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� A diploid monoecious Moran model is proposed for random mating with possible selfing.

� The Moran model is compared with a diploid and monoecious Wright–Fisher model.
� Diffusion approximations are derived on two time scales.
� Genotype frequencies oscillate as an Ornstein–Uhlenbeck process on the local time scale.
� Fixation index fIS oscillates as an Ornstein–Uhlenbeck process around a fixed point.
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a b s t r a c t

An exact Markov chain is developed for a Moran model of random mating for monoecious diploid
individuals with a given probability of self-fertilization. The model captures the dynamics of genetic
variation at a biallelic locus. We compare the model with the corresponding diploid Wright–Fisher (WF)
model. We also develop a novel diffusion approximation of both models, where the genotype frequency
distribution dynamics is described by two partial differential equations, on different time scales. The first
equation captures the more slowly varying allele frequencies, and it is the same for the Moran and WF
models. The other equation captures departures of the fraction of heterozygous genotypes from a large
population equilibrium curve that equals Hardy–Weinberg proportions in the absence of selfing. It is the
distribution of a continuous time Ornstein–Uhlenbeck process for the Moran model and a discrete time
autoregressive process for the WF model. One application of our results is to capture dynamics of the
degree of non-random mating of both models, in terms of the fixation index fIS. Although fIS has a stable
fixed point that only depends on the degree of selfing, the normally distributed oscillations around this
fixed point are stochastically larger for the Moran than for the WF model.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The classical haploid Wright–Fisher model of population
genetics describes random mating in discrete generations without
overlap (Fisher, 1922; Wright, 1931). As a contrast the haploid
Moran model (Moran, 1958a) of population genetics has a higher
degree of continuity between consecutive generations, as it
exchanges one individual at discrete or continuous time points. A
diploid and dioecious (two-sex) version of the discrete time Moran
model was introduced by Moran (1958b). It has a more compli-
cated state space, with genotype frequencies for males and
females, so that exact computation becomes unfeasible for all but
very small populations. In this paper we develop an exact Markov
process for a simpler monoecious (one-sex) diploid Moran model
with possible selfing, at a biallelic locus. It has a simpler state
space, where only two genotype frequencies are needed to analyze
the dynamics of the population, in discrete or continuous time.

There is also a monoecious and diploid Wright–Fisher (WF)
model, see for instance Moran (1958c), Crow and Denniston
(1988), Tyvand (1993) and references therein. We will compare the
exact Markov chains for the monoecious and diploid Moran and
WF models, and in particular check the validity of the standard
equivalence-time scaling that connects the two models. In order to
facilitate this comparison, we develop diffusion approximations
for both models that are increasingly accurate for large popula-
tions. It is well-known (Watterson, 1964, Ethier and Nagylaki,
1980, 1988) that such approximations work on two different time
scales in terms of a system of two partial differential equations
instead of one. The first equation is the same for the Moran and
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WF models. It describes the slower allele frequencies dynamics in
the same way as for the haploid Moran and WF models (Kimura,
1955). The second equation operates on a more local time scale,
and it is different for the Moran and WF models. It captures the
more rapidly varying departure of the fraction of heterozygous
genotypes from a large population equilibrium curve that corre-
sponds to Hardy–Weinberg (HW) proportions when there is no
selfing.

Previous work for diploid models have shown that the allele
frequency process dominates for large populations, and that the
oscillations around the equilibrium curve are asymptotically neg-
ligible. Here we rescale the latter and obtain a nondegenerate limit
that has the more slowly varying allele frequency process as a
fixed parameter. This makes the frequency oscillations of the
heterozygous genotypes locally time invariant and normally dis-
tributed around the equilibrium curve. It is a stationary Gaussian
(Ornstein–Uhlenbeck, OU) process in continuous time for the
Moran model, and an autoregressive process in discrete time for
the WF model.

A similar autoregressive limit process has previously been
obtained by Korolyuk and Korolyuk (1995), and Coad (2000) in a
different context, to model allele frequency fluctuations of a
diploid Wright–Fisher model with balancing selection. However,
these oscillations are one-dimensional and do not surround an
equilibrium curve, but rather a stable fixed point. Norman (1975)
also obtains normally distributed fluctuations of allele frequencies,
but in the context of a monoecious diploid WF model or a dioe-
cious diploid Moran model, for which the deterministic forces of
selection and/or mutation are stronger than the stochastic genetic
drift. In more detail, the allele frequency dynamics in Norman's
paper is dominated by a deterministic function that solves an
ordinary differential equation according to Haldane's theory (see
for instance Chapter 4 of Cavalli-Sforza and Bodmer, 1971). The
random fluctuations around this deterministic allele frequency
curve are smaller, but in contrast to our results, they occur on the
same time scale as the variations of the deterministic curve. These
stochastic fluctuations are described by a Gaussian diffusion in the
limit of large populations. Norman's results are formulated
mathematically in a more general setting though, and we will
apply them to the genotype frequency process of the monoecious
and diploid Moran model, in order to prove its weak convergence
on both time scales simultaneously.

An implication of our results is that the fixation index fIS of
Wright (1943) oscillates around a stable fixed point that is only a
function of the selfing probability. These oscillations constitute an
OU process for the Moran model and an autoregressive process for
the WF model. Both these processes have a marginal normal dis-
tribution, whose variance and bias are larger for the Moran than
for the WF model.

Our paper is organized as follows. We first define the diploid
Moran model in Section 2 in terms of a Markov chain. In Section 3
we define some important statistics, such as the expected hetero-
zygosity, effective population size and fixation index. The diffusion
approximation of the Moran model is introduced in Section 4, and
its continuous time version in Section 5. In Section 6 we introduce
more briefly the diploid WF model, and derive its diffusion
approximation. Simulation results are presented in Section 7, and
extensions are discussed in Section 8. The mathematical derivations
have been collected in the appendix.
2. Formulation of monoecious diploid Moran model

We consider one locus and assume two versions or alleles A
and a of the gamete. Moran (1958a) noted that a model with
overlapping generations, where only one individual is replaced at
each instant can be formulated in discrete or continuous time. We
will mainly focus on the discrete version, and briefly mention the
continuous time extension in Section 5. Time t¼0 represents the
founder generation, and the composition of the founder popula-
tion is given. The constant number of diploid and monoecious
individuals is n. We take into account the probability s of self-
fertilization.

The Markov chain for the discrete time diploid Moran model
starts with a given founder population. At each of the following
time steps ðt ¼ 1;2;‥Þwe work with a probability distribution over
all possible populations. In an input (parental) population (time
step t) there are nðtÞ

1 ¼ n1 individuals of genotype AA, nðtÞ
2 ¼ n2

genotypes of type Aa, and nðtÞ
3 ¼ n3 individuals of genotype aa. The

total number of input individuals is n¼ n1þn2þn3. In each output
population there are ~n1 ¼ nðtþ1Þ

1 individuals of genotype AA, ~n2 ¼
nðtþ1Þ
2 individuals of genotype Aa, and ~n3 ¼ nðtþ1Þ

3 individuals of
genotype aa. We will not call the output population an offspring
population, because there is just one new member appearing at
each time step t. It is assumed that the total number of diploid
individuals n remains constant for all t, although extensions to a
variable population size are discussed in Section 8. This implies in
particular that ~n1þ ~n2þ ~n2 ¼ n.

At each time step t we first pick one mating individual at
random, for reproduction. After that, we pick one more mating
individual, with probability s for self-fertilization. These two
mating individuals produce an offspring individual, which is put
aside for a moment. We can say that the newly formed offspring
individual is in exile, temporarily. The next step is that we select
one individual at random for removal from the genotype pool. The
last thing we do, is to bring the offspring individual in from its
exile and put it into the genotype pool to replace the removed
individual.

Each time step t thus comprises four substeps: (i) the random
picking of two diploid parental individuals, one after the other,
with a given probability for self-mating. These parental individuals
are put back into the genotype pool after their mating. (ii) The
formation of one offspring individual, by combining two haploid
gametes at random from the parental individuals. This single
newly formed diploid offspring individual is put temporarily into
exile. (iii) The random removal of one diploid individual from the
genotype pool. (iv) The waiting offspring individual is put into the
genotype pool, where it replaces the individual that has been
eliminated.

The net effect during one time step is that one diploid indivi-
dual dies and is replaced by one newly composed individual. This
new genotype is composed through random mating in the full
genotype pool, including the one that will soon be picked to die
and be replaced by the newly composed one. This is an important
distinction. The formation of the offspring takes place before an
individual is removed from the genotype pool. A different type of
Moran model could be constructed if one assumed the reverse
order of removal and replication. A stronger genetic drift would
result if the dying individual had been excluded from having
offspring.

The present model will not take mutation and selection into
account, but it could be modified to do so. A probability s of self-
fertilization is taken into account though. The case s¼ 1=n is of
particular interest because it lets the mating take place in a
gamete pool instead of in a genuine genotype pool. It is thus a
reference case which can be called standard self-fertilization,
where the diploid model effectively degenerates into a haploid
model where the heterozygosity is no longer an essential property,
since no heterozygosity can be identified in a haploid gamete pool.
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2.1. Offspring and elimination probabilities

In the next two subsections, we will look at the transition
matrix of the Moran model. The probabilities for the different
offspring genotypes AA, Aa and aa in the output population are
denoted by P1, P2 and P3, respectively. Following Tyvand (1993),
these probabilities are

P1 ¼
ð1�sÞðn1þn2=2Þ2þðsn�1Þðn1þn2=4Þ

nðn�1Þ ;

P2 ¼
ð1�sÞðn1n2þn3n2þ2n1n3þn2

2=2Þþðsn�1Þðn2=2Þ
nðn�1Þ ;

P3 ¼
ð1�sÞðn3þn2=2Þ2þðsn�1Þðn3þn2=4Þ

nðn�1Þ : ð1Þ

We will see that there is one notable difference between our
diploid Moran model and the diploid Wright–Fisher model in
Tyvand (1993): the case of standard self-fertilization ðs¼ 1=nÞ
makes the diploid Wright–Fisher model degenerate into its con-
ventional haploid version. In contrast, the case of standard self-
fertilization makes our diploid Moran model degenerate into a
haploid but modified Moran model. This modified haploid Moran
model will have two eliminated gametes replaced by two newly
formed gametes at each time step. In the conventional haploid
Moran model, only one gamete is eliminated and replaced by a
newly formed gamete.

Tyvand (1993) allowed the population size to be different from
one time step to the next, involving rectangular transition matri-
ces. The transition matrix is always a square matrix for the Moran
model, since we assume that the number of individuals n in the
parental population is the same as the number of individuals in
the offspring population. Assuming that all possible states ðn2;n3Þ
are ordered as

fð0;0Þ ¼ 1; ð0;1Þ ¼ 2; ð1;0Þ ¼ 3; ð0;2Þ ¼ 4;…; ðn;0Þ ¼ dðnÞg; ð2Þ
the running indices in the Markov chain algebra are the counting
parameter i for all different possible input populations. It is
defined as

i¼ 1þn3þ
ðn2þn3Þðn2þn3þ1Þ

2
; ð3Þ

where i runs from 1 to a value d(n) that represents the number of
different population compositions (where permutations are
excluded). This number of different populations is given by

dðnÞ ¼ ðnþ1Þðnþ2Þ
2

: ð4Þ

The similar counting parameter j for all possible output popula-
tions is

j¼ 1þ ~n3þ
ð ~n2þ ~n3Þð ~n2þ ~n3þ1Þ

2
; ð5Þ

where j runs from 1 to d(n). Even though n1 and ~n1 are not
included in (3) and (5), these equations are essentially transfor-
mations from triplets to single natural numbers

ðn1;n2;n3Þ-i; ð ~n1; ~n2; ~n3Þ-j: ð6Þ
It is desirable also to establish inverse transformations from nat-
ural numbers back to triplets

i-ðn1;n2;n3Þ; j-ð ~n1; ~n2; ~n3Þ; ð7Þ
and for the input population these are given by the formulas

n2þn3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8i�7

p
�1

2

" #
; n3 ¼ i�1�ðn2þn3Þðn2þn3þ1Þ

2
; ð8Þ

where ½x� denotes the integer part of x, which is the largest integer
that is smaller or equal to x. From the relationships (8) we first
determine the sum n2þn3, thereafter n3 and then n2 from the sum
that we already know. Once we know n2 and n3, we find
n1 ¼ n�n2�n3, since the total number of diploid individuals n has
a given constant value. The inverse transformation from the
counting parameter j of Eq. (5) back to the genotype numbers ð ~n1

; ~n2; ~n3Þ for the output population is analogous to (8).
We will now construct the transition matrix M ¼ ðMijÞdðnÞi;j ¼ 1

between all the possible input populations i and the correspond-
ing output populations j. We must give seven different expressions
for seven different cases.

Define frequencies Q ðtÞ
1 ¼Q1, Q

ðtÞ
2 ¼ Q2 and Q ðtÞ

3 ¼ Q3 at time t,
for the three genotypes AA;Aa; aa, respectively. They are given by

ðQ1;Q2;Q3Þ ¼
ðn1;n2;n3Þ

n
; ð9Þ

and equal the elimination probabilities in Step (iii). We introduce
them here in the interest of compacting formulas for the transition
matrix.

There is elimination with full replacement, since the eliminated
genotype is replaced by the newly formed offspring genotype.
Thus the sum of offspring probabilities adds up to one
ðP1þP2þP3 ¼ 1Þ. The sum of elimination probabilities must also
add up to one ðQ1þQ2þQ3 ¼ 1Þ. Now we will combine these
probabilities of offspring and elimination for each genotype to
construct the elements in the transition matrix, where there are
seven distinct cases.

(i) Genotype Aa replaces genotype aa: This is the case where the
relationships between the numbers of output and input genotypes
are

~n1 ¼ n1; ~n2 ¼ n2þ1; ~n3 ¼ n3�1: ð10Þ
The associated elements Mij in the transition matrix are given by
the product of the probability of reproducing one genotype Aa and
the removal of one genotype aa

Mij ¼ P2Q3: ð11Þ
(ii) Genotype aa replaces genotype Aa: This is the case where the

relationships between the numbers of output and input genotypes
are

~n1 ¼ n1; ~n2 ¼ n2�1; ~n3 ¼ n3þ1: ð12Þ
The associated elements in the transition matrix Mij are given by
the product of the probability of reproducing one genotype aa and
the removal of one genotype Aa

Mij ¼ P3Q2: ð13Þ
(iii) Genotype aa replaces genotype AA: This is the case where

the relationships between the numbers of output and input gen-
otypes are

~n1 ¼ n1�1; ~n2 ¼ n2; ~n3 ¼ n3þ1: ð14Þ
The associated elements in the transition matrix Mij are given by
the product of the probability of reproducing one genotype aa and
the removal of one genotype AA

Mij ¼ P3Q1: ð15Þ
(iv) Genotype AA replaces genotype aa: This is the case where

the relationships between the numbers of output and input gen-
otypes are

~n1 ¼ n1þ1; ~n2 ¼ n2; ~n3 ¼ n3�1: ð16Þ
The associated elements in the transition matrix Mij are given by
the product of the probability of reproducing one genotype AA and
the removal of one genotype aa

Mij ¼ P1Q3: ð17Þ
(v) Genotype AA replaces genotype Aa: This is the case where the

relationships between the numbers of output and input genotypes
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are

~n1 ¼ n1þ1; ~n2 ¼ n2�1; ~n3 ¼ n3: ð18Þ
The associated elements in the transition matrix Mij are given by
the product of the probability of reproducing one genotype AA and
the removal of one genotype Aa

Mij ¼ P1Q2: ð19Þ
(vi) Genotype Aa replaces genotype AA: This is the case where

the relationships between the numbers of output and input gen-
otypes are

~n1 ¼ n1�1; ~n2 ¼ n2þ1; ~n3 ¼ n3: ð20Þ
The associated elements in the transition matrix are given by the
product of the probability of reproducing one genotype Aa and the
removal of one genotype AA

Mij ¼ P2Q1: ð21Þ
(vii) All genotype numbers AA, Aa, aa remain unchanged: This is

the case where the relationships between the numbers of output
and input genotypes are

~n1 ¼ n1; ~n2 ¼ n2; ~n3 ¼ n3; ð22Þ
which means that the input and output population numbers are
equal. The associated elements along the main diagonal in the
transition matrix are given as

Mij ¼ P1Q1þP2Q2þP3Q3: ð23Þ
The sum of all these seven expressions for Mij is one, when i is
fixed and j varies. This is a constraint that can be used as a check.
All combinations of i and j that do not belong to one of these seven
categories will give Mij ¼ 0.

2.2. The transition matrix

It is helpful to combine the seven formulas above into one
common expression that is valid for all components in the tran-
sition matrix of the Markov chain. In order to do this, we introduce
the following notation

δðα;βÞ ¼ δαβ ð24Þ
for the Kronecker delta δαβ , so that δðα;βÞ ¼ 1 when α¼ β and
δðα;βÞ ¼ 0 when αaβ. The transition matrix can then be
expressed by one formula

Mij ¼ P2Q3δð ~n1;n1Þδð ~n2;n2þ1Þδð ~n3;n3�1Þ
þP3Q2δð ~n1;n1Þδð ~n2;n2�1Þδð ~n3;n3þ1Þ
þP1Q3δð ~n1;n1þ1Þδð ~n2;n2Þδð ~n3;n3�1Þ
þP3Q1δð ~n1;n1�1Þδð ~n2;n2Þδð ~n3;n3þ1Þ
þP1Q2δð ~n1;n1þ1Þδð ~n2;n2�1Þδð ~n3;n3Þ
þP2Q1δð ~n1;n1�1Þδð ~n2;n2þ1Þδð ~n3;n3Þ
þðP1Q1þP2Q2þP3Q3Þδð ~n1;n1Þδð ~n2;n2Þδð ~n3;n3Þ: ð25Þ

A probability distribution vector over all possible population
compositions of time steps t ¼ 0;1;‥ is given by the vector

V ðtÞ ¼ V ðtÞ
1 ;…;V ðtÞ

dðnÞ

� �
; ð26Þ

where

V ðtÞ
i ¼ P ðnðtÞ

2 ;nðtÞ
3 Þ ¼ ðn2;n3Þ

h i
; i¼ 1;2;…; dðnÞ; ð27Þ

d(n) is the population number of formula (4), and ðn2;n3Þ is related
to i as in (3). We may refer to (26) as the population distribution
vector at time t. It represents the probabilities of each of the dif-
ferent populations after t steps of random mating. The Markov
chain algebra produces the output population distribution vector
V ðtþ1Þ from the input population distribution vector V ðtÞ by the
Kolmogorov–Chapman equation V ðtþ1Þ ¼ V ðtÞM. In component
form it is given by

V ðtþ1Þ
j ¼

XdðnÞ
i ¼ 1

V ðtÞ
i Mij: ð28Þ

The above-mentioned equation (28) is to be applied recursively for
t ¼ 0;1;2;…, starting with the founder population t¼0. Since we
will choose a specific founder population, the initial vector V ð0Þ

will by definition only have one nonzero component, according to

V ð0Þ
i ¼

1; i¼ ðnð0Þ
2 ;nð0Þ

3 Þ;
0; ia ðnð0Þ

2 ;nð0Þ
3 Þ:

8<
: ð29Þ
3. Statistics obtained from the Moran model

The exact stochastic process is represented in our Markov chain
computations. We start with choosing a constant population size
of n diploid individuals, and we choose the probability s of self-
fertilization. Next we choose the founder population t¼0 to be
composed of the numbers of ðn1;n3;n3Þ individuals of the geno-
types ðAA;Aa; aaÞ, respectively. Thereby an initial population dis-
tribution vector V ð0Þ with only one nonzero component (29) is
specified.

At each time step t we calculate recursively the inherited
population distribution vector V ðtþ1Þ from its parental distribution
vector V ðtÞ. The value of t does not represent a generation, as in the
Wright–Fisher model, but a much smaller time unit, since only one
individual out of n individuals is exchanged at each step. Actually
there are no distinct generations in the Moran model, since there
is only a slow gradual replacement of parental individuals with
their offspring. Through the common diffusion approximation we
can link a Moran model to its corresponding Wright–Fisher model,
see below.

The population distribution vector V ðtÞ contains information
which may be summarized in a number of ways. We are interested
in the average genotype frequencies f ðtÞ ¼ ðf ðtÞ1 ; f ðtÞ2 ; f ðtÞ3 Þ at time t for
the three genotypes ðAA;Aa; aaÞ, respectively. These average gen-
otype frequencies at a given time step t are given by

f ðtÞ ¼
XdðnÞ
i ¼ 1

ðn1;n2;n3Þ
n

V ðtÞ
i ; ð30Þ

where the values of n1, n2 and n3 have to vary with i in this sum, in
a way specified by the relationship (3) or its inverse relationship
(8). The frequency f ðtÞ2 of the heterozygous genotype Aa deserves
special attention, since it is a distinguishing feature of the diploid
model. Only when s¼ 1=n, the diploid model degenerates to
having a haploid gamete pool, where heterozygosity is no longer a
property of the model. It is shown in the appendix that

f ðtÞ2 ¼ 2xð0Þð1�xð0ÞÞ � 1�s

1� s
2

� e� t=ðnneÞ

þ Q ð0Þ
2 �2xð0Þð1�xð0ÞÞ � 1�s

1� s
2

2
64

3
75e�ð1� s=2Þt=n

þ1
n
� xð0Þð1�xð0ÞÞ

ð1�sÞ 3� s
2

� �
1� s

2

� �2
1� s

2
� 1
ne

� � e� t=ðnneÞ �e�ð1� s
2Þt=n

h i

þoðn�1Þ; ð31Þ
where

xðtÞ ¼ 1
2Q

ðtÞ
2 þQ ðtÞ

3
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is the frequency of allele a at time t,

ne ¼ n 1� s
2

� �
ð32Þ

is the effective population size for selfing, see Pollak (1997),
Nordborg and Donnelly (1987) and Hössjer et al. (2015), and
oðn�1Þ a remainder term of smaller order than n�1. The first term
on the right-hand side of (31) will dominate when t is large, so
that exp½�1=ðnneÞ� is the multiplicative rate by which the expec-
ted heterozygosity decreases per time step. We will interpret n as
an average generation length, since only one randomly chosen
individual is replaced at each time point, and therefore the
expected life length of each individual is n time steps. The more
selfing there is, the smaller is ne, and the faster is the decay rate
expð�1=neÞ of heterozygosity per generation,

The standard deviation for the frequency of genotype α¼ 1;2;3
is given by

σðtÞ
α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXdðnÞ
i ¼ 1

nα
n

� �2
V ðtÞ
i �ðf ðtÞα Þ2

vuut ð33Þ

at time point t. We also introduce the probabilities ϕðtÞ
A and ϕðtÞ

a for
fixation at time t in the gametes A and a respectively. These are
given by

ϕðtÞ
A ¼ V ðtÞ

1 ;

ϕðtÞ
a ¼ V ðtÞ

dðnÞ: ð34Þ

Under Hardy–Weinberg (HW) equilibrium the frequency of Aa
would be 2xðtÞð1�xðtÞÞ. In order to quantify departure from random
mating in terms of HW-equilibrium, we use the fixation index

f ðtÞIS ¼
2xðtÞð1�xðtÞÞ�Q ðtÞ

2

2xðtÞð1�xðtÞÞ ; 0oxðtÞo1;

NaN; xðtÞAf0;1g;

8><
>: ð35Þ

where NaN (Not a Number) means that f ðtÞIS is undefined.
4. Approximations for large populations

4.1. Genotype frequency equilibrium curve

Recall that nðtÞ
α ¼ nα and nðtþ1Þ

α ¼ ~nα for α¼ 1;2;3 denote the
three genotype counts at time points t and tþ1. Since ~nα can at
most differ from nα by one unit, the genotype counts will have a
systematic drift

E n
�
α jn1;n2;n3

� �
� nα ¼ P n

�
α ¼ nαþ1

� �
� P n

�
α ¼ nα � 1

� �
¼ Pα � Qα:

A genotype frequency fixed point is obtained by putting Pα ¼Qα

for α¼ 1;2;3. We will derive the large population limit of this
fixed point, assuming that the two parents, in the case of no
selfing, are drawn with replacement in step (i) of the reproduction
cycle between time points t and tþ1. This corresponds to a n¼1
limit in (1), with simpler formulas

P1 ¼n ¼ 1ð1�sÞðQ1þQ2=2Þ2þsðQ1þQ2=4Þ ¼ ð1�sÞð1�xðtÞÞ2þsð1�xðtÞÞ�1
4 sQ2;

P2 ¼n ¼ 11�Q1�Q3 ¼ 2ð1�sÞxðtÞð1�xðtÞÞþ1
2 sQ

ðtÞ
2 ;

P3 ¼n ¼ 1ð1�sÞðQ3þQ2=2Þ2þsðQ3þQ2=4Þ ¼ ð1�sÞðxðtÞÞ2þsxðtÞ �1
4 sQ2

ð36Þ
for all three offspring probabilities. Let QαðxÞ ¼ Qα ¼ Pα be the
large population fixed points of the frequencies of genotypes α¼
1;2;3 when the allele frequency is xðtÞ ¼ x. By solving (36), we find
that

Q1ðxÞ ¼ ð1�sÞð1�xÞ2þsð1�xÞ�xð1�xÞsð1�sÞ
2�s

;

Q2ðxÞ ¼ 2xð1�xÞ 1�s
1�s=2

;

Q3ðxÞ ¼ ð1�sÞx2þsx�xð1�xÞsð1�sÞ
2�s

: ð37Þ

It follows from (37) that one single parameter x suffices to
describe the system when the population is large, and
fðQ1ðxÞ;Q2ðxÞ;Q3ðxÞÞ; 0oxo1g constitutes an equilibrium curve
of genotype frequencies that equal Hardy Weinberg propor-
tions in the absence of selfing (s¼0). Inserting (37) into (35) we
get a large population fixed point

f fixIS ¼ 2xð1�xÞ�Q2ðxÞ
2xð1�xÞ ¼ s

2�s
ð38Þ

of the fixation index if 0oxo1. It only depends on the selfing
rate, not on the allele frequency x.

4.2. Diffusion approximations

In this section we derive a large population approximation of
the genotype probabilities V ðtÞ

i that relies on a diffusion fluctuation
around (37). Since

P3
α ¼ 1 Q

ðtÞ
α ¼ 1, it suffices to consider the last

two genotypes α¼ 2;3. We first rewrite (27) in terms of the fre-
quencies of these two genotypes;

V ðtÞ
i ¼ PðQ ðtÞ

2 ¼ q2;Q
ðtÞ
3 ¼ q3 jQ ð0Þ

2 ¼ π2;Q
ð0Þ
3 ¼ π3Þ; ð39Þ

where i and ðq2; q3Þ ¼ ðn2;n3Þ=n are related through (3). Conse-
quently, the genotype frequencies are defined on a lattice

q2; q3A 0;
1
n
;…;

n�1
n

;1
� �

;

and satisfy 0rq2þq3r1. We will treat two cases separately,
depending on whether ðq2; q3Þ corresponds to an absorbing state
or not. That is, we give separate approximations of V ðtÞ

i depending
on whether any of the two alleles A or a has been fixed in the
whole population at time t or not.

4.2.1. Non-absorbing states
If ðq2; q3Þ=2fð0;0Þ; ð0;1Þg is a nonabsorbing state we approximate

(39) by

V ðtÞ
i � n�2f Q ðtÞ jQ ð0Þ ðq2; q3 jπ2;π3Þ:

This is accurate for large n, viewing Q ðtÞ ¼ ðQ ðtÞ
2 ;Q ðtÞ

3 Þ as a two-
dimensional absolutely continuous random vector with condi-
tional density function f Q ðtÞ jQ ð0Þ for t40, given the starting geno-

type configuration Q ð0Þ ¼ ðπ2;π3Þ. In order to find this density, we
need to look a two time scales simultaneously. The first one

T ¼ t
n

ð40Þ

is a generation counter, and the second one

τ¼ t
nne

ð41Þ

is the time scale (31) for genetic drift. It turns out that allele fre-
quencies change according to the slower time scale τ, and it is
therefore convenient to introduce the time transformed allele
frequency process

XðτÞ ¼ xðnneτÞ: ð42Þ
A process that changes more quickly, on time scale T, is the excess
fraction Q ðtÞ

2 �Q2ðxðtÞÞ of heterozygots compared to an infinitely
large population with a given selfing rate s. This excess fraction
gets smaller as n increases, at rate 1=

ffiffiffi
n

p
. We introduce the
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standardized heterozygosity excess process

YðTÞ ¼ ffiffiffi
n

p ½Q ðnTÞ
2 �Q2ðxðnTÞÞ�; ð43Þ

which has a non-vanishing limit for large populations.
With these definitions, we can rewrite the genotype fre-

quencies as

Q ðtÞ
1 ¼ Q1 XðτÞð Þ�YðTÞ=ð2 ffiffiffi

n
p Þ;

Q ðtÞ
2 ¼ Q2 XðτÞð ÞþYðTÞ= ffiffiffi

n
p

;

Q ðtÞ
3 ¼ Q3 XðτÞð Þ�YðTÞ=ð2 ffiffiffi

n
p Þ; ð44Þ

with T and τ as in (40) and (41). Denote the last two components
of (44) as Q ðtÞ ¼ G XðτÞ;YðTÞð Þ, where G : R2-R2 is nonlinear in X
but linear in Y. Using transformation rules for probability densities,
we verify

f Q ðtÞ jQ ð0Þ ðq2; q3 jπ2;π3Þ �
ffiffiffi
n

p
f XðτÞj Xð0ÞðxjpÞf YðTÞj XðτÞðyj xÞ ð45Þ

in the appendix, where p¼ π2=2þπ3 is the initial frequency of
allele a, and

ðx; yÞ ¼ G�1ðq2; q3Þ ¼ q2=2þq3;
ffiffiffi
n

p ½q2�Q2ðxÞ�
	 


the inverse transformation from genotype frequencies to allele
frequency and heterozygosity excess. It is also shown in the
appendix that

E XðτþδÞjXðτÞ ¼ x
� �¼ x;

Var XðτþδÞjXðτÞ ¼ x
� �¼ xð1�xÞδþoðδÞ; ð46Þ

as the time increment δ-0, so that XðτÞ satisfies the same sto-
chastic differential equation as the haploid Wright–Fisher and
Moran models. The Kolmogorov forward equation gives a partial
differential equation associated with (46), for the allele frequency
density. Kimura (1955) derived the solution of this equation in
terms of an infinite series

f XðτÞj Xð0ÞðxjpÞ ¼ pð1�pÞ
X1

m ¼ 1
mðmþ1Þð2mþ1Þe�λmτ=2

�2F1ð1�m;mþ2;2; pÞ � 2F1ð1�m;mþ2;2; xÞ; ð47Þ
see also Section 8.4 of Crow and Kimura (1970). Here λm ¼mðmþ
1Þ is the mth eigenvalue of the partial differential operator that
transforms f XðτÞj Xð0ÞðxjpÞ to �2∂f XðτÞj Xð0ÞðxjpÞ=∂τ, and 2F1 is the
hypergeometric function, defined in detail for instance in Abra-
mowitz and Stegun (1964).

The diffusion representation of the Y-process is conditional on
the allele frequency process X. It is proved in the appendix that

E YðTþδÞ�YðTÞjXðτÞ ¼ x;YðTÞ ¼ y
� �¼ � 1� s

2

� �
y�cðxÞffiffiffi

n
p


 �
δþoðδÞ;

Var YðTþδÞjXðτÞ ¼ x;YðTÞ ¼ y
� �¼ bðxÞxð1�xÞδþoðδÞ ð48Þ

as δ-0, with

bðxÞ ¼ 2ð1�sÞ

1�1
2
s

� �2 1þð2x�1Þ2
ð1�sÞ 3

2
s�1

� �

1�1
2
s

2
664

3
775; ð49Þ

and

cðxÞ ¼ xð1�xÞ
ð1�sÞ 3� s

2

� �
1� s

2

� �3 : ð50Þ

We notice from (48) that the Y-process is mean-reverting, with a
systematic drift towards cðxÞ= ffiffiffi

n
p

. Since this number converges to
0 as n grows, a large population drifts Y back to 0 and hence tries
to maintain heterozygosity balance (37). For large populations, the
X-process changes much more slowly than the Y-process, so that x
becomes a time invariant constant in (48). This corresponds to a
stationary Ornstein–Uhlenbeck process, whose marginal density
function

f YðTÞj XðτÞðyjxÞ ¼
1ffiffiffiffiffiffi

2π
p

σðxÞ
exp �

y�cðxÞffiffiffi
n

p

 �2
2σ2ðxÞ

0
BBB@

1
CCCA ð51Þ

is normal with mean cðxÞ= ffiffiffi
n

p
and variance

σ2ðxÞ ¼ bðxÞxð1�xÞ
2�s

: ð52Þ

In the appendix we use weak convergence results of Norman
(1975), Ethier and Nagylaki (1980, 1988) and Ethier and Kurz
(1986) in order to motivate that the joint distribution of the two
processes (42) and (43) converge to (47) and (51) on the local time
scale as n-1.

It follows from (38), (44) and (51) that the fixation index (35) is
approximately normally distributed

f ðtÞIS jXðτÞ ¼ x�N
s

2�s
� cðxÞ
2xð1�xÞ �

1
n
;

σðxÞ2
ð2xð1�xÞÞ2

� 1
n

 !

¼N
s

2�s
�
ð1�sÞ 3� s

2

� �
2 1� s

2

� �3 � 1
n
;

bðxÞ
4ð2�sÞxð1�xÞ �

1
n

0
BB@

1
CCA;

ð53Þ
conditionally on an allele frequencies before fixation ð0oxo1Þ. Of
particular interest is the case of no selfing s¼0. Then
bðxÞ ¼ 8xð1�xÞ, so that the fixation index, to a first approximation,
has a distribution

f ðtÞIS jXðτÞ ¼ x�N � 3
2n

;
1
n

� �
ð54Þ

independently of the allele frequency x.

4.2.2. Absorbing states
The probabilities (39) for the two absorbing states ðq2; q3ÞAfð0;0Þ;

ð0;1Þg correspond fixation of A and a respectively, as defined in (34).
Reaching any of these two states is equivalent to the allele frequency
process xðtÞ hitting any of its two absorbing barriers 0 or 1. In Section
4.2.1 we found that the allele frequency process has the same diff-
usion limit as the haploid Wright Fisher and Moran models, on a time
scale (41). The fixation probability for this process at the upper
boundary 1 is

ΦðτjpÞ ¼ PðXðτÞ ¼ 1jXð0Þ ¼ pÞ
¼ pþpð1�pÞ

X1
m ¼ 1

ð2mþ1Þð�1Þme�λmτ=2

�2F1ð1�m;mþ2;2; pÞ; ð55Þ
see for instance Sections 8.4 and 8.8 of Crow and Kimura (1970), or
McKane and Waxman (2007). Since the two alleles are treated sym-
metrically, this yields approximations

V ðtÞ
1 ¼ϕðtÞ

A �Φðτj1�pÞ;
V ðtÞ
dðnÞ ¼ϕðtÞ

a �ΦðτjpÞ ð56Þ

of the exact fixation probabilities at both boundaries at any time
point t.
5. Continuous time Moran model

It is possible to define a continuous time version of the diploid
Moran model with time parameter TZ0. Individuals are born as in
Section 2. But this does not happen at equidistant time points, but
rather according to a Poisson process with rate n, at time points
0oT ð1ÞoT ð2Þo⋯ . This implies in particular that T ðtÞ �T ðt�1Þ are
independent and exponentially distributed random variables with
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mean 1=n. Since the expected number of generations t before an
individual dies is n, the expected life time is n � 1=n¼ 1. The con-
tinuous time Moran model can be represented as a Markov pro-
cess

ðnðTÞ
2 ;nðTÞ

3 Þ ¼ nðQ ðTÞ
2 ;Q

ðTÞ
3 Þ

for TZ0, where nðTÞ
2 ¼ nðtÞ

2 is the genotype frequency of Aa for
T ðtÞrToT ðtþ1Þ, with T ð0Þ ¼ 0. Similarly, nðTÞ

3 ¼ nðtÞ
3 is the genotype

frequency of aa during the same time interval. This implies in
particular that the discrete time Moran model ðnðtÞ

2 ;nðtÞ
3 Þ,

t ¼ 0;1;2;…, is the embedded Markov chain of the continuous
time Moran model, obtained by recording values of the latter
process after each jump.

Since the number of births from 0 to T is Poisson distributed
with mean nT, it follows from the theory of Markov processes (see
for instance Grimmett and Stirzaker, 2001) that the transition
matrix over a time interval of length T has entries

PijðTÞ ¼ P ðnðTÞ
2 ;nðTÞ

3 Þ ¼ jj ðnð0Þ
2 ;nð0Þ

3 Þ ¼ i
� �

¼
X1
k ¼ 0

e�nT ðnTÞk
k!

MðkÞ
ij ¼ expðtAÞij;

for 1r i; jrdðnÞ. Here MðkÞ
ij denotes element (i,j) of Mk, and

A¼ ðAijÞdðnÞi;j ¼ 1 is the intensity matrix, with elements

Aij ¼
nMij; ja i;

� P
k;ka i

Aik ¼ �n; j¼ i;

8<
:

that equal the rates between all pairs of different states, and minus
the rate to leave states along the diagonal.

By the law of large numbers for the Poisson distribution, the
number of births up to time T is nTð1þoð1ÞÞ when n is large. The
triplet ðQ ðTÞ

1 ;Q
ðTÞ
2 ;Q

ðTÞ
3 Þ of genotype frequencies for the continuous

time Moran model will therefore be well approximated by the
right-hand side of (44), with XðτÞ and Y(T) as in (47) and (51), and
τ¼ T=ne. Moreover, the joint distribution of the frequencies ðQ ðTÞ

2 ;

Q
ðTÞ
3 Þ of genotypes Aa and aa, is well approximated by the right-

hand side of (45).
6. Monoecious diploid Wright–Fisher model

For the monoecious diploid Wright–Fisher model we let

ðnðrÞ
0 ;nðrÞ

1 ;nðrÞ
2 Þ ¼ nðQ ðrÞ

0 ;Q ðrÞ
1 ;Q ðrÞ

2 Þ
be the number of AA, Aa and aa genotypes in generation
r¼ 0;1;2;…. This is a discrete time Markov chain with the same
state space (2) as for the Moran model. If coding (3)–(5) is used for
these states, we get multinomial transition probabilities

Mij ¼
n!

~n1! ~n2! ~n3!
P ~n1
1 P ~n2

2 P ~n3
3 ; ð57Þ

with Pα as in (1), nα ¼ nðrÞ
α and ~nα ¼ nðrþ1Þ

α , see Tyvand (1993). In
the haploid case, it is well-known that one WF generation corre-
sponds to half a Moran generation. We will prove that the same is
true in the diploid case. To this end, we introduce a time scale

τ¼ r
2ne

of genetic drift, let xðrÞ ¼Q ðrÞ
2 =2þQ ðrÞ

3 be the frequency of allele a in
WF generation r, and

XðτÞ ¼ xð2neτÞ

the corresponding time transformed process. In order to model
oscillations around the equilibrium curve (37) of genotype
frequencies, we define the Moran model generation number as

T ¼ r
2
;

and let

YðTÞ ¼ ffiffiffi
n

p
Q ð2TÞ

2 �Q2ðxð2TÞÞ
h i

ð58Þ

be the time transformed and normalized excess of heterozygots
process at time T. An important distinction from the Moran model
is that TAf0;1=2;1;3=2;…g is defined on the same lattice for each
n, and it is not a continuous parameter in the limit of large
populations.

Notice that the Aa and aa genotype frequencies ðQ ðrÞ
2 ;Q ðrÞ

3 Þ of
generation r still satisfy (44), provided we change the Moran time
step index t to r on the left-hand side of this equation. Likewise,
the joint distribution of these two genotypes is approximated by
(45). In order to find this approximate distribution, we prove in
the appendix that XðτÞ satisfies the same diffusion equation (46) as
for the Moran model, with an asymptotic distribution given by
(47). The distribution of (58) is on the other hand different from
(51). We prove in the appendix that asymptotically for large
population, (58) is an autoregressive process

Y Tþ1
2

� �
� ~cðxÞffiffiffi

n
p ¼ s

2
YðTÞ� ~cðxÞffiffiffi

n
p


 �
þεðTÞ; ð59Þ

of order 1, with a bias term that involves

~cðxÞ ¼ xð1�xÞ
ð1�sÞ 2� s

2

� �
1� s

2

� �3 ; ð60Þ

and an innovation term εðTÞ �N 0; bðxÞxð1�xÞ=2	 

that is normally

distributed conditionally on XðτÞ ¼ x, with b(x) as in (49). Com-
bining (59) with time theory analysis (see for instance Brockwell
and Davis, 1991), we find that the normal marginal distribution

f YðTÞj XðτÞ ¼ xðyjxÞ ¼
1ffiffiffiffiffiffi

2π
p

~σ ðxÞ
exp �

y� ~cðxÞffiffiffi
n

p

 �2
2 ~σ2ðxÞ

0
BBB@

1
CCCA

of Y(T) conditionally on the allele frequency process, with variance

~σ2ðxÞ ¼ Var εðTÞjXðτÞ ¼ x½ �
1� s

2

� �2 ¼ bðxÞxð1�xÞ

2�s2

2

: ð61Þ

Comparing (60) and (61) with (50) and (52), we notice that ~cðxÞ
ocðxÞ and ~σ2ðxÞrσ2ðxÞ, with equality if and only if s¼0. This
implies that the frequency of heterozygots Aa on average departs
less from the stable fixed point (37) for the WF model than for the
Moran model.

For the fixation index we obtain an approximate normal dis-
tribution

f ðtÞIS jXðτÞ ¼ x�N
s

2�s
�
ð1�sÞ 2� s

2

� �
2 1� s

2

� �3 � 1
n
;

bðxÞ

4 2�s2

2

� �
xð1�xÞ

� 1
n

0
BBB@

1
CCCA;

similarly as in (53). This expression simplifies a lot when there is
no selfing (s¼0). Then the fixation index process has independent
and identically distributed components

f ðrÞIS jXðτÞ ¼ x�N �1
n
;
1
n

� �
ð62Þ

for r¼ 1;2;…, independently of the allele frequency x. This Levene
effect can more easily be obtained by a direct argument, see for
instance Levene (1949) and Section 2.10 of Crow and Kimura
(1970). It confirms a well-known fact that the fraction of



Fig. 1. Simulation results for a diploid Moran population of size n¼40 with no selfing (s¼0) that starts with genotype frequencies ðQ ð0Þ
2 ;Q ð0Þ

3 Þ ¼ ð0:5;0:25Þ. Upper left is a
scatterplot from one time series ðQ ðtÞ

2 ;Q ðtÞ
3 Þ, t ¼ 1;…;N ¼ 10;000, together with the limit (solid) curve fðQ2ðxÞ;Q3ðxÞÞ;0rxr1g for large populations. The remaining three

subplots give aggregated results from ten time series of length N, conditionally on the allele frequency process xðtÞ ¼Q ðtÞ
2 =2þQ ðtÞ

3 ¼ x. The upper right subplot depicts the
average of ðQ ðtÞ

2 ;Q ðtÞ
3 Þ for each x. The two lower subplots show for each x estimates of the mean and standard deviation of the standardized heterozygosity excess process

Yst ¼ YðTÞ=σðxðtÞÞ, with Y(T) as in (43). The corresponding predictions from the diffusion approximation in (51) are cðxÞ=ð ffiffiffi
n

p
σðxÞÞ (thick line, left) and 1 (thin line, right).

Fig. 2. Simulation results for a diploid Moran population of size n¼40 with selfing probability s¼0.8 that starts with genotype frequencies ðQ ð0Þ
2 ;Q ð0Þ

3 Þ ¼ ð0:15;0:4Þ. See Fig. 1
for a description of the four subplots.
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heterozygots of a randomly mating WF population has a slight
upward bias compared to HW equilibrium.
7. Numerical results

We will show some numerical results from computing the
exact Markov chain of the diploid discrete time Moran model, as
well as the diffusion approximation.

Scatterplots of ðQ ðtÞ
2 ;Q ðtÞ

3 Þ are displayed in the upper left graphs of
Figs. 1–3, for two population sizes n¼40 and n¼100, and two selfing
rates s¼0 and s¼0.8. The distance between the realized genotype
frequencies and the equilibrium curve (37) is sometimes quite sub-
stantial for the smaller population, although the average genotype
frequencies over 10 realizations follow the curve closely. The bias and
standard deviation of this distance are estimated in the lower sub-
plots, and they agree well with the mean and standard deviation of
the normal distribution in (51).

Fig. 4 illustrates the accuracy of the diffusion approximation for
the allele frequency distribution at interior points (47) and at the two
boundaries (56) when the initial allele frequency p¼0.5. It can be
seen that the approximation is good already for n¼40, and even
better for n¼80. Notice also that the conditional distribution of the
allele frequency distribution conditional on non-fixation is close to
uniform when τ¼2, but not for τ¼0.5. The reason is that the first
eigenfunction x-2F1ð0;3;2; xÞ in (47) is uniform, and its coefficient
6e� τ=2

2F1ð0;3;2;0:5Þ will dominate the infinite series when τ¼2.



Fig. 3. Simulation results for a diploid Moran population of size n¼100 with no selfing (s¼0) that starts with genotype frequencies ðQ ð0Þ
2 ;Q ð0Þ

3 Þ ¼ ð0:15;0:4Þ. See Fig. 1 for a
description of the four subplots.

Fig. 4. Exact (crosses) and approximate (dots) distribution of allele frequency x for a diploid Moran model of size n with no selfing (s¼0) at standardized time τ, defined in
(41). It is assumed that x¼ v=ð2nÞ, with v¼ 0;…;2n. The density f XðτÞðxÞ in (47) that solves the diffusion equation, and the standardized probability 2nPðxð2nτÞ ¼ xÞ, are plotted
for interior allele frequencies, whereas the approximate and exact fixation probabilities (56) are displayed at the two boundary points xAf0;1g.
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In order to check the accuracy of the diffusion approximation of
the distribution of YðTÞjXðτÞ, we plot the ratio of

f̂ YðTÞj XðτÞðyjxÞ ¼
ffiffiffi
n

p

2

�
P ðnðtÞ

2 ;nðtÞ
3 Þ ¼ n Q2ðxÞþ

yffiffiffi
n

p ;Q3ðxÞ�
yffiffiffiffiffiffi
2n

p

 �� �

P nðtÞ
2 þ2nðtÞ

3 ¼ 2nx
� � ; ð63Þ

and (51) in Fig. 5, for different values of x and s, when n¼40. The
first term on the right-hand side of (63) takes into account that
Y jXðτÞ ¼ x varies on a lattice of width 2=

ffiffiffi
n

p
when x is fixed. It is

seen from the figure that the ratio of the two densities is quite
close to 1, indicating that the diffusion approximation is accurate.
It is crucial in this context to include in (51) the bias term cðxÞ= ffiffiffi

n
p

.

Without this correction, the ratio deviates much more from unity
(results not shown).
8. Conclusions

In this paper we introduced an exact monoecious diploid
Moran model and compared it with the monoecious diploid
Wright–Fisher model. We also derived novel diffusion approx-
imations of both models on two time scales, where the more
slowly varying allele frequency process is asymptotically the same
for both models, whereas the more rapid oscillations of genotype
frequencies around an equilibrium curve, are described by differ-
ent stochastic processes for the two models.



Fig. 5. Ratio of exact and asymptotic approximations, (63) and f YðTÞj XðτÞðyjxÞ, of the conditional distribution of Y(T) given XðτÞ. It is plotted as a function of Yst ¼ YðTÞ=σðXðτÞÞ
when XðτÞ ¼ x is fixed. The population size is n¼40 in all four subplots, the standardized time in (41) is τ¼ 2, and the starting configuration ðQ ð0Þ

2 ;Q ð0Þ
3 Þ of the genotype

frequencies of Aa and aa, is ð0:5;0:25Þ in the upper subplots (s¼0) and ð0:325;0:325Þ in the lower subplots (s¼0.5).
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The results of this paper can be extended in several ways. First,
it is possible to define a more general hybrid model that includes
the Moran model and the Wright–Fisher model as special cases.
Such a hybrid model can have a given number of n diploid indi-
viduals, and in each generation it lets a number m of offsprings be
generated. At the next time step, m diploid individuals are elimi-
nated and replaced by the m newly formed offspring. The present
Moran model represents m¼1, and if all offspring choose their
parents independently, the diploid Wright–Fisher model corre-
sponds to m¼n. But it is also possible with more skewed offspring
distributions, where, for instance, one single couple is the parent
of all m offspring.

When s¼1/n, we get a haploid hybrid model where 2m
gametes are replaced in each generation. If the new gametes are
chosen randomly with replacement from the previous generation
and m¼n, we get an ordinary haploid Wright Fisher model of size
2n. A proper rescaling of the number of a-alleles nðtÞ

2 þ2nðtÞ
3 at time

t ¼ 0;1;2;… for this haploid model converges to the same
asymptotic diffusion limits (47) and (55) as for the diploid allele
frequency process, for any value of m. On the other hand, if all 2m
gametes have the same parents, we obtain the model of Eldon and
Wakeley (2006). These haploid reproduction scenarios are all
instances of the exchangeable Cannings model of a homogeneous
population (Cannings, 1974).

Second, it is not immediately clear how the Moran model
should be generalized to take a varying population size into
account. The most natural extension is to allow the number of
individuals mðtÞ and qðtÞ that are born or die, to vary with time. If
qðtÞ differs from mðtÞ, the population size will change from nðtÞ to
nðtÞ þmðtÞ �qðtÞ between time points t and tþ1.

Third, we believe the diffusion approximation approach with
two time scales is even more important for higher dimensional
processes. Whereas our genotype process is two-dimensional,
exact Markov chain computation becomes infeasible for all but
very small populations in higher dimensions. This includes the
diploid two-sex Moran and WF models of a biallelic gene. It
requires four-dimensional processes, with separate genotype
frequencies of males and females. It is well-known that this pro-
cess has small oscillations around a one-dimensional curve of
Hardy–Weinberg proportions when there is no selfing (Ethier and
Nagylaki, 1980, 1988). The position along this curve depends on
the allele frequency, and the allele frequency process is asympto-
tically the same as for a haploid model (46)–(47). We conjecture
that the genotype frequency oscillations around this curve follow a
multivariate OU-process for the Moran model and multivariate
autoregressive process for the WF model, on a local time scale.

Fourth, it is of interest to work out the dynamics of a biallelic
gene in a haploid subdivided population with non-overlapping
generations and strong migration between the S subpopulations.
Nagylaki (1980) has shown that a reproductively weighted (Fisher,
1958) average of the subunits allele frequencies gives a global
allele frequency that determines genetic drift according to (46)–
(47), on a slowly varying time scale determined by the variance
effective population size. We conjecture that the S-dimensional
vector of local allele frequencies for all subpopulations will oscil-
late around the line fðx;…; xÞ; 0oxo1g on a local time scale, as a
multivariate autoregressive process of order 1. An implication of
this result would be that the fixation index fST of Wright (1943),
which quantifies the amount of subpopulation differentiation, will
exhibit oscillations around a quasi-equilibrium fixed point
obtained explicitly in Hössjer et al. (2013) for the island model,
and by Hössjer and Ryman (2014) for more general models.
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Appendix A. Mathematical proofs and motivations

A.1. Motivation of (45)

It follows from transformation rules of densities that

f Q ðtÞ jQ ð0Þ ðq2; q3 jπ2;π3Þ ¼ j Jðx; yÞj �1f XðτÞj Xð0Þ;Yð0Þðxjp; y0Þ
�f YðTÞj XðτÞ;Xð0Þ;Yð0Þðyjx; p; y0Þ

¼ ffiffiffi
n

p
f XðτÞj Xð0Þ;Yð0Þðxjp; y0Þ

�f YðTÞj XðτÞ;Xð0Þ;Yð0Þðyjx; p; y0Þ
� ffiffiffi

n
p

f XðτÞj Xð0ÞðxjpÞf YðTÞj XðτÞðyj xÞ; ðA:1Þ

where y0 ¼
ffiffiffi
n

p
π2�Q2ðpÞ½ � is the value of the heterozygous excess

process at time 0. of (A.1) we used that the determinant of the
Jacobian equals

j Jðx; yÞj ¼ dGðx; yÞ
dðx; yÞ

����
����¼

ð1�2xÞ2ð1�sÞ
1�s=2

2ð1�sÞxþs�1
2
ð1�2xÞsð1�sÞ

1�s=2
1ffiffiffi
n

p � 1
2
ffiffiffi
n

p

���������

���������
¼ 1ffiffiffi

n
p ;

and in the last step that asymptotically for large time points and n,
it is only the allele frequency p at time 0 that influences the joint
distribution of XðτÞ and Y(T). This will be motivated further in the
weak convergence proof below.

A.2. Proof of (46)

Let

vðtÞ ¼ nðtÞ
2 þ2nðtÞ

3 ¼ 2nxðtÞ ¼ 2nX
t

nne

� �
ðA:2Þ

and

wðtÞ ¼ nðtÞ
2 �nQ2ðxðtÞÞ ¼

ffiffiffi
n

p
Y

t
n

� �
ðA:3Þ

refer to the number of a-alleles and excess number of Aa geno-
types (compared to fixed point (37)) at time point t.

It follows from (32) and (42) that Eq. (46) is equivalent to

E vðtþ1Þ jvðτÞ ¼ v
	 
¼ v;

Var vðtþ1Þ jvðtÞ ¼ v¼ 2nx
	 
¼ ð2nÞ2

nne
xð1�xÞþo nn�1

e

	 
¼ 4xð1�xÞ
1�s=2

þoð1Þ

ðA:4Þ
as n-1. In order to prove (A.4), define Qα ¼ Q ðtÞ

α and Pα ¼ PðtÞ
α for

α¼ 1;2;3, and recall that the genotype frequency transition
between time points t and tþ1 was divided into seven cases (i)–
(vii) in Section 2.1. Only the first six of these, (i)–(vi), give a non-
zero value of vðtþ1Þ �vðtÞ that equals either of �2; �1;1;2. Sum-
ming over all possible vðtþ1Þ �vðtÞ, weighted by their probabilities
to occur, we find that

E vðtþ1Þ �vðtÞ jvðtÞ ¼ v;wðtÞ ¼w
	 
¼ �P2Q3þP3Q2þ2P3Q1�2P1Q3�P1Q2þP2Q1

¼ P3�P1�ðQ3�Q1Þ

¼ ð1�sÞðn1þn2þn3Þðn3�n1Þþðsn�1Þðn3�n1Þ
nðn�1Þ �n3�n1

n
¼ 0; ðA:5Þ

where in the second step we made some rearrangements of terms
and used

P1þP2þP3 ¼Q1þQ2þQ3 ¼ 1; ðA:6Þ
and in the third step we inserted the definitions of P1 and P3 in (1).
Averaging over wðtÞ we then find that

E vðtþ1Þ �vðtÞ jvðtÞ ¼ v
	 
¼ E E vðtþ1Þ �vðtÞ jvðtÞ ¼ v;wðtÞ ¼w

	 
� �¼ 0:

ðA:7Þ
In order to verify the second part of (A.4), we notice that the

genotype frequencies for large populations are close to the fixed
point (37), so that

Pα ¼ QαðxÞþoð1Þ;
Qα ¼QαðxÞþoð1Þ; ðA:8Þ
for α¼ 1;2;3 as n-1. This gives

Var vðtþ1Þ jvðtÞ ¼ 2nx;wðtÞ ¼w
	 


¼ E ðvðtþ1Þ �vðtÞÞ2 jvðtÞ ¼ 2nx;wðtÞ ¼w
h i

¼ P2Q3þP3Q2þ22P3Q1þ22P1Q3þP1Q2þP2Q1

¼ 2Q2ðxÞð1�Q2ðxÞÞþ8Q1ðxÞQ3ðxÞþoð1Þ
¼ 4xð1�xÞ

1� s
2

þoð1Þ; ðA:9Þ

as was to be proved. The last step of (A.9) follows after some
calculations from the definitions of QαðxÞ in (37). We finally
deduce the second part of (A.4) by averaging over wðtÞ, similarly as
in (A.7).□

A.3. Proof of (48)

We will prove that

E wðtþ1Þ �wðtÞ jxðtÞ ¼ x;wðtÞ ¼w
	 
¼ � 1� s

2

� �w
n
þC
n
þoðn�1Þ;

Var wðtþ1Þ j xðtÞ ¼ x;wðtÞ ¼w
	 
¼ bðxÞxð1�xÞþoð1Þ ðA:10Þ

as n-1, with

C ¼ 2xð1�xÞ1�s
2�s

�Q ″
2ðxÞ

xð1�xÞ
2 1� s

2

� � ¼ xð1�xÞ 1�s

1� s
2

þ2xð1�xÞð1�sÞ
1� s

2

� �2 ≕C1þC2 ¼ cðxÞ 1� s
2

� �

ðA:11Þ
a constant, Q ″

2ðxÞ refers to the second derivative of the middle
equation in (37) and c(x) is the function defined in (50). In order to
verify the first part of (A.10), we Taylor expand Q2ð�Þ around x and
use (A.2)–(A.4) to deduce that

E wðtþ1Þ �wðtÞ jxðtÞ ¼ x;wðtÞ ¼w
	 
¼ E nðtþ1Þ

2 �nðtÞ
2 jxðtÞ ¼ x;wðtÞ ¼w

� �
�n � 1

2n
Q 0

2ðxÞE vðtþ1Þ �vðtÞ jxðtÞ ¼ x;wðtÞ ¼w
	 


�n � 1
2ð2nÞ2

Q ″
2ðxÞE ðvðtþ1Þ �vðtÞÞ2 jxðtÞ ¼ x;wðtÞ ¼w

h i

¼ E nðtþ1Þ
2 �nðtÞ

2 jxðtÞ ¼ x;wðtÞ ¼w
� �

þC2

n
þoðn�1Þ

¼ P2Q3�P3Q2þP2Q1�P1Q2þ
C2

n
þoðn�1Þ

¼ P2�Q2þ
C2

n
þoðn�1Þ ¼ ð1�sÞ2xð1�xÞ n

n�1
þ1
2
Q2s

n�1=s
n�1


 �
�Q2þ

C2

n
þoðn�1Þ

¼ ð1�sÞ2xð1�xÞ n
n�1

þ 2xð1�xÞ 1�s
1�s=2

þw
n


 �
1
2
s�1þ s�1

2ðn�1Þ


 �
þC2

n
þoðn�1Þ

¼ � 1� s
2

� �w
n
þC1

n
þC2

n
þoðn�1Þ

¼ � 1� s
2

� �w
n
þC
n
þoðn�1Þ

where in the fourth step we used (A.6), in the fifth step the defi-
nition of P2 in (1) and in the sixth step we combined (37) and (A.3)
to deduce that

Q2 ¼ 2xð1�xÞ 1�s

1� s
2

þw
n
:

In order to verify the second part of (A.10), we rewrite the con-
ditional variance of wðtþ1Þ �wðtÞ as

Var wðtþ1Þ �wðtÞ jxðtÞ ¼ x;wðtÞ ¼w
	 
¼ E ðwðtþ1Þ �wðtÞÞ2 jxðtÞ ¼ x;wðtÞ ¼w

h i
þoð1Þ

¼ E nðtþ1Þ
2 �nðtÞ

2 �1
2
Q 0

2ðxÞðvðtþ1Þ �vðtÞÞ

 �2

jxðtÞ ¼ x;wðtÞ ¼w

)
þoð1Þ

(

¼ ðP1Q2þP2Q1Þ 1�1
2
Q 0

2ðxÞ
� �2

þðP1Q3þP3Q1Þ 0þ2 � 1
2
Q 0

2ðxÞ
� �2
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þðP2Q3þP3Q2Þ 1þ1
2
Q 0

2ðxÞ
� �2

þoð1Þ

¼ P1Q2þP2Q1þP2Q3þP3Q2þðP2Q3þP3Q2�P1Q2�P2Q1ÞQ 0
2ðxÞ

þðP1Q2þP2Q1þP2Q3þP3Q2þ4P1Q3þ4P3Q1Þ
Q 0

2ðxÞ2
4

þoð1Þ

¼Q1ð1�P2ÞþP2ð1�Q2Þþ Q2ðP3�P1ÞþP2ðQ3�Q1Þ½ �Q 0
2ðxÞþ 2Q2ðxÞð1�Q2ðxÞÞ½

þ8Q1ðxÞQ3ðxÞ�
Q 0

2ðxÞ2
4

þoð1Þ

¼ 2Q2ðxÞð1�Q2ðxÞÞþ2Q2ðxÞ Q3ðxÞ�Q1ðxÞð ÞQ 0
2ðxÞþ

4xð1�xÞ
1� s

2

� Q
0
2ðxÞ2
4

þoð1Þ:

¼ bðxÞxð1�xÞþoð1Þ;
where in the first step we used the upper part of (A.10), and in the
second step the definition of wðtÞ in (A.3) and a first order Taylor
expansion of Q2ð�Þ. In the fifth step we used (A.6), in the sixth step
(A.8) and (A.9), and the last step, finally, follows after some com-
putations from the definition of b(x) in (49), by inserting formulas
(37) for QαðxÞ and its derivative

Q 0
2ðxÞ ¼

2ð1�2xÞð1�sÞ
1� s

2

for α¼ 2.
To finalize the proof of (48), we notice that its first part follows

by combining (42), (A.3), the upper part of equation of (A.10), and
(A.11);

E YðTþδÞ�YðTÞjXðτÞ ¼ x;YðTÞ ¼ y
� �
¼ δn � 1ffiffiffi

n
p E wðtþ1Þ �wðtÞ jxðtÞ ¼ x;wðtÞ ¼ ffiffiffi

n
p

y
	 
þoð1Þ

¼ δn � 1ffiffiffi
n

p �ð1� s
2
Þ
ffiffiffi
n

p
y

n
þcðxÞð1� s

2Þ
n

þoðn�1Þ

 �

þoð1Þ

¼ � 1� s
2

� �
y�cðxÞffiffiffi

n
p

� �
δþoð1Þ: ðA:12Þ

The second part of (48) follows similarly from the lower equation
of (A.10).□

A.4. Proof of weak convergence of discrete time Moran process on
local time scale

We start by indexing the a allele frequency process XðτÞ ¼ XnðτÞ
in (42), and the heterozygous excess process YðTÞ ¼ YnðTÞ in (43),
by population size n. We will prove weak convergence

ðXnðτÞ;YnðTÞÞjXnð0Þ ¼ p;Ynð0Þ ¼ yð0Þ⟶L ðX1ðτÞ;Y1Þ ðA:13Þ
when τ is fixed and n-1, and hence T ¼ τne-1. The first
component X1ðτÞ on the right-hand side of (A.13) has a distribu-
tion (47) that depends on p but not on yð0Þ. The second component
has a normal distribution

Y1jX1ðτÞ ¼ x�N 0;σ2ðxÞ	 
 ðA:14Þ
conditionally on the first, with a variance (52) that depends on x,
but on neither p nor yð0Þ. This distribution corresponds to the limit
of (51) as n-1. We will actually prove a result more general than
(A.13); functional weak convergence

Xn τþ U
ne

� �
;YnðTþUÞ

� �
;U1rUrU2

� �
jXnð0Þ ¼ p;Ynð0Þ ¼ yð0Þ

⟶
L f X1ðτÞ;OU U;σ2ðX1ðτÞÞ� �	 


;U1rUrU2g ðA:15Þ

of a stochastic process defined over an interval with fixed end
points U1o0oU2, using a standardized local time scale U such
that U¼0 corresponds to (40). The second component OU on the
right-hand side of (A.15) is a stationary Ornstein–Uhlenbeck pro-
cess conditionally on X1ðτÞ. This Ornstein–Uhlenbeck process has
a marginal density (A.14), and a transition density

OUðU″;σ2ÞjOUðU0;σ2Þ ¼ y�N ygðU″�U0Þ;σ2 1�g2ðU″�U0Þ� �	 

ðA:16Þ

for any pair U0oU″ of time points, with gðuÞ ¼ exp �ð1� s
2Þu

	 

. It

corresponds to a diffusion solution (48) with n¼1.
In order to prove (A.15), we introduce a second time point τ0

¼ τþU0=ne on the slowly varying time scale (41), with U0oU1o0
fixed. Then we introduce the process

ZnðU0Þ ¼ ffiffiffi
n

p
Xn τ0þ

U0

ne

� �
�Xnðτ0Þ


 �
;YnðT0þU0Þ

� �
ðA:17Þ

of allele frequency oscillations and heterozygous excess around τ0,
on a time scale U0 ¼U�U0Z0, with T0 ¼ τ0ne ¼ TþU0. We will
prove functional weak convergence

ZnðU0Þ;U0Z0
� �jXnðτ0Þ ¼ x0;YnðT0Þ ¼ y0⟶

L
ZðU0Þ;U0Z0
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ð1�x0Þ
1� s

2

vuut BðU0Þ;OUðU0;σ2ðx0ÞÞ

2
64

3
75;U0Z0

8><
>:

9>=
>;jOUð0;σ2ðx0ÞÞ ¼ y0

ðA:18Þ
of this process as n-1, towards a limit process Z whose first
component involves a standard Brownian motion B and whose
second component is an Ornstein–Uhlenbeck process (A.16),
defined on the non-negative real line.

Before proving (A.18), we will first show how to use it in order
to verify (A.15). To this end, conditionally on Xnð0Þ ¼ p and Ynð0Þ
¼ yð0Þ we rewrite the left-hand side of (A.15) as

Xn τþ U
ne

� �
;YnðTþUÞ

� �
¼ XnðτÞþ Xnðτþ

U
ne
Þ�XnðτÞ


 �
;YnðTþUÞ

� �

¼ XnðτÞþ Xn τ0þ
U�U0

ne

� �
�Xnðτ0Þ�ðXn τ0�

U0

ne

� �
�
�Xnðτ0ÞÞ�;YnðT0þU�U0ÞÞ

�L XnðτÞþ
1ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xnðτ0Þð1�Xnðτ0ÞÞ

1� s
2

s
BðU�U0Þ�Bð�U0Þ½ �;

 

OU U�U0;σ2ðXnðτ0ÞÞ
� ���OU 0;σ2ðXnðτ0ÞÞ

� �¼ YnðT0Þ

�L XnðτÞ;OU U�U0;σ2ðXnðτ0ÞÞ
� 
	 �����OU 0;σ2ðXnðτ0ÞÞ

� �¼ YnðT0Þ

�L X1ðτÞ;OU U�U0;σ2ðX1ðτÞÞ� 
	 �����OU 0;σ2ðX1ðτÞÞ� �¼ YnðT0Þ

�L X1ðτÞ;OU U�U0;σ2ðX1ðτÞÞ� 
	 �
¼L X1ðτÞ;OU U;σ2ðX1ðτÞÞ� 
	 ��

; ðA:19Þ

for all U1rUrU2. In the third step of (A.19) we introduced the

notation An �
L
Bn, which refers to two sequences An and Bn of

random elements that have the same weak limit A, i.e. An⟶
L

A and

Bn⟶
L

A. In the fifth step of (A.19) we used that the allele frequency
process converges weakly

XnðτÞjXnð0Þ ¼ p;Ynð0Þ ¼ yð0Þ⟶L X1ðτÞ ðA:20Þ
at rescaled time point τ, as n-1. This follows from the weak
convergence theory of Ethier and Nagylaki (1980, 1988) and Ethier
and Kurz (1986). In the sixth step of (A.19) we used (A.16) and
chose �U040 so large that conditioning on the value of OU at U0

has no impact on its behaviour over the interval ½U1;U2�. Finally, in
the last step of (A.19) we used that U-OU U;σ2ðX1ðτÞÞ� �

is a
mixture of stationary Ornstein–Uhlenbeck processes, and hence
stationary itself. Formula (A.15) follows since its left- and right-
hand sides coincides with the left- and right-hand sides of (A.19).

Hence it remains to prove (A.18). We will do this by applying a
weak convergence result of Norman (1975), henceforth denoted as
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N75. Theorem 3 of N75 provides functional weak convergence for
a one-dimensional process towards a Gaussian diffusion limit, but
we will need the multivariate extension of this result, as outlined
in Section 9 of N75. To this end, we will first show that (A.17) is
equivalent to

ZnðU0Þ ¼ ffiffiffi
n

p ðRðt0 þnU 0 Þ
n �γðt0 þnU 0 Þ

n Þþð0; γðt0 þnU0 Þ
n2 Þ

h i
; ðA:21Þ

where t0 ¼ τ0=ðnneÞ is the discrete time step corresponding to τ0,
and

RðtÞ
n ¼ ðRðtÞ

n1;R
ðtÞ
n2Þ ¼ ðxðtÞ;Q ðtÞ

2 �Q2ðxðtÞÞÞ ¼
vðtÞ

2n
;
wðtÞ

n

� �
; ðA:22Þ

is a vector that for each time step tZt0 has one a allele frequency
component xðtÞ, and one heterozygous excess component
Q ðtÞ

2 �Q2ðxðtÞÞ, with vðtÞ and wðtÞ as defined in (A.2) and (A.3). The
function γðtÞn ¼ ðγðtÞn1; γðtÞn2Þ corresponds to the mean drift of RðtÞ

n . It is
defined for tZt0, with initial value γðt0Þn ¼ ðx0; y0=

ffiffiffi
n

p Þ obtained
from the conditioning in (A.18). The recursion for the subsequent
time steps t ¼ t0þ1; t0þ2;…, is

γðtÞn ¼ EðRðtÞ
n jRðt�1Þ

n ¼ γðt�1Þ
n Þ:

It follows from (A.4) and (A.10) that

γðt0 þnU0 Þ
n1 ¼ x0;

γðt0 þnU0 Þ
n2 ¼ y0ffiffiffi

n
p ∏

nU0

u ¼ 1
1� 1� s

2

� �1
n

� �
ð1þoð1ÞÞ

¼ y0ffiffiffi
n

p exp � 1� s
2

� �
U0

� �
ð1þoð1ÞÞ

¼ y0ffiffiffi
n

p gðU0Þð1þoð1ÞÞ ðA:23Þ

as n-1. In the second equation of (A.23) we used (A.22) and the
upper part of (A.10) to conclude that γðtþ1Þ

n2 ¼ γðtÞn2 1�ð1�s=2Þ=n	 
þ
OðCn�2Þþoðn�2Þ. From (42), (43) and the upper part of (A.23) we
deduce that (A.17) and (A.21) are equivalent.

In order to prove (A.18), we need to establish certain regularity
conditions for the increment

ΔRðtÞ
n ¼ Rðtþ1Þ

n �RðtÞ
n ðA:24Þ

of (A.22) over one time step. These regularity conditions can be
phrased in terms of its first two moments

E ΔRðtÞ
n jRðtÞ

n

� �
¼ 1
n
WðRðtÞ

n ÞþeðtÞ1n; ðA:25Þ

and

Var ΔRðtÞ
n jRðtÞ

n

� �
¼ 1
n2SðR

ðtÞ
n ÞþeðtÞ2n; ðA:26Þ

and the martingale difference

eðtÞ3n ¼ΔRðtÞ
n �E ΔRðtÞ

n jRðtÞ
n

� �
:

We regard eðtÞ1n, eðtÞ2n and eðtÞ3n as remainder terms, whereas the
leading terms of the expected value and variance of ΔRðtÞ

n include

Wðr1; r2Þ ¼ 0; � 1� s
2

� �
r2

� �
ðA:27Þ

and

Sðr1; r2Þ ¼ r1ð1�r1Þ
1

1� s
2

~bðr1Þ
~bðr1Þ bðr1Þ

0
@

1
A; ðA:28Þ

where bðr1Þ is the function defined in (49), and

~bðr1Þ ¼ �
ð1�sÞ 1þ s

2

� �
1� s

2

� �2 ð1�2r1Þ:
Eqs. (A.27)–(A.28) follow from formulas (A.22), (A.4) and (A.10) for
the mean and variance of the increments of vðtÞ and wðtÞ in (A.2)
and (A.3), and the corresponding formula

E ðvðtþ1Þ �vðtÞÞðwðtþ1Þ �wðtÞÞjvðtÞ ¼ 2nx;wðtÞ ¼w
� �¼ E

�
ðvðtþ1Þ �vðtÞÞ

nðtþ1Þ
2 �nðtÞ

2 �1
2
Q 0

2ðxÞðvðtþ1Þ �vðtÞÞ

 �

vðtÞ ¼ 2nx;wðtÞ ¼w
�
þoð1Þ

����
¼ P2Q3 � ð�1Þ � 1þP3Q2 � 1 � ð�1ÞþP3Q1 � 2 � 0
þP1Q3 � ð�2Þ � 0þP1Q2 � ð�1Þ � ð�1ÞþP2Q1 � 1 � 1

�1
2
Q 0

2ðxÞE ðvðtþ1Þ �vðtÞÞ2 jvðtÞ ¼ 2nx;wðtÞ ¼w
h i

þoð1Þ

¼ 2 Q1ðxÞQ2ðxÞ�Q3ðxÞQ2ðxÞ½ ��1
2
Q 0

2ðxÞ
4xð1�xÞ
1� s

2

þoð1Þ

¼ 2 ~bðxÞxð1�xÞþoð1Þ ðA:29Þ
for the covariance of the increments of these two processes. In the
second step of (A.29), the first six terms correspond to cases (i)–
(vi) of Section 2.1, with probabilities determined by the Markov
transition matrix, with vðtþ1Þ �vðtÞ attaining one of the values �2,
�1, 1, 2, and nðtþ1Þ

2 �nðtÞ
2 one of the values �1, 0, 1. In the third step

of (A.29) we used (A.8) and (A.9), and in the last step the definition
of QαðxÞ in (37).

The process ZnðU0Þ in (A.21) corresponds to the random poly-
gonal line process on p. 229 of N75, except that we added a termffiffiffi
n

p
γðt0 þnU0 Þ
n2 -y0gðU0Þ to the second component. In order to see this,

we notice that the normalizing factor

ffiffiffi
n

p ¼ 1=n
1=n2

� �1=2

of (A.21) is obtained from the two multiplicative factors 1=n and
1=n2 in (A.25) and (A.26), and the factor 1/n of the time scale t ¼
t0þU0=n is also derived from (A.25), just as in N75. The limiting
process Z in (A.18) is a Gaussian diffusion, whose distribution is
fully specified by its mean and covariance functions. These are
obtained by inserting the two functions W and S in (A.27) and
(A.28) into formulas (2.15)–(2.17) of N75, and then adding the
asymptotic limit y0gðU0Þ of the second term of (A.21). After some
elementary calculations, it follows that the resulting Gaussian
diffusion Z corresponds to the process on the right-hand side of
(A.18), with one Brownian motion and one Ornstein–Uhlenbeck
component. Since ~bðr1Þa0, these two processes will not be
independent.

In order to complete the proof of (A.18), some regularity con-
ditions of Theorem 3 in N75 need to be checked. It can easily be
shown that the differentiability conditions (2.3)–(2.7) on Wðr1; r2Þ
and Sðr1; r2Þ hold. The remaining regularity conditions ð2:90Þ, (2.10)
and ð2:120Þ of N75 involve the three remainder terms eðtÞin , for
i¼ 1;2;3. They can be written as

EðjeðtÞ1n j 3Þ
� �1=3

¼ oðn�3=2Þ; ðA:30Þ

EðjeðtÞ2n j Þ ¼ oðn�2Þ ðA:31Þ
and

EðjeðtÞ3n j 3Þ
� �1=3

¼ Oðn�1Þ: ðA:32Þ

Formulas (A.30)–(A.31) follow by looking more closely at the
remainder terms of (A.4), (A.10) and (A.29), with third moment
estimates for the remainder terms of expected values of incre-
ments, and first moment estimates for remainder terms of var-
iance and covariance of increments. Finally, (A.32) follows from
that jΔxðtÞ j and jΔQ ðtÞ

2 j are less or equal to 1/n, and the fact that
Q 0

2 is bounded.□
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A.5. Proof of (31)

Formulas (37) and (44) imply

f ðtÞ2 ¼ 2ð1�sÞ
1� s

2

E xðtÞð1�xðtÞÞ� �þμðTÞ; ðA:33Þ

with μðTÞ ¼ ffiffiffi
n

p
EðYðTÞÞ. Starting with the first term, we condition

on what happens at time step t, and find from (32) and (A.2)–(A.4)
that

E xðtþ1Þð1�xðtþ1ÞÞjxðtÞ ¼ x
� �¼ xð1�xÞ�E ðxðtþ1Þ �xðtÞÞ2 j xðtÞ ¼ x

h i
¼ xð1�xÞ� 1

ð2nÞ2
� 4xð1�xÞ

1� s
2

þoðn�2Þ

¼ xð1�xÞ 1� 1
nne

þo
1
nne

� �
 �
:

Taking expectations on both sides of the last displayed equation,
we obtain

E xðtþ1Þð1�xðtþ1ÞÞ� �¼ E xðtÞð1�xðtÞÞ� � � 1� 1
nne

þo
1
nne

� �
 �
:

Iterating this last relation t times, we get

E xðtÞð1�xðtÞÞ� �¼ xð0Þð1�xð0ÞÞ � 1� 1
nne

þo
1
nne

� �
 �t

¼ xð0Þð1�xð0ÞÞ � 1� 1
nne

þo
1
nne

� �
 �nne�t=ðnneÞ

¼ xð0Þð1�xð0ÞÞ exp � t
nne

� �
þoð1Þ: ðA:34Þ

The first term of (31) is obtained by inserting (A.34) into (A.33).
As for the last two terms of (31), we first take expectation with

respect to XðτÞ in the upper equation of (48) and then let δ-0.
This gives a linear and inhomogeneous first order ordinary dif-
ferential equation

μ0ðTÞ ¼ � 1� s
2

� �
μðTÞþ1

n
� 1� s

2

� �
cE XðτÞð1�XðτÞÞ½ �

¼ � 1� s
2

� �
μðTÞþ1

n
� 1� s

2

� �
cxð0Þð1�xð0ÞÞe�T=ne ðA:35Þ

for μðTÞ, with

c¼
ð1�sÞ 3� s

2

� �
1� s

2

� �3 ;

and in the last step of (A.35) we made use of (A.34). The solution of
(A.35) is

μðTÞ ¼ μð0Þe�ð1� s
2ÞT

þ
Z T

0

1
n
� 1� s

2

� �
cxð0Þð1�xð0ÞÞe�T 0=ne e�ð1� s

2ÞðT�T 0 Þ dT 0:

After evaluating the integral and making some other rearrange-
ments, it can be seen that this expression equals the sum of the
last two terms of (31), since

μð0Þ ¼Q ð0Þ
2 �2xð0Þð1�xð0ÞÞ 1�s

1� s
2

:□

A.6. Proof of (46) for the Wright–Fisher model

Since the argument is analogous to the proof of (46) for the
Moran model, we will be more brief. It suffices to prove

Eðxðrþ1Þ jxðrÞ ¼ x;wðrÞ ¼wÞ ¼ x;

Varðxðrþ1Þ jxðrÞ ¼ x;wðrÞ ¼wÞ ¼ xð1�xÞ
2 1� s

2

	 
 � 1
n
þoðn�1Þ; ðA:36Þ
for all 0oxo1 and w, with

wðrÞ ¼ nðrÞ
2 �Q2ðxðrÞÞ ¼

Y
r
2

� �
ffiffiffi
n

p ðA:37Þ

the excess number of heterozygots. In order to prove the upper
part of (A.36), we use that the expected value of the multinomial
distribution in (57) is

Eð ~n1; ~n2; ~n3 jn1;n2;n3Þ ¼ nðP1; P2; P3Þ:
Since xðrþ1Þ ¼ ð ~n2þ2 ~n3Þ=ð2nÞ, it follows that

Eðxðrþ1Þ j xðrÞ ¼ x;wðrÞ ¼wÞ�x¼ 1
2 P2þP3� 1

2Q2þQ3
	 


¼ 1
2 ðP3�P1Þ�ðQ3�Q1Þ½ � ¼ 0; ðA:38Þ

where the last equality is a consequence of (A.5). For the lower
part of (A.36) we use that the covariance matrix of the multi-
nomial distribution in (57) has entries

Covð ~nα; ~nβ jn1;n2;n2Þ ¼ nðPαδαβ�PαPβÞ;
for 1rα;βr3. This yields

Varðxðrþ1Þ jxðrÞ ¼ x;wðrÞ ¼wÞ ¼ 1
n

1
4
P2ð1�P2ÞþP3ð1�P3Þ�P2P3


 �

¼ 1
n

1
4
P2ð1�P2ÞþP1P3


 �

¼ 1
n

1
4
Q2ðxÞð1�Q2ðxÞÞþQ1ðxÞQ3ðxÞ


 �
þoðn�1Þ

¼ 1
n
� xð1�xÞ
2 1� s

2

� �þoðn�1Þ; ðA:39Þ

where in the last two steps we used (A.8) and (A.9).□

A.7. Proof of (58)

We will prove that

E Y Tþ1
2

� �
�yjXðτÞ ¼ x;YðTÞ ¼ y


 �
¼ � 1� s

2

� �
y� ~cðxÞffiffiffi

n
p

� �
þoðn�1=2Þ;

Var Y Tþ1
2

� �
jXðτÞ ¼ x;YðTÞ ¼ y


 �
¼ 1
2
bðxÞxð1�xÞ: ðA:40Þ

It can be seen that this is equivalent to (58), if εðTÞ has a normal
distribution. This follows by applying a Central Limit Theorem to
the multinomial distribution in (57) when n is large.

Let wðrÞ be the excess number of heterozygots of generation r,
defined in (A.37), and w¼ ffiffiffi

n
p

y. We have that

ffiffiffi
n

p
E Y Tþ1

2

� �
�yjXðτÞ ¼ x;YðTÞ ¼ y


 �
¼ Eðwðrþ1Þ �wðrÞ j xðrÞ ¼ x;wðrÞ ¼wÞ
¼ Eðnðrþ1Þ

2 �nðrÞ
2 jxðrÞ ¼ x;wðrÞ ¼wÞ

�n
2
Q ″

2ðxÞE ðxðrþ1Þ
2 �xðrÞÞ2 j xðrÞ ¼ x;wðrÞ ¼w

h i

¼ nðP2�Q2Þ�
n
2

�4ð1�sÞ
1� s

2

0
B@

1
CA � xð1�xÞ

2n 1� s
2

	 
þoð1Þ

¼ � 1� s
2

� �
wþC1þ

C2

2
þoð1Þ; ðA:41Þ

where the third step follows from (A.38) and a Taylor expansion of
Q2ð�Þ, in the fourth step we used (A.39) and the expected value of
the multinomial distribution in (57). In the last step we defined C1
and C2 as in (A.11) and used an expression for P2�Q2 from the
proof of (48). But (A.41) is equivalent to the upper part of (A.40),
since C1þC2=2¼ ð1�s=2Þ~cðxÞ.

For the second part of (A.40) we use that

Var Y Tþ1
2

� �
jXðτÞ ¼ x;YðTÞ ¼ y


 �
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¼ 1
n
E ðnðrþ1Þ

2 �nðrÞ
2 Þ2 jxðrÞ ¼ x;wðrÞ ¼w

h i
�2Q 0

2ðxÞE ðnðrþ1Þ
2 �nðrÞ

2 Þðxðrþ1Þ �xðrÞÞjxðrÞ ¼ x;wðrÞ ¼w
h i

þnQ 0
2ðxÞ2E ðxðrþ1Þ �xðrÞÞ2 jxðrÞ ¼ x;wðrÞ ¼w

h i
þoð1Þ

¼ P2ð1�P2Þ�Q 0
2ðxÞ P2ð1�P2Þ�2P2P3½ �

þ1
4
Q 0

2ðxÞ2 P2ð1�P2Þ�4P2P3þ4P3ð1�P3Þ½ �þoð1Þ
¼Q2ðxÞð1�Q2ðxÞÞ

þQ 0
2ðxÞQ2ðxÞ Q3ðxÞ�Q1ðxÞ½ �

þ1
4
Q 0

2ðxÞ2 Q2ðxÞð1�Q2ðxÞÞþ4Q1ðxÞQ3ðxÞ½ �þoð1Þ

¼ 1
2
bðxÞxð1�xÞþoð1Þ;

where the last step follows as in the proof of (48).□
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