of a biparental individual are
required to come from the same subpopulation. Another mating
rule

Bti,l|k =

2NtiBti,l−δ{l=k}
(2Nti−1) − δ{l=k}θti,k

(1 − θti,k)
,

(randommating after migration), (15)

is defined by drawing the two genes within an individual of i at
time t randomly without replacement, regardless of which sub-
populations k and l theywere inherited from. Randommating after
migration is only well defined when the numerator of (15) is non-
negative for all l = k.

To summarize, the major difference between the two mating
rules (14) and (15) is that parents from the same subpopulation
mate in (14) before their offspring migrate, whereas parents first
migrate in (15), then find their partner (possibly itself) indepen-
dently of its subpopulation origin and reproduce. Therefore, the
randomness of (15) only refers to the choice of the parents’ sub-
populations. Randommating among parentswithin subpopulations
requires, for each offspringwith both parents in k, that the twopar-
ents are picked randomlywithout replacement. This is satisfied for
the model below with Ne(t−1)k = N(t−1)k breeders.

Selfing or cloning in subpopulation k is only possible if at least
two genes in i at time t originate from k, i.e. 2NtiBti,k > 1. By ran-
dom selfing/cloning we mean that the probability for selfing or
cloning to occur is the same as for a haploid model where parental
genes are drawn independently with replacement. That is, for each
individual of subpopulation i at time t with both genes inherited
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Fig. 1. Illustration of backward migration for a diploid model between time points t and t − 1 when male and female gametes cannot be distinguished (Case II). Ellipses,
rectangles and filled circles correspond to single subpopulations (i, j, k, l), individuals and genes, respectively. The upper row shows backward migration for one gene (Bti,k)
or for two genes from a single individual, the second row backwardmigration of two genes from two individuals within the same subpopulation, and the third row backward
migration for a pair of genes from different individuals of different subpopulations. Two genes of different individuals that have been inherited from the same subpopulation
k (Qtii,kk or Qtij,kk) could either originate from the same individual or not, as determined by coalescence probability ptii,k or ptij,k . It is assumed that i ≠ j and k ≠ l.
from k, these two genes are drawn randomly with replacement
from k. This can be expressed as

Qti,k

Qti,k + Qti,kk
=

1
N(t−1)k

, (random selfing/cloning). (16)

Formulas (12) and (14)–(17) imply that the left hand side of (16)
equals θtik when mating precedes migration, and

θ rel
ti,k = θti,k


2NtiBti,k − 1
2Nti − 1

(17)

for randommating after migration, which may be interpreted as a
selfing/cloning rate from i to k, relative to the total fraction of other
genes in i with parents from k. It follows that

Mating before migration, random selfing/cloning :

θti,k =
1

N(t−1)k
,

Randommating after migration, random selfing/cloning :

θ rel
ti,k =

1
N(t−1)k

.

(18)

Since the fraction of individuals in iwith both parental genes from
k is smaller whenmating is random, the overall fraction θtik of self-
ing/cloning among genes in i with parents from k, is lower in (18)
for random mating after migration, than for mating that precedes
migration.

In order to find general expressions for the coalescence proba-
bilities ptij,k, we need to look forward in time and model reproduc-
tion between time points t − 1 and t explicitly. We will generalize
formulas for the coalescence probability in Wang (1996a, 1997a),
and to this end we introduce the total number of gametes

ξ(t−1)kr,i = 2θ(t−1)kr,i + η(t−1)kr,i (19)

that individual r = 1, . . . ,N(t−1)k of subpopulation k and time t−1
passes on to i the next time point t . Of these gametes 2θ(t−1)kr,i are
obtained through cloning or selfing, and η(t−1)kr,i through mating.
It follows that

2NtiBti,k =

Nt−1,k
r=1

ξ(t−1)kr,i,

NtiBti,kθti,k =

N(t−1)k
r=1

θ(t−1)kr,i,

2NtiBti,k(1 − θti,k) =

N(t−1)k
r=1

η(t−1)kr,i.

(20)

We assume that

θ(t−1)kr,i, η(t−1)kr,i

s
i=1 are exchangeable random

vectors for r = 1, . . . ,N(t−1)k. Itwill simplify formulas to introduce

µ(t−1)k,i = E(ξ(t−1)k1,i) = 2NtiBti,k/N(t−1)k,

σ(t−1)k,ij = E

ξ(t−1)k1,i(ξ(t−1)k1,j − δ{i=j})


/(µ(t−1)k,iµ(t−1)k,j),

(21)

where µ(t−1)k,i is the expected number of gametes that each indi-
vidual in k at time t − 1 passes on to i the next time point, and
σ(t−1)k,ij is related but not equivalent to a squared coefficient of co-
variation of the number of gametes that individuals in k pass on to
subpopulations i and j. The coalescence probability

ptij,k =

σ(t−1)k,ij − δ{i=j}
θti,k

µ(t−1)k,i

N(t−1)k −
2−(1−θti,k)(1−Bti,k|k)

µ(t−1)k,i

≈

σ(t−1)k,ij − δ{i=j}
θti,k

µ(t−1)k,i

N(t−1)k
, (22)

see the SM for a proof. It is essentially inversely proportional
to the local census size N(t−1)k of the subpopulation k in which
the individual lineages merge, with a constant of proportionality
σ(t−1)k,ij − δ{i=j}θti,k/µ(t−1)k,i that can be interpreted as a coales-
cence rate when time is measured in units of N(t−1)k.
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For models where the coalescence probabilities in (22) only
depend on the subpopulation k of the parent, but not on the
subpopulations i and j of the two children, we may define a local
effective size Ne(t−1)k of k at time t − 1 through

ptij,k =
1

Ne(t−1)k
if Qtij,kk > 0. (23)

A sufficient condition for (23) to hold is that Ne(t−1)k ≤ N(t−1)k
individuals are chosen randomly as breeders among all individuals
in subpopulation k at time point t − 1. Then single parents in k
that reproduced through selfing, or mating parents in k that have
their spouse in another subpopulation are chosen randomly with
replacement among these breeders in k, for different progeny of
the next time point. If, on the other hand, pairs of parents within
k mate, they are chosen randomly without replacement among
breeders in k for each offspring. Then different offspring pick their
parents independently. It is shown in the SM that (23) follows from
(22) under these assumptions. On the other hand, (23) does not
hold for models with overlapping generations.

3.3. Diploid models with distinguishable male and female gametes

In this subsection we treat Cases III and IV jointly. Case III is rel-
evant for several plant and some animal species, with male or fe-
male gametes distinguished and allowed tomigrate independently
between subpopulations before fertilization, possibly with differ-
ent migration rates, see for instance Wang (1997a). Case IV, on
the other hand, is relevant for mammals and many other species,
where individuals have a specific sex. This can be modelled so that
each subpopulation has all its individuals of the same known sex,
see for instance Caballero and Hill (1992b) and Nagylaki (1995) for
homogeneous populations, and Wang (1997b) for island models.

It is shown in the SM that the non-inbreeding recursion (5)
for a diploid population in which male and female gametes are
distinguished is

Dta,b =



Qti,k
1 + cti,k

2
, a = i, b = k,

Qti,kl, a = i, b = kl,
Qmm
tij,kl(1 − pmm

tij,k) + Qmf
tij,kl(1 − pmf

tij,k)

+Q fm
tij,kl(1 − pfmtij,k) + Q ff

tij,kl(1 − pfftij,k),
a = ij, b = kk,

Qmm
tij,kl + Qmf

tij,kl + Q fm
tij,kl + Q ff

tij,kl,

a = ij, b = kl, k ≠ l,

Qmm
tij,kl

pmm
tij,k

2
+ Qmf

tij,kl

pmf
tij,k

2

+Q fm
tij,kl

pfmtij,k
2

+ Q ff
tij,kl

pfftij,k
2

, a = ij, b = k,

(24)

i.e. a bit more complicated than the corresponding formula (11)
when gametes are indistinguishable. The quantity Q xy

tij,kl is the
probability that a pair of genes picked from different individuals
of subpopulations i and j at time t have sexes x and y and
migrated from k and l respectively, and pxytij,k is the probability that a
randomly chosen pair of x and y gametes fromdifferent individuals
of subpopulations i and j at time t have the same parent, but not
necessarily the same parental gene, given that both parental genes
are from k.

In order to define (24) more explicitly, we write the terms of
(19) as a sum

ξ(t−1)kr,i = ξm
(t−1)kr,i + ξ

f
(t−1)kr,i,

η(t−1)kr,i = ηm
(t−1)kr,i + η

f
(t−1)kr,i,

(25)
of the total or mating number of male and female gametes passed
on by individual r of subpopulation k at time t−1 to subpopulation
i of the next time point. When the sex of r is known, or when r has
a well defined sex that is unknown, at most one of ηm

(t−1)kr,i and
η
f
(t−1)kr,i is nonzero.
Introduce the sex specific backward migration rates

Bx
ti,k =

N(t−1)k
r=1

ξ x
(t−1)kr,i/Nti,

B̃x
ti,k =

N(t−1)k
r=1

ηx
(t−1)kr,i/ (Nti(1 − θti)) ,

i.e. the fraction of x gametes of subpopulation i at time t whose
parental genes are from k, either among all gametes or among
those that mate. It follows from (20) that the corresponding non-
sex specific backward migration rate is

Bti,k =
1
2
(Bm

ti,k + Bf
ti,k). (26)

As in the previous subsection, pairs of gametes produced by selfing
or cloning migrate together, but gametes produced by mating mi-
grate according to a mating function Qti,kl = Qmf

ti,kl that equals the
fraction of individuals in subpopulation i at time t , whose homol-
ogous male and female gametes originate from subpopulations k
and l respectively at time point t − 1. It follows that

st
l=1

Qti,kl =

N(t−1)k
r=1

ηm
(t−1)kr,i/Nti = (1 − θti)B̃m

ti,k,

st
l=1

Qti,lk =

N(t−1)k
r=1

η
f
(t−1)kr,i/Nti = (1 − θti)B̃

f
ti,k,

and we let

Bf |m
ti,l|k =

Qti,kl

(1 − θti)B̃m
ti,k

(27)

be the conditional probability that the gene of an individual in sub-
population i and time t with a female parent originates from sub-
population l, given that the other homologous gene with a male
parent, originates from subpopulation k. In the same way, we de-
fine the conditional probability Bm|f

ti,l|k of a female parent from k to
choose its male spouse from subpopulation l. The mating schemes

By|x
ti,l|k =


B̃y
ti,l, randommating after migration,

δ{l=k}, mating before migration,
(28)

correspond to independence and identity between the parents’
subpopulations. Other mating functions for two-sex models (Case
IV) will be defined in Section 5 for age-structured populations, and
for pedigrees. Gasbarra et al. (2005) consider a two-sexmodelwith
a mating rule defined in terms of a Polya urn, both for homoge-
neous and structured populations. It can be used to control the de-
gree of monogamy, either of males or females, but requires joint
analysis of more than two genes.

The backwardmigration probabilities for pairs of genes cannow
bewritten as Eq. (29) given in Box Iwhere the first equation follows
by the definition of Qti,k, θti,k and Bti,k, the second equation follows
from (27) and the last one is proved in the SM. As in the previous
subsection, the approximation of the last line is accurate for large
population sizes.

In order to define coalescence probabilities, it is convenient to
introduce

µx
(t−1)k,i = E(ξ x

(t−1)k1,i) = NtiBx
ti,k/N(t−1)k,

σ
xy
(t−1)k,ij = E


ξ x
(t−1)k1,i(ξ

y
(t−1)k1,j − δ{i=j,x=y})


/(µx

(t−1)k,iµ
y
(t−1)k,j),

(30)
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9)
Qti,k = θti,kBti,k,

Qti,kl = (1 − θti)B̃m
ti,kB

f |m
ti,l|k,

Q xy
tij,kl =

1
4

NtiBx
ti,kB

y
tj,l − δ{i=j,k=l,x=y}Bx

ti,k − δ{i=j,k=l,x≠y}Bti,kθti,k − δ{i=j,x≠y}(1 − θti)B̃x
ti,k

Nti − δ{i=j}

≈
1
4
Bx
ti,kB

y
tj,l,

(2

Box I.
with similar interpretations as in (21). It is shown in the SM that

pxxtii,k =
σ xx

(t−1)k,ii

N(t−1)k −
1

µxx
(t−1)k,i

≈
σ xx

(t−1)k,ii

N(t−1)k
,

pxytii,k
x≠y
=

σ
xy
(t−1)k,ii −

µ(t−1)k,iθti,k

2µm
(t−1)k,iµ

f
(t−1)k,i

N(t−1)k −
µ(t−1)k,i(1−(1−θti,k)(1−Bti,k|k))

2µm
(t−1)k,iµ

f
(t−1)k,i

≈

σ
xy
(t−1)k,ii −

µ(t−1)k,iθti,k

2µm
(t−1)k,iµ

f
(t−1)k,i

N(t−1)k
,

pxytij,k
i≠j
=

σ
xy
(t−1)k,ij

N(t−1)k
,

(31)

where Bti,k|k is the fraction of all gametes in subpopulation i at time
t with parental genes in subpopulation k that have their homol-
ogous gene originating from k as well, given that they reproduce
through mating.

We mentioned in Section 2 that subpopulations k are sex-
specific for dioecious models (Case IV). Then it is often not needed
to distinguish coalescence probabilities pxytij,k for those gamete pairs
xy that could have originated from k. If additionally pxytij,k only
depends on the parental subpopulation k, not the subpopulations i
and j of the two offspring gametes, we write

pxytij,k =
1

Ne(t−1)k
if Q xy

tij,kk > 0, (32)

where Ne(t−1)k is a local effective size of k at time t − 1. A sufficient
condition for (32) to hold is that parents are chosen randomly
amongNe(t−1)k ≤ N(t−1)k breeders in subpopulation k at time t−1,
whether they reproduce throughmating, selfing or cloning, see the
SM for a proof. On the other hand, we will find in Example 5 of
Section 5 that (32) does not hold for a dioecious age-structured
model.

It follows after some computations from (24), (32) and (26), that

Dti,k = θtiBti,k
1 + cti,k

2
,

Dti,kl = (1 − θti)B̃m
ti,kB

f |m
ti,l|k,

Dtij,kl =
NtiBti,kBtj,l − δ{i=j,k=l}

1
2 Bti,k(1 + θti,k) − δ{i=j}(1 − θti)

1
2 B̃

m
ti,kB

f |m
ti,l|k

Nti − δ{i=j}

×


1 −

1
Ne(t−1)k

δ{k=l}

,

Dtij,k =
NtiBti,kBtj,k − δ{i=j}

1
2 Bti,k(1 + θti,k) − δ{i=j}(1 − θti)

1
2 B̃

m
ti,kB

f |m
ti,k|k

Nti − δ{i=j}

·
1

2Ne(t−1)k
.

(33)

4. State space reduction

Hössjer et al. (2014) gave general conditions for reducing the
state space of haploid models. It is possible to apply the same
technique to diploid populations, and divide the dt states of (3)–(4)
into d̄t groups or equivalence classes

Tt =

d̄t
α=1

Ttα,

where Ttα contains the states of class α of Tt . Under certain
conditions

hta = h̄tα for all a ∈ Ttα (34)

holds for α = 1, . . . , d̄t and t = 0, 1, 2, . . . , with a recursion (5)
that can be written in terms of the reduced column vectors h̄t =

(h̄tα; α = 1, . . . , d̄t)′ as

h̄t = D̄t h̄t−1, t = 1, 2, 3, . . . , (35)

for a matrix D̄t = (D̄tα,β) of dimension d̄t × d̄t−1.
Suppose (34) is satisfiedwhen t = 0. Then the crucial condition

for (34)–(35) to hold for t = 1, 2, . . . is that

D̄tα,β :=


b∈T(t−1)β

Dta,b, for all a ∈ Ttα, (36)

and 1 ≤ α ≤ d̄t , 1 ≤ β ≤ d̄t−1.
In view of (7), it is possible to merge pairs

Ttα = {ij, ji} (37)

of distinct subpopulations of any model, giving a reduced state
space of size d̄t = 2st − rt + st(st − 1)/2. We have preferred
to use the larger unreduced state space in Sections 2–3, since it
makes some formulas simpler. For practical implementation, it is
recommended though to apply any possible dimension reduction,
at least when dt is large. We will see in the next section that d̄t can
be chosen very small for models with inbuilt symmetries.

Laporte and Charlesworth (2003) use a strategy for dimen-
sionality reduction where averages h̄tα of hta are computed over
disjoint sets Ttα of types. Such averaging involves some loss of in-
formation in general, except when (34) holds.

5. Examples of non-IBD recursions

Non-IBD recursions for pairs of genes are of central importance
for computing the effective size of a population over different time
horizons. In order to illustrate the diversity of our framework, we
derive non-IBD recursions in this section for a homogeneous pop-
ulation, an island–continent model, island models, age-structured
populations and pedigrees with background populations. We also
give conditions under which non-IBD recursions are equivalent for
certain haploid, diploid monoecious and dioecious populations.

Example 1 (Homogeneous Population). In this first example we
show that the IBD recursion of Wang (1996a) is a special case of
Case II, for an isolated, monoecious and diploid population with an
arbitrary amount of selfing, no cloning, and indistinguishable ga-
metes. Since st = 1, we may drop any index referring to subpop-
ulations. The population size varies over time, and the state space
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Tt = {1, 11} at all time points if Nt ≥ 2. The two states corre-
spond to pairs of genes within (1) or between (11) individuals. Un-
der these conditions, (6)–(12) reduce to the recursion

ht1 =
θt

2
h(t−1)1 + (1 − θt)h(t−1)11,

ht11 =
1

2Ne(t−1)
h(t−1)1 +


1 −

1
Ne(t−1)


h(t−1)11

(38)

of Wang (1996a), with

pt =
1

Ne(t−1)
=

Var(ξ(t−1)1)

µt−1
+ µt−1 − 1 − θt

2(Nt − 1)

as in (22), since 2Nt = µt−1Nt−1. In particular, the two recursions
in (38) are identical when θt = 1/Ne(t−1), so that inbreedingwithin
individuals is the same as coancestry between them (ft1 = ft11).
If Ne(t−1) = Nt−1 as well, we have random selfing (16), and the
diploid model cannot be distinguished from a haploid one (Case I)
of the same size. Mating between individuals need not be random,
but for the breedersmodel above (23)withNe(t−1) = Nt−1, it is. �

Example 2 (Diploid and Haploid Models). We will generalize the
findings of the previous example to subdivided populations. That
is, we give conditions under which the non-IBD recursion of a
haploid model (Case I) is equivalent to the corresponding non-IBD
recursion for a diploid, monoecious and isogamous model (Case II)
when cloning is absent, whereas selfing, mating and coalescence
are all random. In order to distinguish the two recursions, wewrite
hhapl
tij for the non-IBD probability of a pair of distinct genes of the

haploid model, picked from subpopulations i and j at time t , and
hmono
ta for the non-IBDprobability of a gene pair a ∈ Tt of the diploid

model.
It follows from (8)–(10) that

hhapl
tij =

st
k,l=1

Bti,k
2NtjBtj,l − δ{i=j,k=l}

2Ntj − δ{i=j}

×


1 −

1
2Ne(t−1)k

δ{k=l}

hhapl
(t−1)kl. (39)

Since the haploid model has fewer states than the diploid one, we
will compare (39) with a certain state space reduced version of
the diploid recursion. We use that the probability is 1/(2Nti − 1)
and 0 that a randomly chosen gene pair from i and j is from the
same individual, when either i = j or not. Therefore, the non-IBD
probability of a randomly chosen gene pair of the diploid model is

h̄tij =


1

2Nti − 1
hmono
ti +

2Nti − 2
2Nti − 1

hmono
tii , i = j,

hmono
tij , i ≠ j.

(40)

In order to compare the haploid and diploid recursions, we will
consider the following four conditions, as indicated above:

1. There is no cloning, i.e. ctik ≡ 0,
2. Selfing is random (16),
3. Coalescence is random, so that (23) holds with Ne(t−1)k =

N(t−1)k.
4. Mating is random and after migration (15).

It is shown in the SM that (40) obeys the haploid recursion (39)
if conditions 1–3 hold. Consequently, if h̄tij = hhapl

tij when t = 0
and 1–3 are satisfied, then this identity will hold for t = 1, 2, . . .
as well, regardless of whether mating takes place before migration
or not.

If random mating after migration (condition 4) is added, it
follows that i and ii can be merged into one single state ii in
accordance with (34), with

h̄tii = hmono
ti = hmono

tii , (41)

for all t ≥ 1, regardless of the initial conditions on h0a, see the SM
for details. The haploid and diploid models of the present type are
therefore equivalent under conditions 1–4. In Example 8 we moti-
vate that (41) still holds if condition 2 is modified so that selfing is
random among the breeders (1/Ne(t−1)k on the right hand side of
(16)), and condition 3 so thatNe(t−1)k = N(t−1)k is not required. �

Example 3 (One and Two-Sex Island–Continent Model). In order to
exemplify a dioecious model (Case IV) we consider a population
with non-overlapping generations and 2 demes, of which the first
is a small island, which is mostly isolated but occasionally receives
one or more immigrants from the second deme, an infinitely sized
continent without inbreeding, see Fig. 2 for an illustration. In the
SM we compare non-IBD recursions for such a dioecious model
without cloning and selfing, where mating within the island is
random and occurs before migration, with a monoecious diploid
model (Case II) that has no cloning but possibly selfing, and an ef-
fective number of individuals at the island that is the harmonic
mean of the effective number of males and females. Finally, we
consider a haploid model (Case I), where coancestry and inbreed-
ing is not distinguished.

In the SM we show that 5 subpopulations are needed for the
dioecious population in order to capture inbreeding and coances-
try within/between males and females of the island. When sexes
are not distinguished, it suffices with 2 subpopulations in order to
describe inbreeding and coancestry of individuals from the island.
We prove that these dioecious and diploid monoecious models are
equivalent when the island is isolated. On the other hand, the two
models may differ substantially when the island receives immi-
grants from the continent, and either the island population is very
small, or the sex ratio differs between immigrants and the island.

The haploid model needs only 1 subpopulation in order to cap-
ture coancestry/inbreeding within the island. It follows from Ex-
ample 2 that it is equivalent to the diploidmonoeciousmodelwhen
coalescence and selfing is random. The twomodelsmaydiffer quite
substantially, though, when the selfing rate is changed, see the SM
for details. �

Example 4 (Island Model with Sex of Gametes Distinguished or
Not). In order to show that Cases II and III may differ, we consider
the island model (Wright, 1943; Maruyama, 1970), a population
for which all demes are treated symmetrically. The census sizes
Nti = N ≥ 2 are the same for all st = s ≥ 2 demes at all genera-
tions, and backward migration

Bti,k = Bi,k =


1 − M, k = i,
M/(s − 1), k ≠ i, (42)

is also time invariant and the same between all pairs of different
demes. The migration rate M quantifies the proportion of individ-
uals whose parents originate from another deme. We assume that
(23) holds with Neti = Ne for all demes and generations. This num-
ber Ne is the constant local effective size that each deme would
have if it was isolated. We further assume a non-mating probabil-
ity θti = θ in (1) that is independent of generation t and deme i,
with a cloning rate ctik ≡ c between all pairs of demes i and k, so
that time index can be dropped.

It is possible to reduce the state space from d = 2s + s(s − 1)
to d̄ = 3 components

T1 = I,

T2 = S,

T3 = D,

(43)

corresponding to inbreeding, coancestry of individuals within the
same deme, and coancestry of individuals of different demes.
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Fig. 2. Illustration of Scenario I (of Tables S1 and S2 in the SM) for an island–continent model with non-overlapping generations (Case IV) and one couple immigrating to
the island in generation 0. The island remains with one male and one female in the following generations, except for an additional male that immigrates at t = 2. Scenario II
differs in that nine males and one female immigrates from the continent at t = 0. Then the island remains with nine males and one female, except for an additional couple
of one male and one female that immigrates at t = 2. See text and Tables S1 and S2 of the SM.
In the SM we compare the time recursion (35) of h̄t = (h̄t1,
h̄t2, h̄t3)

′ for two models. The first of these has isogamous individ-
uals (Case II) that reproduce before theymigrate. The secondmodel
is for plants with unknown sex, but with females gametes distin-
guishable from pollen (Case III). Only pollen migrate, and repro-
duction is different between male and female gametes as well. It
is shown how these different migration and reproduction features
affect the two recursions. �

Example 5 (Separate Sexes with Overlapping Generations). We will
show how a two-sex population with overlapping generations can
be incorporated into Case IV. We drop time index, since all param-
eters are assumed to be time invariant. The dioecious population
has L age classes and s = 2L subpopulations, with subpopula-
tion i = 1, . . . , L corresponding to age class i among males, and
subpopulation i = L+1, . . . , s to age class i−L among females. The
newborns in subpopulations i = 1 and L+1 are produced through
mating, so that θ1 = θL+1 = 0, and any adult age class i through
survival from subpopulation i − 1, so that θi = θi,i−1 = ci,i−1 = 1.
Letµk,i be the expected number of gametes transmitted by individ-
uals of subpopulation k to subpopulation i of the next time point.
Then µk,1 (µk,L+1) is the expected number of matings by an indi-
vidual of subpopulation k that result in a newborn male (female),
µk,k+1 is twice the survival probability of individuals in k and all
other µk,i equal to 0. Constant subpopulation sizes over time re-
quires 2Ni =

s
k=1 Nkµk,i for i = 1, . . . , s. The backward migra-

tion rates (26) are

Bi,k =


Nkµk,i

2Ni
, i ∈ {1, L + 1},

δ{k=i−1}, i ∉ {1, L + 1}.
(44)
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By keeping track of which subpopulations that are male and fe-
male, we obtain sex specific forward and backwardmigration rates

µm
k,i =


µk,i, k ∈ {1, . . . , L}, i ∈ {1, L + 1},
1
2
µk,i, k ∉ {L, s}, i = k + 1,

0, otherwise,

Bm
i,k =


δ{k=i−1}, i ∉ {1, L + 1},

δ{k≤L}
Nkµk,i

Ni
, i ∈ {1, L + 1},

(45)

for males, and

µ
f
k,i =


µk,i, k ∈ {L + 1, . . . , s}, i ∈ {1, L + 1},
1
2
µk,i, k ∉ {L, s}, i = k + 1,

0, otherwise.

Bf
i,k =


δ{k=i−1}, i ∉ {1, L + 1},

δ{k≥L+1}
Nkµk,i

Ni
, i ∈ {1, L + 1}

(46)

for females.
For simplicity we assume that Nek ≤ Nk individuals act as

breeders in each subpopulation, independently of whether they
survive or not. The coalescence probabilities pxyij,k are only well de-
finedwhen it is possible for an x gamete from i and a y gamete from
j to have been transmitted from the same individual of k the time
point before. It is shown in the SM that the well defined coales-
cence probabilities equal 1/Nek for two offspring in i, j ∈ {1, L+ 1}
to have the same parent from k, 1/Nk for a progeny in i ∈ {1, L+1}
to have a certain adult in age class j = k+1 as parent in age class k
the previous time point, and 0 for two different adults of the same
age group i = j = k + 1 to have been the same individual in age
class k the time point before. This implies that Nek is not a local
effective size of k, since (32) is violated.

The mating function Bf |m
i,l|k for newborns i ∈ {1, L + 1} is the

probability for males of age k ∈ {1, . . . , L} to mate a female of age
l − L ∈ {1, . . . , L}. Then

Bf |m
i,l|k =


Bf
i,l, mating independently of age,

δ{l=k+L}, same age mating,

are two opposite scenarios where males choose a female either re-
gardless of age or only of their own age. The latter is a kind of as-
sortative mating which requires Bm

i,k = Bf
i,k+L for k = 1, . . . , L. By

symmetry, we may also write mating as probabilities Bm|f
i,l|k of fe-

males to choose males of different age. It is assumed in any case
the spouse is picked randomly and independently for each mating
among the breeders within the chosen age group. A more sophis-
ticated model where each individual has a maximum number of
spouses (Balloux and Lehmann, 2003) requires subpopulations in
terms of single individuals.

After thismodel specification,we obtain the non-inbreeding re-
cursion (6) by inserting (44)–(46) and the coalescence probabilities
into (24) and (29). �

Example 6 (Pedigree with Background Populations). We will show
how to make inbreeding calculations of a pedigree that is influ-
enced by a background population. The whole metapopulation be-
longs to Case IV and has T generations t = 0, 1, . . . , T − 1. In each
generation t there are rt individuals of known sex that belong to the
pedigree, each of which represents a subpopulation iwith Nti = 1.
If at least one individual of a non-founder generation (t > 0) is
an immigrant with unknown parents, we add one male and one
Fig. 3. Four generation pedigree with immigration from a non-pedigreed,
background population displayed over two generations (ellipses) with a male (to
the left; 03 and 13) and female (to the right; 04, 14) segment, respectively. The
pedigree has sixteen individuals, with males and females depicted as squares and
circles, respectively. Three of the females (12, 15, 23) and one of the males (24)
are immigrants from the background population. Notations are as in the text, with
T = 4, τ = 2, r0 = r1 = 4, r2 = 6, r3 = 2, s0 = s1 = s2 = 6 and s3 = 2.

female background population for generations t = 0, 1, . . . , τ −1,
where 0 ≤ τ ≤ T −1 is the generation of the youngest immigrant.
The number of subpopulations in each generation is then

st =


rt + 2, t = 0, . . . , τ − 1,
rt , t = τ , . . . , T − 1.

Write ti to denote subpopulation number i within generation t ,
and let bp refer to all subpopulations ti that represent a (male or
female) background population. It is assumed that each ti ∈ bp
has 2 ≤ Nti ≤ ∞ individuals of which 2 ≤ Neti ≤ Nti are breeders,
so that (32)–(33) hold. All remaining subpopulations ti ∉ bp are
single individualswith coalescence probabilities 1, so thatNeti = 1.

We assume there is no cloning/selfing (θti ≡ 0), so that all indi-
viduals in the pedigree have two parents. For each subpopulation
ti of a non-founder generation t > 0, we letmt(i) and ft(i) refer to
the male and female subpopulations of generation t − 1 to which
the two parents belong. Depending on whether a single individual
ti is an immigrant or not, either both or none of (t − 1)mt(i) and
(t − 1)ft(i) are background populations. Fig. 3 shows a hypotheti-
cal four generation pedigreewith sixteen individuals, ofwhich four
are immigrants. The remaining four subpopulations represent the
continent of the first two generations, with one male and one fe-
male background population per generation. It is inspired by the
Swedish wild wolf population, which has been isolated for a long
time, with a known pedigree. It occasionally received immigrants
from the continent—the Finnish wolf population and populations
further east (Laikre et al., 2013).

In the SM we use two different methods to compute the non-
IBD probabilities h̄tα = 1 − f̄tα for all types α of gene pairs of a
reduced state space (37) that does not keep track of the order of
different subpopulations. The first method uses recursion (35) for
the whole vector h̄t of non-IBD probabilities. The second method
extends path analysis of Wright (1951, 1965) to situations where
founders are possibly related and the impact of background popu-
lations is accounted for. We illustrate the latter approach by com-
puting the inbreeding coefficient f̄31 of individual ti = 31 in Fig. 3.
Its two parents have no known common ancestors, but the mother
and the grandmother on the father’s side are both immigrants from
the continent, so there are two paths having the male background
population 03 of the founder generation as ‘‘common ancestor’’,
and similarly for the other female background population 04. Go-
ing through all possible lineages from the mother and father of 31
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to the founder generation, one obtains

f̄31 =
1
16

·
1 + f̄03
Ne03

+
1
16

·
1 + f̄04
Ne04

+
1
8


1 −

1
Ne03


f̄033

+
1
8


1 −

1
Ne04


f̄044 +

1
8
f̄013 +

1
8
f̄014 +

1
8
f̄023 +

1
8
f̄024,

where, for instance, f̄03 and Ne03 are the inbreeding coefficient and
local effective size of background population 03, and f̄013 is the
coancestry coefficient between individual 01 and background pop-
ulation 03. Suppose for instance that all individuals of the founder
generation are unrelated (f̄0ij = 0 for all i ≠ j, f̄033 = f̄044 = 0)
and that those from a background population are not inbred (f̄03 =

f̄04 = 0). Then the inbreeding coefficient of 31 ranges between
f̄31 = 0 and f̄31 = 1/16 + 1/16 = 1/8, depending on whether the
background population has no genetic drift (Ne03 = Ne04 = ∞) or
maximal genetic drift caused by one male and one female breeder
(Ne03 = Ne04 = 1).

Since the number of terms in path analysis grows rapidly with
number of generations, it is often computationally more efficient
to find inbreeding coefficients by means of recursion (35). A sim-
ilar approach has been used by Wakeley et al. (2012) to compute
coalescence probabilities on pedigrees. Our model is an extension,
with background populations included. See also Cannings et al.
(1978) and Koski and Noble (2011) for more general probability
recursions on pedigrees and networks. �

6. Effective population size

In the following two sections we assume a diploid population
with a fixed number s = st of subpopulations of size Nti ≥ 2, so
that the spate space Tt = T in (3) is time invariant. In order to
define effective size, we will assign weights Wta to all a ∈ T . We
may think of sampling two genes at random from the population
at time t , withWta the probability that the gene pair has type a, so
that
a∈T

Wta = 1.

In this section we assume that the two genes are drawn without
replacement, since this is the most common approach for the
inbreeding and other types of effective sizeswe consider, but in the
next section we assume they are drawn with replacement, since
this is needed for the measures of subpopulation differentiation
that we use.

Let Wt = (Wta; a ∈ T ) be the row vector of sampling proba-
bilities, and

ht =


a∈T

Wtahta = Wtht = WtDt · · · · · D1h0 = W̄t h̄t (47)

the probability, for sampling scheme Wt , that a randomly chosen
pair of genes from time t is not IBD, given information available
at time 0. The right hand side of (47) contains the state space re-
duced vector (cf. Section 4) of non-IBD probabilities, and W̄t =

(W̄tα; α = 1, . . . , d̄) is the corresponding weight vector, with el-
ements W̄tα =


a∈Tα

Wta.
As in Hössjer et al. (2014), define the effective size over time

interval [t1, t2] as

Ne([t1, t2]) =


1

2

1 − (ht2/ht1)

1/(t2−t1)
 , if ht2 < ht1 ,

NaN, if ht2 ≥ ht1 .

(48)

Notice that Ne is undefined (written as NaN, Not a Number) when
the non-IBD probability ht does not decrease over the time interval
[t1, t2]. We will see below that (48) depends on the subpopulation
weighting scheme, the migration pattern between subpopulations
and howmuch reproduction varieswithin each subpopulation that
has a positive weight. Depending on how subpopulation weights
are chosen, (48) incorporates both local and global effective sizes. It
was argued in Hössjer et al. (2014), that for subdivided populations
(particularly systems with low levels of migration) one should
not report one single effective size, but rather compute Ne for
several time intervals of varying length. At one extreme,Ne[t1, t1+

1] is the instantaneous effective size at time t1. At the other
extreme, if migration is possible back and forth between all pairs
of subpopulations in some number of time steps, and if population
characteristics vary cyclically with period τ , the long term limit

lim
t2→∞

Ne([t1, t2]) = NeE =
1

2(1 − λmax(Dτ · · · · · D1)1/τ )
(49)

of the effective size exists, with λmax(·) the largest positive
eigenvalue of a non-negative and irreducible matrix. The limit in
(49) coincideswith the eigenvalue effective sizeNeE of Crow (1954)
and Ewens (1982), see Whitlock and Barton (1997), Pollak (2002),
Hössjer et al. (2014) and Hössjer (in press) for details.

The sampling scheme Wt gives great flexibility in defining
various types of effective size. We will define a large class of such
schemes (see Table 2), which all require that non-negative weights
w1, . . . , ws with

s
i=1 wi = 1 are assigned to all subpopulations.

These weights may be equal, proportional to size or to the long
term reproductivity of subpopulations. They may also be local, so
that a single subpopulation or a group of subpopulations has a total
weight of one.

The first sampling scheme T chooses randomly a pair of genes
from the total set of subpopulations with positive weights wi. This
can be conceptualized as an urn, where the genes of subpopulation
i have sampling probabilities proportional to wi/(2Nti). When the
first gene is not put back into the urn, this gives a weight vector
WTt = (WTta; a ∈ T ) of dimension 1 × (s + s2) whose elements

WTta =

w2
i /{2Nti[1 − wi/(2Nti)]}, a = i,

w2
i (1 − 1/Nti)/[1 − wi/(2Nti)], a = ii,

wiwj/[1 − wi/(2Nti)], a = ij, i ≠ j,
(50)

are probabilities of choosing all possible types a of gene pairs.
The probability of choosing a = ij when i ≠ j is a product
of wi, the probability that the first gene is chosen from i, and
wj/[1 − wi/(2Nti)], the probability that the second gene is chosen
from j when the first one from i has been removed. The other two
equations of (50) are derived similarly. A slight drawback of this
scheme is asymmetry for a = ij and a = ji. That is, if wi and wj
are both positive and Nti > Ntj we have WTtij < WTtji, although the
difference is minor for large populations. A symmetrized version
of scheme T appears in the next section.

In order to illustrate state space reduction from (50), consider
the symmetric island model of Example 4. Recall that Nti = N
and only the d̄ = 3 components of (43) are needed. The sampling
probabilities in (50) correspond to drawing two genes from the
entire population without replacement, when uniform weights
wi = 1/s are used. Since they do not depend on time we remove
time index t , use the definition of W̄Ttα = W̄Tα above (48) andwrite

W̄T1 = 1/{2sN[1 − 1/(2sN)]},

W̄T2 = (1 − 1/N)/{s[1 − 1/(2sN)]},

W̄T3 = (1 − 1/s)/[1 − 1/(2sN)]

(51)

for the probabilities of sampling two genes from the same
individual, from different individuals within the same island, and
from different islands respectively.

If only coancestry of individuals from different subpopulations
of a general population is of concern, and at least twowi are strictly
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Table 2
Different schemes for sampling a pair of genes from the population.

Scheme Pair of genes drawn Application Effect of replacement?

T From the Total set of subpopulations with positive weights wi . NeV , haploid NeI , gST , fIT Yes/Yes
D From Different subpopulations. NeD No/No
S From the Same subpopulation. gST , fIS Yes/Yes
Sd From the Same subpopulation, but different individuals. NeSd No/No
I From the same Individual. Diploid NeI , fIT , fIS Yes/No

For any scheme, the two genes can be sampled with or without replacement. The global or local population sizes refer to variance (NeV ), inbreeding (NeI ) and coancestry
(NeSd , NeD) effective sizes. The last column refers to whether drawing the two genes with our without replacement has any effect on the scheme itself and its weight
vectorWt .
positive, we get a second sampling scheme Dwith a weight vector
WD = (WDa; a ∈ T ), where

WDa =

0, a = i,
0, a = ii,
wiwj/(1 − w2

1 − · · · − w2
s ), a = ij, i ≠ j.

The third sampling scheme Sd is for coancestry of different
individuals from the same subpopulation. Its weight vectorWSd =

(WSda; a ∈ T ) has elements

WSda =

0, a = i,
wi, a = ii,
0, a = ij, i ≠ j.

(52)

When inbreeding within individuals is of interest, we consider
a fourth scheme I , where first a subpopulation i is drawn with
probability wi, then two different genes are picked from the same,
randomly chosen individual within this subpopulation. This gives
a weight vectorWI = (WIa; a ∈ T ) with components

WIa =


wi, a = i,
0, a = ii,
0, a = ij, i ≠ j.

(53)

Writing Wt for the weight vector associated with any of the four
schemes WTt , WD, WSd or WI , we get different types of effective
sizes (48). Similarly as inWang (1997a,b)we refer toNe = NeI as an
inbreeding effective size for weighting scheme I , a coancestry ef-
fective size Ne = NeSd within subpopulations for sampling scheme
Sd, and a coancestry effective size Ne = NeD between subpopu-
lations for sampling scheme D. With this definition, NeI([t1, t2])
quantifies the rate of increased inbreeding within individuals over
[t1, t2]. It is important to emphasize that this is a diploid quan-
tity, and not the same as NeI([t1, t2]) for a haploid model (Case
I). Although the haploid NeI([t1, t2]) is defined as in (47)–(48), the
non-IBD probabilities hta for a haploid model cannot distinguish
between pairs of genes drawn within or between individuals, as
discussed in Section 3.1. The haploid NeI for a structured popula-
tion is usually defined by drawing two genes randomly from the
whole population, so that wi ≡ 1/s.

For the haploid symmetric island model (see Section 4.6.3 of
Durrett, 2008, and references therein) we can merge the first two
states of (43) and only distinguish whether two genes are drawn
from the same (T hapl

1 = I ∪ S) or different (T hapl
2 = D) islands.

Uniform samplingwithout replacement from the entire population
is then equivalent to sampling scheme in (51), provided that its first
two equations aremerged. The resulting sampling probabilities are

W̄T1 = (1/s)[1 − 1/(2N)]/[1 − 1/(2sN)],

W̄T2 = (1 − 1/s)/[1 − 1/(2sN)]

for two genes drawn from the same and different islands. See also
Hössjer et al. (2014) forweighting schemes ofmore general haploid
models.

The original definition of Ne in Wright (1931) is an inbreeding
effective size of a diploid, monoecious, isogamous and homoge-
neous (s = 1) population over one generation [t, t+1], which does
not relate to changed inbreeding within individuals. It is more re-
lated to a haploid than to a diploid NeI([t, t + 1]), see Hössjer et al.
(2014). It was also shown in that paper that the variance effective
sizeNeV corresponds to (48) withweightsWta obtained from a ver-
sion (56) of sampling scheme T where genes are drawn with re-
placement. It follows that NeV is more closely related to a haploid
than to a diploid NeI .

Example 7 (Homogeneous Populations). We will compute the
eigenvalue effective size of the homogeneous population of Exam-
ple 1 (Case II), when the coalescence probability p = 1/Ne, selfing
rate θ and cloning fraction c are time invariant. The non-IBD prob-
abilities satisfy a recursion (5), with

Dt = D =

1 + c
2

· θ 1 − θ

1
2Ne

1 −
1
Ne

 .

The largest eigenvalue of D can be found by solving a quadratic
equation, and it follows from (49) (with period τ = 1) that

NeE =
1

1 +
1
Ne

−
(1+c)θ

2 −


1 −

1
Ne

−
(1+c)θ

2

2
+

2(1−θ)

Ne

=


Ne

1 −
1+c
2 θ

1 − cθ
+ o(Ne), θ ≫ N−1

e ,

Ne, θ = N−1
e , c = 0,

Ne +
1
2

+ o(1), θ = 0,

(54)

where the first and third equations on the right hand side of (54)
are asymptotic as Ne → ∞. It is well known that the coalescence
effective size isNe(1−θ/2) in the absence of cloning (Pollak, 1987;
Nordborg and Donnelly, 1997), and the first equation of (54) gen-
eralizes this to arbitrary cloning rates, since the eigenvalue and co-
alescence effective sizes are asymptotically equivalent for a large
homogeneous population Hössjer (in press). The second equation
assumes random selfing. The population then behaves as a haploid
Wright Fisher model with effective size Ne, in accordance with Ex-
ample 2. Finally, it is well known that the absence of selfing adds
1/2 to the effective size, see for instance Caballero (1994), Balloux
(2004) and Waples (2010). �

Example 8 (Local Effective Size). We will give sufficient conditions
under which the effective size Ne([t − 1, t]) in (48) agrees with
the local effective size Ne(t−1)i of a certain subpopulation i at
time t − 1, derived from a coalescence probability that satisfies
(23). Our framework is a diploid and isogamous population with s
subpopulations (Case II). In the SM we prove that

NeX ([t − 1, t]) = Ne(t−1)i, (55)

for any of the three sampling schemes X ∈ {T , Sd, I} in (50), (52),
(53), under the following conditions: (i) Subpopulation i is isolated
over interval [t − 1, t], so that Bti,i = 1, and (ii) local weights
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(wi = 1) for i are used. The first thing to notice is that (55) does
not hold if (i) fails and i receives immigrants from at least one other
subpopulation. Inbreeding/coancestry within i at time t is then not
only affected by genetic drift within i, but also by migration from
other subpopulations, whose levels of inbreeding/coancestry may
differ from that of i. But in order for (55) to hold, we must also
require (iii) no cloning, random selfing among breeders ((16) holds
with 1/Ne(t−1)k on the right hand side) and random mating after
migration (15). This condition (iii) implies that the population can
be reduced to a haploid one, see the SM for details. �

Example 9 (Two Subpopulations with Asymmetric Migration). We
will plot t → NeI([0, t]) for the monoecious, isogamous and
diploid population of Fig. 4 with non-overlapping generations
(Case II), and four migration scenarios ((a)–(d)). The system has
time invariant parameters, so that index t is dropped, and two sub-
populations of sizesN1 = 200 andN2 = 20. The reproduction cycle
has no cloning/selfing, and the local effective size of each subpop-
ulation is Nei = Ni in (23). Individuals mate before they migrate,
with n1 of the offspring migrating from the larger and n2 from the
smaller subpopulation per generation.

Fig. 5 shows time profiles t → NeI([0, t]) of the inbreeding
effective size, and the constant eigenvalue effective size NeE , for
all four migration scenarios n1, n2 when there is no inbreeding or
coancestry in generation 0 (f0a = 0 for all a). In the upper left sub-
plot (a) the two local subpopulations are isolated, and the two solid
curves depict NeI([0, t]) for each subpopulation i (using weight
wi = 1). Since there is no coancestry at t = 0 and no selfing,
there will be no inbreeding within individuals at time t = 1, and
therefore both local curves start with NeI([0, 1]) = ∞. Then they
converge towards their asymptotic limits Ni + 0.5 for subpopu-
lations i = 1, 2, in agreement with (54). The corresponding local
curves NeI([1, t]) that start at t = 1 have no transient effects. They
are essentially constant for each subpopulation, since there is some
coancestry between individuals at t = 1. For the global popula-
tion, the dashed NeI([0, t]) curve in subplot (a) has both subpop-
ulations weighted equally (w1 = w2 = 0.5). This global curve
converges extremely slowly towards a value close to N1 + 0.5 =

200.5, with NeI([0, 500]) = 129.2 and NeI([0, 1000]) = 157.1.
This limit (200.5), which may be of more mathematical than bio-
logical interest, is determined by the larger subpopulation 1 since
its rate of increased inbreeding is much slower than for the smaller
subpopulation 2, and therefore 1 determines the long term rate at
which the non-IBD probability ht tends to zero. By a similar ar-
gument, it can be shown that the global coancestry effective size
curve NeSd([0, t]) has the same limit close to 200.5 when both sub-
populations are weighted equally. On the other hand, the coances-
try effective size curveNeD([0, t]) between the two subpopulations
will be infinite. The reason is that different alleles will become
fixed in the two subpopulations, causing the non-IBD probabilities
ht12 = 1 between the two subpopulations remain at their initial
t = 0 value. Since the population is also demographically con-
stant with period τ = 1, the largest eigenvalue λmax(D1) in (49)
is 1, so that the eigenvalue effective size of the whole population is
NeE = ∞. Since the two subpopulations are isolated, the long term
(t → ∞) limit of the effective size Ne([0, t]) does not necessarily
equal NeE , as the first part of (49) stipulates. In this example (49)
only holds for Ne = NeD, but not for Ne = NeI or Ne = NeSd .

In the upper right plot (b), the smaller subpopulation (N2) is a
source, with one emigrant per generation. In this case the limit
of the local NeI([0, t]) curve of the source population is close to
20.5. This agreeswith (54), since inbreedingwithin 2will vary over
time as for an isolated population of size 20. The limit of the lo-
cal NeI([0, t]) curve of the larger sink population and the limiting
global NeI([0, t]) for the two populations combined are both NeE =

100. This value of NeE agrees with a more general formula NeE =
Fig. 4. Four migration scenarios (a)–(d) for a diploid and monoecious population
with two subpopulations (1 and 2) of sizes N1 = 200 and N2 = 20, and non-
overlapping generations (Case II with no selfing). The arrows illustrate the number
of migrants ni per generation from each subpopulation i, and the four scenarios
correspond to (a) complete isolation (n1 = n2 = 0), (b) the small population
being a source population (n1 = 0, n2 = 1), (c) the large population being a
source population (n1 = 1, n2 = 0), and (d) both populations exchanging migrants
(n1 = n2 = 1).

max(N1/(2n2),N2) derived in Hössjer (in press) for a haploid
model with two subpopulations of which the second is a source
(n1 = 0) and the number of migrants from 2 to 1 varies binomially
around n2. In the lower left subplot (c), the larger population is the
source, with one migrant per generation, and all three NeI([0, t])
curves converge towards NeE = 200.5, which is close to the anal-
ogous haploid formula NeE = max(N1,N2/(2n1)). Finally, in the
lower right subplot (d) both populations exchange onemigrant per
generation. Similarly to the lower left subplot, all three NeI([0, t])
curves converge to NeE = 225.0, in agreement with (49). �

7. Subpopulation differentiation

Multiallelic versions of fixation indices are defined in terms of
allele and genotype frequencies (Nei, 1975), which facilitates their
estimation from data. We will focus in this section on IBS-sharing,
since it is closely connected to allele frequencies. As in the previous
section we letWta be the probability that a sampled gene pair is of
type a, but in order to express non-IBS probabilities more easily in
terms of allele frequencies, it is assumed that genes are drawnwith
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Fig. 5. Plots of inbreeding effective size NeI ([0, t]) versus time t for the population of Fig. 4, i.e. a diploid andmonoecious systemwith non-overlapping generations and two
subpopulations of sizes N1 = 200 and N2 = 20, with ni individuals migrating from i in each generation (Case II without selfing). The two solid curves are NeI curves for each
subpopulation i (using weights wi = 1), and the dashed curves depict NeI for both subpopulations combined (based on weights w1 = w2 = 1/2). There is no inbreeding or
cloning, mating (14) is before migration, the local effective sizes in (23) are Nei = Ni , and there is no inbreeding at time t = 0 (f0a = 0 for all a ∈ T ). The dotted horizontal
line shows NeE , except in the upper left subplot, where NeE = ∞.
replacement. We consider three sampling schemes. The sampling
probabilities

WTta =

w2
i /Nti, a = i,

w2
i (1 − 1/Nti), a = ii,

wiwj, a = ij, i ≠ j
(56)

of the first scheme T are modified slightly compared to (50), since
genes are drawn with replacement. The second subpopulation
based sampling scheme S has the subpopulation i picked at first
with probability wi, then two genes are drawn randomly with
replacement from this subpopulation. Its weight vector WSt =

(WSta; a ∈ T ) has components

WSta =


wi/Nti, a = i,
wi(1 − 1/Nti), a = ii,
0, a = ij, i ≠ j.

(57)

The two schemes in (56)–(57) are the same as for a haploid popula-
tion (Hössjer et al., 2014), since genes are drawn randomly regard-
less of which individuals they belong to. Only the third scheme I
accounts diploidy. It has weights WIa as in (53), with subpopula-
tions chosen at random with probabilities wi, then an individual
is picked at random within the chosen subpopulation, and finally
two genes are drawn with replacement from this individual.

Let Hta be the probability that a gene pair of type a at time
t , chosen randomly with replacement, is not IBS. For all three
schemes, define gene diversities

HIt = 2

a

WIaHta = 2


i

wiHti,

HSt =


a

WStaHta =


i

wi


1
Nti

Hti +


1 −

1
Nti


Htii


,

HTt =


a

WTtaHta =


i

w2
i


1
Nti

Hti +


1 −

1
Nti


Htii


+


i≠j

wiwjHtij,

so thatHSt (HTt) is the probability that two randomly chosen genes,
drawn with replacement according to scheme S (T ), are not IBS,
and HIt is twice this probability for scheme I . The extra term 2 of
HIt compensates for that genes are drawnwith replacementwithin
individuals. In order to express the three gene diversities in terms
of allele frequencies, assume there are nt different alleles at time t ,
and let Ptcir ∈ {0, 0.5, 1} be the frequency of allele c ∈ {1, . . . , nt}

in individual r ∈ {1, . . . ,Nti} of subpopulation i at time t . Aver-
aging these frequencies over all individuals in i, Ptci =


r Ptcir/Nti

is the frequency of allele c in subpopulation i at time t . Another
average, taken over subpopulations, gives the frequency Ptc =

i wiPtci of allele c in the entire population at time t , when subpop-
ulations are weighted as wi. It follows after some calculations that

HIt = 2
s

i=1

wi


1≤c<d≤nt

Nti
r=1

2PtcirPtdir/Nti,

HSt =

s
i=1

wi


1≤c<d≤nt

2PtciPtdi,

HTt =


1≤c<d≤nt

2PtcPtd.

(58)

The fixation indices

GSTt = (HTt − HSt)/HTt ,

FISt = (HSt − HIt)/HSt ,

FITt = (HTt − HIt)/HTt ,

(59)
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are derived from the gene diversities in (58). The definitions in (59)
also agreewith those in Nei (1977), Chakraborty (1993) and in par-
ticular Eqs. (28), (31) and (33) of Nagylaki (1998a).

Using the characterization in (58) of non-IBS probabilities in
terms of allele frequencies, we prove in the SM that

0 ≤ GSTt ≤ 1,
−1 ≤ FISt ≤ 1,
−1 ≤ FITt ≤ 1.

(60)

These inequalities hold since genes are drawn with replacement,
and since an extra factor 2 was added in the definition of HIt . We
also prove in the SM that

FISt = 0,
GSTt = FITt ,

(61)

when genotypes of all subpopulations iwith wi > 0 conform with
Hardy–Weinberg proportions. Negative values of FISt signify an
excess of heterozygous individuals compared to HW proportions.
See also Cockerham (1969, 1973), Wang (1997a) and Balloux
(2004) for a slightly different definition of fixation indices, where
schemes Sd and D are used instead of S and T in (59). This implies
for instance that FISdt is slightly negative under HW proportions,
although very marginally so for large populations.

Assume that allele frequencies are known at time t = 0, but
not for t > 0. With some abuse of notation we let hta = E0(Hta)
for t > 0 be a prediction of Hta, i.e. the probability that a randomly
chosen pair of genes of type a at time t are not IBS given that they
are drawn with replacement and we only have information about
allele frequencies at time 0. (Here E0 denotes expectation given
allele frequencies at time 0.) Analogous predictions of the three
quantities in (58) are

hIt = E0(HIt) = 2WIht ,

hSt = E0(HSt) = WStht ,

hTt = E0(HTt) = WTtht ,

(62)

with ht = (hta; a ∈ T )′ a column vector of non-IBS probabilities,
and WTt , WSt and WIt row vectors of sampling probabilities for all
three schemes. The corresponding predicted fixation indices are
obtained by replacing the unknown gene diversities in (59) by the
predicted ones in (62), so that

gSTt = (hTt − hSt)/hTt ,

fISt = (hSt − hIt)/hSt ,

fITt = (hTt − hIt)/hTt .

(63)

The first of these quantities is defined in Nei (1975), Nei et al.
(1977), Hössjer and Ryman (2014) and Hössjer et al. (2014). The
inequalities

0 ≤ gSTt ≤ 1,
−1 ≤ fISt ≤ 1,
−1 ≤ fITt ≤ 1

follow easily from the corresponding inequalities in (60). The ana-
logue of (61) does not hold for fISt and gSTt when the diploid model
is equivalent to a haploid one, i.e. when selfing, coalescence and
mating are random, as in Example 2. This can be viewed as a Levene
correction (Crow and Kimura, 1970) for a structured haploid pop-
ulation. In the SM we use two different methods to prove that the
predicted fraction of heterozygots exceedsHWproportions, so that

hSt < hIt ,

fISt < 0,
fITt < gSTt .

(64)
To compute the quantities in (63), we need expressions for ht . This
was done recursively in Hössjer and Ryman (2014) and Hössjer
et al. (2014) for haploid populations and predictions of GSTt . Here
we extend this approach to diploid populations in order to find pre-
dictions for all quantities of (59). Since IBS sharing is affected by
mutations, we must take the mutation probability of each copy-
ing event into account. An infinite alleles model (Kimura, 1971) is
assumed, so that each mutation creates a new allele, never seen
before, and that different mutation events are independent. Let
ν(t−1)k,i be the mutation probability when a gene of subpopulation
k at time t−1 is transferred or copied to subpopulation i of the next
time point t . For instance, we may have ν(t−1)k,i = ν > 0 if k → i
corresponds to genes copied during fertilization, and ν(t−1)k,i = 0
for genes of surviving adults of a model with overlapping genera-
tions. Introduce Vt = (Vta,b; a, b ∈ T ), a square matrix of order
s2 + s, with elements

Vta,b =


1 − (1 − ν(t−1)k,i)

2, a = i, b = k,
1 − (1 − ν(t−1)k,i)(1 − ν(t−1)l,i), a = i, b = kl,
1 − (1 − ν(t−1)k,i)(1 − ν(t−1)k,j), a = ij, b = k,
1 − (1 − ν(t−1)k,i)(1 − ν(t−1)l,j), a = ij, b = kl

that equal the probability that none of the two genes involved in a
transfer from type b to type amutates between time t − 1 and t . It
is shown in the SM that

ht = (Vt ⊙ At)ht−1 + {[I − (Vt ⊙ Qt)] 1} ⊙ e
νt−1,ki≡ν

= (1 − ν)2Atht−1 +

1 − (1 − ν)2


e, (65)

for t > 0. Here I , Qt = (Qta,b; a, b ∈ T ), At = (Ata,b; a, b ∈ T )
are square matrices of order s2 + s, with I an identity matrix, Qta,b
defined in Section 3,

Ata,b = 0.5δ{a∈I}Dta,b2δ{b∈I} (66)

a modified version of Dta,b that accounts for genes being drawn
with replacement, and ⊙ denotes an elementwise product of two
matrices of equal dimensionality. The column vector 1 in (65) con-
sists of s2+s ones, and e = (ea; a ∈ T ) is another column vector of
the same length with elements ea = 0.5δ{a∈I} , the probability that
two genes of type a, drawn with replacement, are distinct. State
space reduction can be achieved for (65) in a similar way as in Sec-
tion 4.

To summarize, we first iterate (65) t − 1 times in order to
compute ht , then use weight vectors WTt , WSt or WI to find the
predicted fixation indices (62) for all three schemes T , S and I , and
finally we insert these quantities into (63).

Example 10 (Two Subpopulations with Asymmetric Migration).
Fig. 6 shows predicted fixation indices for the system of Example 9
with two subpopulations. The four subplots represent the samemi-
gration scenarios as in Figs. 4 and 5. Both subpopulations are genet-
ically identical at time t = 0, but then they gradually drift apart.
When both subpopulations are isolated (upper left, Fig. 6(a)), it can
be shownoutside of the figure that gSTt converges slowly towards 1,
with gST1000 = 0.921; when the smaller subpopulation is a source
(upper right, Fig. 6(b)), it can be seen outside of the figure again,
that gSTt first increases to a maximum of 0.266, attained around
t = 121, and then it gradually decreases towards a limit of 0.200.
When the large subpopulation is a source (lower left, Fig. 6(c))
or when both subpopulations exchange one migrant per genera-
tion (lower right, Fig. 6(d)), the corresponding gSTt curves converge
more quickly towards limits 0.063 and 0.057 respectively.

The fISt curves are depicted for both subpopulations, in all sub-
plots. Since there is no selfing/cloning, all these curves converge
towards negative values, indicating an excess of heterozygots com-
pared to HW proportions. This is more evident in the smaller sub-
population, with limiting values fIS∞ equal to −0.051 (upper left,
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Fig. 6. Plots of predicted fixation indices fISt and gSTt versus time t for the population of Fig. 4 with two subpopulations of sizes N1 = 200 and N2 = 20, non-overlapping
generations, ni individuals migrating from i in each generation (Case II without selfing). There are nomutations (ν = 0), inbreeding or cloning, mating (14) before migration,
local effective size Nei = Ni in (23) and no inbreeding at time t = 0 (f0a = 0 for all a ∈ T ). The two solid curves show fISt for each subpopulation i (with weights wi = 1),
and the smaller i = 2 subpopulation has consistently more negative values of fISt . The dashed curves depict gSTt (using weights w1 = w2 = 1/2).
Fig. 6(a)), −0.051 (upper right, 6(b)), −0.035 (lower left, 6(c)) and
−0.036 (lower right, 6(d)). The corresponding limits for the larger
subpopulation are −0.005, −0.0025, −0.005 and −0.004, indicat-
ing that migrants from the smaller subpopulation tend to reduce
the heterozygous excess slightly. �

8. Discussion

This paper provides a general framework for identity by de-
scent and state recursions of amonoecious or dioecious diploid and
subdivided population, with applications to long and short term
genetic changes (effective size), genetic differentiation between
subpopulations anddepartures fromHardy–Weinberg proportions
within each subpopulation. Our work extends that of Hössjer et al.
(2014), where haploid populations are treated. The diploid model
incorporates various types of reproduction, including mating, self-
ing and cloning, and substructures such as age classes, geographic
demes and pedigrees, with immigration into a pedigreed popu-
lation from population(s) more or less genetically related to the
recipient, pedigreed population. The subpopulationsmay be of dif-
ferent size and their number may also vary over time, including
subpopulation extinction and recolonization.

Many of our results can be viewed as generalizations of IBD-
and IBS-recursions for various types ofmodels, such as haploid and
monoecious populations with geographic structure or age classes
(Malécot, 1951; Felsenstein, 1971; Nagylaki, 1980, 2000; Slatkin,
1991; Whitlock and Barton, 1997; Hössjer et al., 2014), diploid
and unstructured populations (Hill, 1979; Crow and Denniston,
1988; Caballero and Hill, 1992a,b; Caballero, 1995; Nagylaki,
1995;Wang, 1995), geographically subdivided diploid populations
with specific migration patterns, such as stepping stone models
(Sawyer, 1976), monoecious island models (Wang, 1997a; Balloux
and Lehmann, 2003), more general monoecious models with
binomially varying backward migration (Nagylaki, 1983, 2000),
dioecious islandmodels (Chesser, 1991; Chesser et al., 1993;Wang,
1997b; Hössjer et al., 2013), and dioecious age-structured isolated
populations (Johnson, 1977; Emigh and Pollak, 1979; Engen et al.,
2005).

Our work reveals that the difference between haploidy and
diploidy is more pronounced for population systems with one or
more small subpopulations than for large ones. This ismost evident
for pedigree analysis, where each individual can be thought of
as a subpopulation. Matrix analytic methods are well suited to
quantify this difference, since they are exact and computationally
feasible for small populations. This includes not only IBD- and IBS-
recursions, but also, for instance, recursions for the number of
lineages of an ancestral tree, as studied by Wooding and Rogers
(2002) within a haploid framework.

A special feature of our diploid framework is the mating func-
tion. It is the distribution of the two parental subpopulations
of biparental individuals, and an important tool for finding IBD-
probability recursions of diploid populations. This concept, which
has no analogue for haploid populations, gives great flexibility
in modelling various types of mating scenarios. For populations
with geographic substructure and non-overlapping generations,
themating function distinguishes reproduction cycles that differ in
their order of fertilization and migration. For age-structured dioe-
cious models it determines the age-preference of mating couples,
and when subpopulations are single individuals, organized into a
knownpedigree, themating functiondefines the parents of all non-
founders.

The distinction between haploidy and diploidy is crucial for
computing the inbreeding effective size, since this notion has a
very different meaning when individuals are distinguished in the
model or not. Only with a diploid framework is it possible to com-
pute an inbreeding effective size that quantifies the rate at which
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inbreeding increases within individuals. This is important in con-
servation biology because negative effects of inbreeding, so-called
inbreeding depression, is expressed and empirically quantified at
individual and/or population level and is associated with particu-
lar rates of inbreeding accumulation quantified by the inbreeding
effective size. Our diploid framework also gives criteria to assess
expected departures from Hardy–Weinberg proportions for gen-
eral structured populations.

From the perspective of conservation biology and conservation
genetics the major contributions from this present study in com-
bination with that of Hössjer et al. (2014) include providing ana-
lytical means for (i) predicting inbreeding effective size over short
and long term in separate subpopulations of a population system
as well as for the total system (metapopulation), (ii) computing
population differentiation, measured as GST of such systems, and
(iii) performing such computations in situations where the sub-
populations vary in size both among populations and within
populations (including extinction and recolonization of separate
subpopulations); the subpopulations may (iv) be connected
through various rates of gene flow and, (v) coancestry among and
within themmay vary, aswell. These important parts of our frame-
work have been implemented in an R-based software, Genetic Ex-
ploration of Structured Populations (GESP), which we are in the
process of presenting as a separate publication directed towards
conservation biologists and conservation geneticists (Olsson et al.,
2015). Forthcoming applications of the framework presented here
also include using it as applied in the GESP software for explor-
ing practical conservation genetic management situations includ-
ing that of the highly inbred Swedish wolf population (Laikre et al.,
2013) and of metapopulations of Baltic Sea species (Laikre et al. in
prep.).

Several extensions are possible. First, other forces of genetic
change, such as recombination and selection, could be included.
Another possibility is to study the effect of mutations not only for
fixation indices, but also for effective sizes (Wakeley and Sargsyan,
2009).

Second, we assumed in (12) and (29) that backward migra-
tion rates are fixed, so that the parental subpopulations of distinct
genes are chosen without replacement. Other possibilities include
multinomial backward migration, where genes of different indi-
viduals choose their parental subpopulations independently with
replacement, see for instance Sawyer (1976), Nagylaki (1983), Bal-
loux and Lehmann (2003) and Hössjer et al. (2014). Its actual mi-
gration rates vary multinomially around their expected values, so
that the large population approximations in (12) and (29) are ex-
act. Other possibilities with more random variation of migration
rates include models of Whitlock and Barton (1997) and Dirich-
let multinomial backward migration in Hössjer (in press). Wang
(1996b) obtained exact IBD recursions for a dioecious model with
partial sibmating. It can be interpreted as a dioecious islandmodel,
where males and females of each sibship are two separate islands,
whose random sizes correspond to stochastic backward migration
rates. It would be of interest to include all thesemodels into amore
general diploid framework of stochastic migration.

Third, we have considered genetic variation at one single locus.
Extended models for multiple loci have the potential to generate
general expressions for linkage disequilibrium measures of
effective size (Hill, 1981; Waples and England, 2011; Waples et al.,
2014) as well as the mean and variance of shared IBD segments
(Carmi et al., 2013) for populations with general substructure.

Fourth, IBD dynamics formore than two alleles hasmostly been
analysed in the limit of large populations. This is closely related to
finding the marginal distributions of their ancestral tree, which in
the haploid case is a Kingman coalescent (Kingman, 1982) under
strong migration, where migration rates between subpopulations
is faster than the coalescence rates within them (Notohara, 1993,
Nordborg and Krone, 2002, Sagitov and Jagers, 2005 and Hössjer,
2011). A more complicated structured coalescent limit is obtained
when the limiting coalescence rates within and migration rates
between subpopulations are of the same order (Notohara, 1990;
Herbots, 1997) or when the number of subpopulations is large
(Wakeley, 1998). The limiting ancestry of a large diploid population
is also a Kingman coalescent whether it is homogeneous (Möhle,
1998) or age-structured with a strong migration limit (Pollak,
2011). Themain impact of diploidy is then the coalescence effective
size, a single number that provides the correct rescaling of time
(Sjödin et al., 2005;Wakeley and Sargsyan, 2009). Nagylaki (1998b)
showed that the ancestral trees of diploid and haploid populations
often behave similarly, also when migration and coalescence
rates are of the same order. Whereas many of these results are
asymptotic, it would be of interest to develop a general exact
coalescence framework for diploid populations.

Fifth, our matrix analytic framework makes it possible to com-
pute inbreeding coefficients and coalescence probabilities for pairs
of genes in populations that are mixtures of known pedigrees and
‘‘background populations’’, i.e. populations fromwhich individuals
maybedrawn to create ‘‘immigrants’’ into thepedigree.Webelieve
this could be useful for computing reproductive values of ancestors
and coalescence theory for pedigrees (Chang, 1999; Derrida et al.,
2000;Wakeley et al., 2012), for approximating of the length distri-
bution of shared IBD-segments (Carmi et al., 2013) and for increas-
ing power to detect the degrees of relationship (Huff et al., 2011;
Li et al., 2014).
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