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Abstract
In this paper, I address the question: Who is the individual that exerts the

greatest negative influence on the classroom learning environment? To answer
this question, I invoke the key player model from network economics and use
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associated with identifying and estimating peer effects. I overcome the issue
of endogenous group formation by using the control function approach where
I simultaneously estimate network formation and outcomes. The results
show that the typical key player scores well on language and cognitive ability
tests and is not more likely to be a boy than a girl. I also find evidence
that removing the key player has a significantly larger effect on aggregate
disruptiveness in a network than removing the most disruptive individual,
implying that policy aimed at the most active individual could be inadequate.
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1 Introduction
In this paper, I address the question of how disruptive behavior spreads in a class-
room. More specifically, I ask: Who is the individual that exerts the greatest nega-
tive influence on the classroom learning environment? In a world of competing ends
and scarce means, this is a question of potentially great relevance namely, if aggre-
gate outcomes can be improved by focusing existing resources on a small number of
disruptive peers.

To answer this question, I invoke the key player model from network economics
(Calvó-Armengol & Zenou 2004, Ballester et al. 2006, 2010). Based on a set of
behavioral assumptions, this model predicts how much each individual contributes
to disruptive behavior in the classroom, not just as a function of their own behavior,
but also their location in the network as facilitators or inhibitors of the disruptive
behavior of peers. I use the socio-metric information on individuals’ localities in the
network to investigate the structure of the network and how it affects own disruptive
behavior. By combining the key player model with a unique data set on disruptive
behavior and student networks among eight graders, I can provide novel evidence
on how disruptiveness spreads in the classroom. Moreover, an application of the key
player strategy in the school context can yield important insights into how to create
effective policy interventions in education, for example how to alter the grouping of
students in order to improve the learning environment for everyone.

Although the field of peer effects is well-established within economics, the empir-
ical evidence concerning peer effects in school outcomes is not conclusive, which can,
in part, be explained by the econometric problems associated with identifying and
estimating causal peer effects (Manski 1993, Sacerdote 2011, Angrist 2014). Previous
studies on this topic suffer from a number of inferential obstacles like selection, the
reflection problem, or common shocks. In addition, research based on observational
data, for example register data on classrooms, often suffers from endogeneity prob-
lems. To circumvent these issues, this paper employs a theoretically informed model
of peer influence and tests it using the unique classroom network data from Swedish
schools. To address the issue of simultaneity, I use two alternative approaches: in-
strumental variables arising from the network structure and Maximum Likelihood
(Drukker, Prucha & Raciborski 2013). I overcome the issue of endogenous group
formation by using the control function approach where I simultaneously estimate
network formation and outcomes (Heckman et al. 2013).

The study draws on recent sociometric data in the longitudinal cohort sur-
vey Children of Immigrants Longitudinal Survey in Four European Countries
(CILS4EU) from more than 100 schools across Sweden (n=4,794 students), collected
when participating students were in the eighth grade (aged 14-15). The respondents
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have been asked to provide the names of their best friends in the classroom. By
using network data on students’ friendship links and self-reported problem behavior,
I am able to identify the most disruptive individual in a peer group (network). I
use a composite of different measures for problem behavior indicated by survey self-
reports of delinquency (e.g. arguing with teacher(s), getting punished and skipping
school).

The empirical analysis encompasses three main steps. First, I estimate the stan-
dard model of peer effects, the average peer effect model, using the estimation meth-
ods Two-Stage Least Squares (2SLS) and Maximum Likelihood (ML).1 Borrowing
from the literature on identification in social networks (e.g. Goldsmith-Pinkham
& Imbens (2013) and Hsieh & Lee (2016)), I use an instrumental variable arising
from the network structure to arrive at a causal estimate of peer effects. The idea
is to use characteristics of the friends of friends, under the assumption that own
friends, but not friends of friends, are actively chosen (Bramoullé et al. 2009). Due
to a weak instrument problem, I complement the GS2SLS analysis with ML esti-
mations (Drukker, Prucha & Raciborski 2013). This approach deals with the issue
of simultaneity by using a specification of the likelihood function that accounts for
simultaneity by not allowing the regressors to be correlated with the error terms.

Next, I use the peer effect estimate together with the behavioral model to identify
the “key player” in terms of classroom disruptive behavior. I identify the key player
in a social network as the individual who once removed generates the largest reduc-
tion in aggregate disruptive behavior. In the third and final step, I calculate the
predicted reduction in aggregate disruptiveness from changing class composition, i.e.
when the key player is missing. Following Lindquist & Zenou (2015), I first calculate
the change in aggregate disruptiveness by each network. Then, I create dummies
for different types of players: the key player, the most active player and a random
player. I focus on the individual with the highest self-reported disruptiveness level
(most active individual) and the individual who once removed generates the largest
reduction in aggregate disruptive behavior (key player). Finally, I regress the change
in aggregate disruptiveness on these dummies in each network separately. This pro-
cedure allows me to address to what extent the key player strategy outperforms
alternative policies such as targeting the most active individual.

The contribution of this paper is threefold, First, I provide a micro-founded
behavioral model of the contagion of disruptive behavior in the classroom. Second,
I measure the size of network effects in disruptive behavior using field data. Third,
I nail down the type of mechanism at work and resort to a key player simulation in
order to pick optimal candidates for treatment. To the best of my knowledge, this is

1As a robustness test, I also estimate two alternative models of peer effects: the hybrid and the
aggregate model. Results from these estimations are shown in Appendix A.

3



the first study that applies the key player strategy to social networks in education.
I find that the key player and the most active individual is the same person in 28

out of 329 networks (approximately 8.5 percent). Interestingly, the typical key player
scores well on the language and cognitive tests and is not more likely to be a boy than
a girl. I find evidence that removing the key player has a significantly larger effect on
aggregate disruptiveness in a network than removing the most disruptive individual,
implying that policy aimed at the most noisy individual could be inadequate. Based
on these results, I suggest alternative strategies on classroom organization to rectify
aggregate disruptive behavior.

The paper unfolds as follows. Previous literature is presented in section 2 followed
by a description of the model in section 3. In section 4, I present the data and the
definitions. I describe the identification strategy and the identification of structural
parameters in section 5. The results from the estimations of the peer effects models
and the key player simulation are presented in section 6, followed by a discussion of
policy implications in section 7. I conclude the paper in section 8.

2 Related literature
In this section, I give an overview of the related literature and discuss the contribu-
tion of this study.

2.1 Peer effects in education

Previous research shows that peers influence adolescent behaviors (see, for example,
Sacerdote (2011) for an overview of the literature). According to standard models of
peer effects, influence can occur both through the composition of the classroom, e.g.
the average level of parental education among peers (the so-called contextual effect),
or through a direct interaction with classmates. For example, one student’s decision
not to disrupt the class can directly influence the behavior of other students in the
classroom. In addition, students may respond differently to different categories of
peers.

The literature on peer effects in education suggests several plausible models of
peer effects: the bad apple, shining star, average and aggregate model among others
and the behavior mechanisms of these models point to different policy implications.
For example, the average model suggests policies that aim at changing the group
norm while the bad apple or the shining star models imply individual-based rules
targeting students in the extreme parts of the ability distribution. In this paper,
I base the analysis on the average model of peer effects. As a robustness test, I
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compare the average, the aggregate and the hybrid model of peer effects.2 This
comparison is informative since it tells us whether it is the sum of friends disruptive
behavior or the norm, i.e. the average disruptiveness among friends, that best
describes peer effects in disruptive behavior and to what extent policy should be
aimed at targeting the most active or the most central individual. Below, I describe
the average model in more detail.

According to the average model, or the so-called standard linear-in-means model,
the individual outcome may be affected by the mean outcome of the peer group,
individual characteristics, the mean characteristics of the peer group and unobserv-
able correlated effects at the group level. Peers can set norms of conduct and exert
social pressures for or against misbehavior and this model incorporates a cost for
deviating from the social norm; individuals may be penalized if they deviate from
the average activity of the reference group (see e.g. Liu et al. (2014) for a discussion
on the social conformity effect). If students tend to conform to the social norm,
then policy should be aimed at the majority in the classroom to promote desirable
behavior.

One of the underlying assumptions of this model is that the peer effect is the same
for all members of a given peer group. However, this assumption may be erroneous
as the spillover effects may be larger for some categories of students than for others.
In addition, the effects of peers may operate non-linearly or through moments other
than the mean. A number of papers have recently addressed this issue by trying to
estimate different types of heterogeneous peer effect models. Overall, the findings are
mixed; while some studies reject the linear-in-means model (see in particular Hoxby
& Weingarth (2005)), others provide evidence in favor of the model when compared
to individual-based models such as the bad apple or the shining star model (Liu
et al. 2014, Tatsi 2015). Hoxby & Weingarth (2005) find that students seem to
benefit from interacting with classmates at the top of the ability distribution while
Tatsi (2015) finds support for the linear-in-means model, implying that students
tend to conform to the classroom norm.

2.2 Disruptive classroom behavior

Although prior work on spillovers in eduction is extensive, the literature on student
misbehavior and its dynamics remains fairly unexplored. Due to both observed and
unobserved heterogeneity across schools and classrooms and the complex nature of

2In Appendix A, I test the alternative models of disruptive behavior. The results suggest
that the average model explains the data best. Liu et al. (2014) also compare the average and
the aggregate model but in contrast to this study, they examine the interaction between the
variables study effort and sport activity using the National Longitudinal Survey of Adolescent
Health (AddHealth) survey. See also Lindquist et al. (2015) for a comparison of alternative models.
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social interaction, obtaining credible estimates of peer effects is particularly chal-
lenging. The social dynamics of the classroom are complex as defiance of teacher
authority can be either overt or covert (McFarland 2001). Moreover, the rules on
classroom interaction vary across schools and classrooms.3 The same applies to
teacher sanctions which may vary in form (formal and informal).

A rather popular method of dealing with the endogeneity issues in studies on
peer effects in the school setting is to exploit the year-to-year variation in peer
composition in schools in order to identify a causal influence of peers on individual
outcome.4 The recent study of Kristoffersen et al. (2015) makes use of the variation
in peer composition in school-cohorts to estimate the influence of peer quality on
individual academic achievement. The researchers exploit the entry of disadvantaged
children, or so-called “potentially disruptive peers”, to identify the peer effect in
reading test scores. Three categories of children are of particular interest: children
with divorced parents, children with criminal parents and children with a psychiatric
diagnosis. They find significant and robust effects on peers’ academic achievement
in reading when a new potentially disruptive student is enrolled in a school.5 A
related study of Carrell & Hoekstra (2010) investigates the influence of children from
troubled families on peers’ test scores in maths and reading and in deviant conduct.6

The authors exploit the variation within families to arrive at a credible estimate of
peers’ behavioral externalities. They use children’s school records matched with
domestic violence cases and find a significant effect of being exposed to a child from
a troubled home. The effect is mainly driven by boys and children from low-SES
families. According to the authors, the results provide evidence in support of the
“bad apple” model of peer effects.

Contrary to prior work based on observational data, I approach the issue of
disruptive behavior in the classroom by investigating the architecture of classroom
networks. By using a networks approach to this topic, I can identify the transmission
channels of teenage group pressure, thus generating new insights into how adolescent
behaviors spread in the classroom.

Are boys more susceptible to peer pressure in disruptive behavior than girls? It
is possible that teachers reorganize their classrooms in a fashion that disconnects

3Group sizes are also important. See, for example, Lazear (2001), McFarland et al. (2014),
Roman (2016) and Frank et al. (2013).

4A large strand of the literature (Black et al. 2013, Hoxby 2000, Gould et al. 2009) uses id-
iosyncratic variation in peer characteristics across cohorts.

5The authors also find heterogeneous effects. The effect seems to be strongest when the new
student is a child with a psychiatric diagnosis.

6See also Carrell et al. (2016) who show that there are long-run consequences of being exposed
to a disruptive peer. The authors apply the same identification strategy as in Carrell & Hoekstra
(2010).
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networks of misbehaving students, for example groupings of boys where the peer
effect or the group pressure to rebel against the teacher is strong. A long-established
strategy is to place boys in the front row or next to girls based on an alternating
gender rule. The purpose of a rule as such is to restrain boys from disruptive conduct
which suggests that the baseline disruptiveness and/or the peer contagion effect is
stronger among boys than girls. Studies like, for example, Hoxby (2000) and Lavy
& Schlosser (2007) examine the effect of the gender composition of the classroom on
school outcomes. Their findings suggest that both sexes perform better in school in
classrooms with a higher proportion of girls.

In this paper, I study the observable characteristics of the key player and examine
the notion that boys are more often facilitators of problematic behavior than girls. I
assume that the relevant peer group is the direct friendship network: the decision to
disrupt depends on the social values of one’s friends rather than a random disruptive
individual in the classroom.7

2.3 The key player

While network measures of centrality have long been used in the sociological liter-
ature (see, for example, Wasserman & Faust (1994)), the issue of identifying key
players in networks was first introduced by Borgatti (2006, 2003). Previous stud-
ies on social networks and behavior have mainly applied the key player strategy
to networks of juvenile delinquency (Liu & Lee 2010) and co-offending networks
(Lindquist & Zenou 2015). In the studies of Ballester et al. (2010) and Ballester &
Zenou (2014), the key player is defined as the individual who once removed generates
the greatest reduction in aggregate crime.

The idea behind the key player strategy is to aim interventions at key individuals.
According to the key player theory, removing the key player can have substantial
effects on adolescent behavior because of social multipliers (Zenou 2016). By lower-
ing the disruptive behavior of central individuals with many social connections, the
sum of the disruptiveness among their friends is reduced through both a direct and
an indirect effect. The direct effect being the individual’s own disruptiveness and
the indirect effect being the effect of that individual’s behavior on other students in
the network (the social multiplier effect).

The literature on social networks in education is relatively scarce (important
exceptions include Calvó-Armengol et al. (2009), Bifulco et al. (2011), Patacchini
et al. (2017) and Hsieh & Lee (2016)). Apart from the studies of Calvó-Armengol

7Presumably, it is not the behavior, in this case the level of disruptiveness per se, that influences
individual choices but the social values and norms held by one’s peers (for example unobservable
effort). Fruehwirth (2013) and Boucher & Fortin (2016) draw attention to the importance of
modeling the proxy and the “true interaction variable” separately.
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et al. (2009) and Hahn et al. (2015), which investigate the association between an
individual’s network centrality and her school performance, I am not aware of any
other paper that tries to identify the key player in a classroom setting. The scarcity
of previous research on social networks in this field is partly due to the lack of
detailed network data on schools and classrooms.

This paper picks up where Calvó-Armengol et al. (2009) left off and provides the
first illustration of how of the key player strategy could be applied in educational
settings.

2.4 Contribution

The first main contribution of this paper is to the literature on peer effects. In con-
trast to the majority of peer effects studies, which base their empirical analysis on
observational data, I use self-reported friendship data in order to solve the method-
ological problems associated with identifying and estimating peer effects. While it is
difficult to construct a research design that convincingly captures the causal effect
of peer spillovers, the theoretically informed model of peer influence presented in
this paper and the unique network data in CILS4EU enable me to provide credible
estimates of peer effects on adolescent misbehavior.

The second contribution is to the literature on social networks in education. To
my knowledge, this is the first study that applies the key player strategy to social
networks in a school setting. In the spirit of Lindquist & Zenou (2015), I identify
the key player in educational networks and discuss optimal targets for treatment.

The third contribution is to the literature on disruptive behavior. It is the first
study that explicitly models disruptive behavior in the classroom.

3 Theoretical framework
In this section, I present the theoretical framework of this paper. I describe some
network properties and introduce the average model of peer effects. Next, I derive
the model equilibrium and thereafter I present the key player strategy.

3.1 Network properties

A friendship network, g, is a set of N = {1, ..., n} individuals. G = {gij} is the
associated n × n adjacency matrix of network g. The relationship between any two
actors (i, j) is mapped by their value of gij ∈ {0, 1} where gij = 1 if i and j are friends
and 0 otherwise. I assume that links are reciprocal, i.e. gij = gji. Furthermore,
individuals are not linked to themselves, implying that gii = 0. G∗ = {g∗

ij} is the
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row-normalized adjacency matrix of G where g∗
ij = gij/gi. The denominator, gi,

denotes the total number of friends of individual i, i.e. gi = ∑n
j=1 gij. The friends

of friends adjacency matrix G2 is derived by multiplying G by itself, G3 is the
adjacency matrix cubed and so on. Hence, Gk holds the number of walks of length
k. A walk is a sequence of links or edges.

The degree of actor i, denoted γi(g), is defined as the number of friends to whom
i is directly linked to, and is equivalent to the number of 1’s in row i of g. I define
the average degree of a network g as γ(g) = ∑n

i=1 γi(g)/n. Finally, the number of
links of an actor is referred to as the degree centrality.

3.2 Model

I adopt the network model of peer effects of Calvó-Armengol et al. (2009).8 The
utility function for the average model of disruptiveness is the following:

ui(y, g) = (ai + η + ϵi)yi − 1
2

y2
i − 1

2
λ

yi −
n∑

j=1
g∗

ijyj

2

. (1)

In the average model, each agent chooses his or her level of disruptiveness, yi,
proxied by problem behavior in order to maximize own utility ui (·), which is an
increasing function of the “gains” of disruptiveness (ai + η + ϵi), the disruptiveness
of other students in the network y = (y1, ..., yn)′, the social cost or stigma of being
punished by the teacher −1

2y2
i , and g which represents the friendship network. The

parameter λ captures the strength of social-conformity and 1 > λ > 0. The term
ϵi represents idiosyncratic shocks and η are network fixed effects which capture the
environment at the network level.

Each individual has his or her own disruptive ability ai which depends on his or
her observable attributes, the average observable characteristics of an individual’s
friends, and the total number of friends indicated by gi. Individual disruptive ability
is defined as:

ai = xiβ1 + 1
gi

n∑
j=1

gijxj
′β2, (2)

where xi and xj are vectors of individual and friend characteristics, respectively.
The individual characteristics are captured by β1 while β2 represents the contextual
effects.

In the average model, individuals are influenced by the social norm. There is a
punishment (a cost) for deviating from the social norm which is increasing with the
distance from the average activity among one’s peers, as indicated by the expression

8In this subsection I closely follow Lindquist & Zenou (2015).
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(
yi − ∑n

j=1 g∗
ijyj

)2
. The parameter λ, the social conformity coefficient, measures the

strength of conformism in a network.

3.3 Model equilibrium

In equilibrium, each agent chooses yi, her own level of disruptiveness, in order to
maximize utility ui(y, g). The choices are made simultaneously by all agents. Thus,
agent i’s best-reply function is:

y∗
i =

λ
∑n

j=1 g∗
ijyj + ai + η + ϵi

(1 + λ)
, (3)

where ai is defined above. Let αi = ai + η + ϵi for each agent i and α be a vector
(non-negative) keeping track of all αi. Moreover, let µ(G∗) be the largest eigenvalue
of G∗, the spectral radius. For notational simplicity, let ϕ = λ

(1+λ) , the social
conformity coefficient in the average network game. Analogously, let αi = ai+η+ϵi

(1+λ)
for each agent i and α be a vector (non-negative) keeping track of all αi.

The key player strategy is generally applied to the aggregate model but the
following propositions and definitions apply also to the average network game (by
replacing G with G∗).

Proposition 1 (Calvó-Armengol et al. 2009, Ballester & Zenou 2014): Consider a
disruptiveness game where the utility function of each agent i is given by (1) with
ai > 0 for all i defined by (2). If ϕµ(G) < 1, then the game has a unique Nash
equilibrium in pure strategies given by:

y∗ = bα(g, ϕ) = (I − ϕG)−1α. (4)

In the above equation, bα(g, ϕ) is a vector whose elements correspond to the
Bonacich centralities of all members of the network, G is the adjacency matrix
capturing the friendship network and I is the identity matrix. Moreover, g, α and
ϕ are defined as above. See proof in Calvó-Armengol et al. (2009, p. 1262).

Proposition 1 (Ballester & Zenou 2014) says that in the Nash equilibrium, each
agent’s disruptiveness is proportional to her weighted Bonacich centrality. The
influence is heterogeneous as a result of the locational differences of individual agents
in the network. Both direct and indirect friendship ties matter, but more connected
agents are given a larger weight. The Bonacich centrality concept is described further
in the following section on the key player strategy.
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3.4 The key player strategy

The key player in a social network is defined as the individual who once removed
generates the largest reduction in aggregate disruptive behavior. Hence, the planner
solves the following problem:

max y∗(g) − y∗(g−i)|i = 1, ..., n, (5)

where y∗(g) is equal to the aggregate level of disruptiveness in network g and y∗(g−i)

the aggregate disruptiveness once individual i has been removed. The maximization
problem (5), or the so-called key player strategy, involves identifying the individual
who contributes most to the aggregate disruptiveness in the network.

The key player strategy is generally applied to the aggregate model. Below, I
outline how I define the key player in the average network game. At this point, two
assumptions are in order. First, I assume that the adjacency matrix G∗ is fixed.
Second, I assume that the individual disruptive ability denoted ai in (2) is unrelated
to G∗.

As a measure of centrality, I use the Bonacich centrality (Katz 1953, Bonacich
1987). To identify key players in networks, I use the Bonacich centrality measure
and a concept called contextual intercentrality defined as below.

Definition 1 (Katz 1953, Bonacich 1987): Given a vector u ∈ Rn
+, and a small

enough scalar ϕ ≥ 0, the vector of Bonacich centralities of parameter ϕ in network
g is defined as:

bu(g, ϕ) = (I − ϕG)−1u =
∞∑

k=0
ϕkGku. (6)

According to Definition 1 each agent i is given an initial value based on his or
her individual location in the network, where more connected agents are assigned
higher values. The value is then adjusted by adding the values of agents located
k-link away from i (one degree away, then two-degrees away and so on). Each
addition is weighed by a factor ϕk, which corresponds to the peer effect coefficient.
The value is then multiplied by ui. The elements of the vector bu(g, ϕ) correspond
to the Bonacich centralities of all members of the network.

Definition 2 For all networks g and for all i, the contextual intercentrality measure
(Ballester & Zenou 2014) of agent i is:

di(g, ϕ) = B(g, ϕ) − B(g[−i], ϕ). (7)
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Moving on to Definition 2, B(g, ϕ) corresponds to the total Bonacich intercentral-
ity in network g while B(g[−i], ϕ) is the total intercentrality once agent i has been
removed from the network. An agent i∗ is the key player that solves the planner’s
problem in (5) if and only if i∗ is the agent with the highest contextual intercentrality
di(g, ϕ) (see Ballester and Zenou (2014, p. 239)).

If individuals are ex ante homogeneous, network location is irrelevant in the
average model. Lindquist et al. (2015) provide the first study that includes an
application of the key player strategy for the average model.9 When individuals are
identical with respect to their observable characteristics, which individual to target
in order to reduce aggregate disruptiveness will not matter unless her locality in the
network has the feature of a bridge, i.e. the removal of this agent will give rise to
isolated individuals (Liu et al. 2014).

An application of the key player strategy in the average network game is possible
in the case outlined in this paper since the friendship networks are incomplete, i.e.
individuals are not fully linked to each other. This means that there will be variations
in the connectedness and the localities of individual agents as well as individual
heterogeneity in disruptiveness which will be captured by the social multiplier. One
“calculates” the key player using the estimated parameters in the best reply function
and equation (7) (Lindquist et al. 2015).

4 Data and descriptives
In the following section, I describe the data and present some descriptive statistics.

4.1 Sociometric data

The data set I use, Children of Immigrants Longitudinal Survey in Four European
Countries (CILS4EU, Kalter et al. (2016)), is a new, longitudinal cohort survey
conducted in four countries: England10, Germany, the Netherlands, and Sweden.
The sample is designed to be nationally representative in each country and was
created using a stratified three-stage design, interviewing students in sampled school
classes. Schools were stratified according to the proportion of children of migrant
background; thus, the sample contains an overweighting of schools with a high
number of children with foreign-born parents. Since these schools tend to be located
in areas of concentrated economic disadvantage where classroom disruptive behavior
is also more widespread, the sample is congenial to my purposes.

9Liu et al. (2014) give some examples.
10Only England took part in the UK.
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CILS4EU data entails several advantages as compared to the data used in pre-
vious studies. First, it includes detailed information on the survey participants’
friendship links and negative nominations in 249 Swedish classrooms (4,794 stu-
dents in total). CILS4EU does not only include in-school friendship nominations
but also outside-school nominations (not sociometric). Second, the best friend ques-
tionnaire included in CILS4EU contains additional information on the characteristics
of friends outside of school (see questionnaire items in Appendix D).11

The stratified sample allows detailed analyses of the social integration of immi-
grant children specifically, a group of great interest given the increased importance
of immigration in Western countries. Immigrant children and children with an im-
migrant background lag behind children of native-born in educational performance.
Foreign-born students are, for example, less likely to be eligible to attend upper
secondary school than their native-born counterparts, but tend to make more ambi-
tious study choices given the attained school grades (see Arai et al. (2000), Jonsson
& Rudolphi (2011) and Heath & Brinbaum (2014)).

The first wave was performed in the school year 20102011 when participating
students were in the eighth grade (ages 1415). The number of respondents in the
main questionnaire in the school year 20102011 was 5,025 and the response rate
was about 86 percent. I use the Swedish sociometric classroom data (n=4,794)
which was collected in the first wave of CILS4EU.12 I define friendship on basis of
the question “Who are your best friends in this class?” to which the student could
nominate a maximum of five individuals. A link between two students exists if either
of them, or both, nominated the other as a “best” friend. Thus, I treat the network
as undirected (although an interesting extension in future work may be to allow for
directed networks).13

Students who were absent on the day of the network questionnaire or who re-
fused to participate were excluded from the class roster and the set of potential
friend nominees. Individuals who did not nominate anyone have been dropped from
the friendship network analysis (see Appendix B for more details on data creation
procedures). Due to these restrictions, the sample is reduced to 4,219 observations.

Figure 1 plots the distribution of the number of links per individual, the so-called
11To my knowledge, the only comparable data set to CILS4EU in both survey design and size

is the AddHealth data set which includes longitudinal sociometric classroom data in the US.
12The advantage of using Swedish data compared to data from the other participating countries

in CILS4EU is that there is no formal tracking within the Swedish compulsory school system
(grades 19). Hence, one would expect there to be less formal sorting of students according to
ability than in, for example, Germany with relatively early tracking procedures.

13Although it has been argued that a non-response rate of more than about 75 percent could
risk the reliability of the nomination measure (see for example Hjalmarsson & Mood (2015) and
the references therein), I keep all classrooms in the analysis for efficiency reasons. See Appendix C
for robustness checks.
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degree centrality. The visible drop at 5 on the x axis is explained by the maximum
number of possible nominations; those with a degree greater than 5 have at least
one incoming nomination that is not reciprocal.

Figure 1: Distribution of degree centrality in the Swedish classroom data, N=4219

4.2 Descriptive statistics

Table 1 shows descriptive statistics for selected variables in the data set. The un-
derlying questionnaire items are described in greater detail in Appendix D. The
analysis sample consists of 4,219 individuals and 374 networks. Half of the sample
is male and approximately 68 percent have two native-born parents. The sample in-
cludes individuals who have nominated others and have themselves been nominated.
Students with no friendship links have been dropped.
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Table 1: Individual level summary statistics

Variable Mean Std. Dev. Min. Max. N
Demographics
Male 0.486 0.5 0 1 4219
Highest index of occupational status 52.982 20.35 11.74 88.960 4219
Native background 0.677 0.468 0 1 4219
Age 15.029 0.264 13 17 4219
Performance
Language test scores 18.654 4.949 0 29 4219
Cognitive ability test scores 17.812 4.751 0 27 4219
Delinquent behavior (1=Never, 5=Every day)
Arguing with teacher 4.435 0.837 1 5 4209
Getting punished 4.666 0.635 1 5 4204
Skipping school 4.637 0.719 1 5 4196
Late to school 3.9 1.037 1 5 4199
Disruptiveness measure 6.362 2.433 4 20 4219

Notes: Summary statistics on demographics and academic outcomes for the analysis sample
and delinquent behavior variables for the full sample.

The disruptiveness measure is created using the question: “How often do you...
(Every day, Once or several times a week, Once or several times a month, Less
often, Never) (i) argue with a teacher, (ii) get a punishment in school (for example
being kept in detention, being sent out of class, writing lines), (iii) skip a lesson,
and (iv) come late to school?”. The response options are coded as 1 (Never), 2 (Less
often), 3 (Once or several times a month), 4 (Once or several times a week) and 5
(Every day). The imputed disruptiveness measure is thus a summed index of the
four delinquency behavior dummies presented in table 1.14

The minimum score on the disruptiveness index is 4 and the maximum is 20.
Individuals with missing values on all the underlying variables of the imputed dis-
ruptiveness measure have been removed (in total 12 students). Figure 2 shows the
distribution of disruptiveness. The distribution is skewed to the right and has a
mean of 6.4.

14The index is created using the full sample.
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Figure 2: Distribution of disruptiveness, N=4219
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An important question is what the actual underlying distribution of disruptive-
ness is as this is going to matter for the treatment. Is a small change in friends’
disruptiveness associated with a large or small change in individual disruptiveness?
Alternative versions of the disruptiveness measure include the first principal compo-
nent from a factor analysis and the average of the top four delinquency variables.15

Figure 3 depicts the architecture of a classroom network with 27 students. The
largest network consists of 28 students and the smallest of 3.16 The mean net-
work size is roughly 16. The average number of links (undirected) is roughly 4.
The highest degree is 13 and the lowest is 1. The Bonacich measure ranges from
7.5 to approximately 15.0. The distribution of friendship networks in the sampled
classrooms is shown in figure 4.

15I have documented how the effect changes (sign, magnitude and significance) depending on
the definition of disruptiveness and the analysis is available upon request.

16Networks with less than 3 members have been removed from the key player simulation.
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Figure 3: A classroom network of 27 students (undirected links)

I use a dummy variable to indicate the gender of a student (1=male). The
variable HISEI is defined as the highest index of occupational status of parents.17

Throughout the main analysis of this paper, I define children of immigrants as
children with both parents born abroad regardless of own birthplace. The immigrant
background variable is based on students’ questionnaire answers about their parents’
region of birth. The reference category consists of students with at least one native-
born parent.

The CILS4EU data include individual scores on both a cognitive and a language
test. The two tests were performed in the first wave of the survey during the school
year 20102011.18 The language test is a test of a child’s lexicon of Swedish antonyms.
The test includes 30 items with 4 alternatives each (for more information, see the
technical report by Kruse & Konstanze (2016)). The cognitive test is “language
free” and, as such, does not require any particular language skills. It is a 7 minute
multiple-choice test of graphical puzzles including 27 items with properties similar

17ISEI stands for International Socio-Economic Index of Occupational Status. The variable
indicates the maximum value of the occupational status of the mother and father. Individuals
with missing values on the variable indicating HISEI (272 cases) have been given the sample
average. In all estimations in section 6, I include a dummy for missing value on HISEI.

18In the analysis, these variables are treated as exogenous, however, since they are measured at
the same time as the outcome variable individual disruptiveness, they could be endogenous. In an
ideal setting, these would be constructed with a lag as is common in the network literature.
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to Raven’s Progressive Matrices (Raven 2003). The maximum score on this test is
27 and the minimum is 0.

Figure 4: Distribution of network size, N=374

5 Empirical strategy and identification
In this section, I describe the identification strategy along with the identification of
structural parameters.

5.1 Econometric model

The econometric equivalent (written in matrix form) of the best reply function for
disruptive behavior in the average model specified in (3) is the following:

Yr = ϕG∗
rYr + Xrβ + G∗

rXrγ + µr + ϵr, (8)

where r denotes the network and nr is the number of observations in each network, Yr

is a nr×1 vector of observations of the outcome variable disruptive behavior, X is the
nr × k matrix of exogenous variables such as age, gender and family characteristics,
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G∗ is the nr × nr row-normalized adjacency matrix that gives the (undirected)
connections gij, GrYr is the nr × 1 vector of peers’ disruptive behavior, µr is the
network fixed effect, and ϵr is the error term. Finally, ϕ, β and γ are the estimated
parameters and ϕ = λ/(1 + λ).

5.2 Potential threats to identification

Networks are formed endogenously: who our friends are is not at all random but
contingent on both our own characteristics and those of our friends. The famous
proverbial expression friends of a feather flock together describes the tendency of
individuals with similar backgrounds and preferences to associate with one another.
Moreover, contextual effects, i.e. the mean characteristics of friends (or any refer-
ence group), could be correlated with school effects. Thus, in order to identify a
credible peer effect, one must first correct for the endogenous sorting of individuals
into schools, classrooms and friendship networks. The challenge is to disentangle the
effect of the behavior among friends (endogenous effect) from the effect of friends’
characteristics (contextual effect) and the influence of the shared environment (cor-
related effect). Below, I outline how I tackle the potential threats to identification.

The reflection problem, discussed in the seminal paper of Manski (1993), oc-
curs when there is perfect collinearity between the endogenous peer effect and the
contextual effect. I avoid the reflection problem since the analysis in this study is
based on network data, meaning that the characteristics of direct friends are not the
same for all individuals. Thus, given the incomplete structure of the network the
contextual effects can be isolated from the peer effect.

The identification of peer effects rests on the assumption that the socio-matrix G
is exogenous (or conditionally exogenous). Peer effect models suffer from two types
of biases. For one, there is simultaneity in the outcome variable since individuals
choose their disruptiveness level simultaneously; hence, the adjacency matrix GY
has built-in endogeneity.

Second, friendship networks are formed endogenously, i.e. there is an omitted
variable bias (cf. Heckman selection bias).19 The main threat to the identification
strategy employed in this paper is potential unobservable heterogeneity at the in-
dividual, school or network level. For example, there may exist network-specific
factors that are correlated with individual disruptiveness.

I address the issue of simultaneity (Manski 1993) by using instrumental variables
(2SLS/GS2SLS) and Maximum Likelihood (ML) estimation. Different instruments

19The friendship networks could be formed based on, for example, individual disruptiveness.
Ideally, one would like to use lagged individual characteristics in peer effect estimations; however,
the questions on which the disruptiveness measure is based as well as the cognitive and language
ability test scores are only available in the first wave of CILS4EU.
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are used in the 2SLS approach in order to take care of potential correlated effects.
First, I use characteristics of the friends of friends, under the assumption that own
friends, but not friends of friends, are actively chosen (Bramoullé et al. 2009). Peers’
characteristics are used as an instrument for average peer outcomes, i.e. the matrix
G2X is used as an instrument for Gy. Thus, I assume that the characteristics
of friends of friends do not have a direct influence on individual behavior. The
structural parameters in the model can be identified if I, G and G2 are linearly
independent, i.e. that at least two individuals in the same network have different
links, and if the friendship network between individuals is intransitive (everyone is
not friends with everyone).

The second instrument (Lee et al. 2010, Liu & Lee 2010) is defined as the number
of friendship ties. Individuals have different numbers of friends and the idea here is
that the more friends an individual has, the higher is the aggregate disruptiveness,
JGY, in the individual’s friendship network. This instrument is only valid in the
case of the aggregate model. Following Tatsi (2015), I also use the Best IV as
proposed by Lee (2003) and the results are reported in Appendix C. The Best IV
performs only marginally better than the “standard” 2SLS.

The ML strategy tackles the problem of simultaneity by modifying the form of
the likelihood function in order to control for the autocorrelation between the obser-
vations. More specifically, the log Jacobian term in the likelihood function accounts
for simultaneity by not allowing the regressors to be correlated with the error terms,
thus removing the possible bias in the estimates generated by the simultaneity term
(Drukker, Prucha & Raciborski 2013). Moreover, the ML approach requires that
the errors are distributed normally.

I overcome the issue of endogenous group formation by using the control function
approach of Heckman et al. (2013). I estimate a spatial Durbin model (Elhorst 2010)
and a dyadic network formation process (Graham 2015, Arduini et al. 2015).20 The
root of the omitted variable bias problem is the potential correlation between the
errors in the model explaining individual disruptiveness and individual behavior in
friendship link formation.21 The control function approach is described in further
detail in section 5.4.

Furthermore, everything that is common at the classroom and network level,
such as the quality of the teacher, is captured by the network fixed effects (see sec-
tion 5.3 below). Another potential source of bias is measurement error or incomplete
information on friendship links. I use undirected rather than directed links in or-
der to better capture possible pathways of peer influence. In line with Lindquist &

20See Elhorst (2010) for an overview of different spatial dependence models.
21This is discussed in detail in Goldsmith-Pinkham & Imbens (2013).
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Zenou (2015), I perform a number of robustness checks in order to asses the validity
of the results (see Appendix C).

5.3 Network fixed effects

In the analyses, I use fixed effects at the network level where the network is defined
as subcomponents of the socio-matrix G. A subcomponent of G consists of all
individuals that are weakly connected to each other in a classroom. Thus, the
reported direct friends of individual i constitute a subset of i’s network. The number
of friendship nominations is restricted to 5 classmates. Links are not necessarily
reciprocal, hence the degree distribution rages from 1 to 13. Moreover, a network
in the analysis sample can consist of up to 28 students.

Common shocks such as, for example, environmental shocks may bias the esti-
mates of peer effects. The fixed effects imply that I only explore variation within
networks. Thus, I assume that the relevant interactions take place at the network
level. I apply a so-called network-mean transformation by multiplying equation (8)
by the matrix Jr = Inr − 1

nr
lnr

l
′
nr

, where Inr is the identity matrix, lr is a vector of
ones and nr is the number of individuals in network r. This transformation implies
that I subtract the network average from each individual-level variable. Hence, I
arrive at the following network-mean transformed average model of peer effects:

JrYr = ϕ2JrG
∗
rYr + JrXrβ + JrG

∗
rXrγ + Jrϵr. (9)

5.4 The control function approach

The control function approach consists of two stages: a selection equation and an
outcome equation (Heckman et al. 2013, Wooldridge 2015). Individuals tend to
exhibit homophily in covariates such as gender, ethnicity and socio-economic back-
ground.22 The link (or “dyad”) formation equation consists of these variables as
predictors of friendship ties. In the first step, the binary dependent variable “link”
(1=reported friendship link) is regressed on individual-specific observable charac-
teristics and dyad attributes. In order to qualify as a valid instrument for link
formation, the exclusion restriction variable(s) should affect the probability of two
individuals forming a friendship tie but not the individual decision to disrupt.

I claim that G is exogenous, once I correct for possible sorting which is done
by including the residuals from the link formation estimation in the outcome equa-
tion. Moreover, the links are undirected and the selection correction term is at the

22See the seminal work of McPherson et al. (2001) on homophily in social networks.
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individual level as in Graham (2015).23 The link formation process is modeled as
follows:

gij = α0 + αd|Xi − Xj|+αc|Xi − Xj|+αCCij + αf |φi − φj|, (10)

where Cij represents the link characteristics, |Xi −Xj| the absolute difference in the
observed characteristics (either dichotomous or continuous indicated by d or c) of two
individuals, and |φi − φj| the absolute difference in the unobserved characteristics
of two individuals.

The outcome model in the second stage is the average model as described above
including the estimated residuals, νn, in the first stage:

JrYr = ϕ2JrG
∗
rYr + JrXrβ + JrG

∗
rXrγ + Jrϵr + νn. (11)

Since the second-stage model includes the residuals from the first stage, the
estimated coefficients are plagued with noise from the first stage (Hardin 2002).
One way of examining the bias is to use bootstrapping methods. As this procedure
is computationally intensive, at this stage I only present the results with robust
standard errors and explore how the estimates and standard errors change when the
residuals are included in the outcome model.24

The selection equation is estimated by OLS and the residuals are added up
with respect to each individual. The results are presented in table 2. Recall that
the control function is estimated at the dyad level, while the outcome model is
estimated at the individual level. For the time being, I assume that the errors are
following a normal distribution and that they are independent (although there is
room to reconsider this).

The number of possible links is nearly 18 million. The predictors include the
absolute difference in scores on the language test, the absolute difference in scores
on the cognitive ability test, male dummy (1=both individuals are male), native
dummy (1=both individuals are native-born) and the absolute difference in age.25

The exclusion restriction in the model is an indicator for living within a 5 minute
walking distance from a classmate. The geographical proximity variable affects
the probability of two individuals forming a friendship tie but not the individual
decision to disrupt and should therefore be a valid instrument for link formation.

23See Arduini et al. (2015) for a model with directed links.
24An alternative solution is to follow Murphy & Topel (1985) by adjusting the covariance matrix.

Murphy & Topel (1985) provide a consistent estimator of the covariance matrix. See also Del Bello
et al. (2015).

25Due to the high non-response rate of both students and parents regarding the parents’ oc-
cupation, I omit the absolute difference in the highest occupational status of the parents as an
explanatory variable in the link formation process.
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The indicator variable is excluded from the second stage, i.e. the outcome equation.
Evidence of the non-randomness in link formation is displayed in table 2. Unsur-

prisingly, geographical proximity seems to be an important predictor of friendship
ties. The estimates reflect probabilities and the coefficient for “5 min distance” is
non-negligible and significant. Language and cognitive ability test scores and region
of origin also seem to be driving friendship formation. The larger is the absolute
difference in test scores of two individuals, the less likely they are to be friends.
Homogeneity in terms of region of origin also makes two individuals more likely to
form a friendship link.

Table 2: Control function approach: Link formation model

Link

Constant 0.00048***
(0.00002)

Language test scores -0.00002***
(0.00000)

Cognitive ability test scores -0.00001***
(0.00000)

Male 0.00041***
(0.00001)

Native 0.00056***
(0.00001)

Age 0.00002
(0.00002)

5 min distance 0.52904***
(0.00036)

R2 0.10928
Adj. R2 0.10928
Observations 17799961

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Results from OLS regression. The
dependent variable is a dummy indicating
whether there is a friendship link between two
individuals. The explanatory variables in-
clude the absolute difference in scores on the
language test, the absolute difference in scores
on the cognitive ability test, male dummy
(1=both individuals are male), native dummy
(1=both individuals have at least one native-
born parent), the absolute difference in age,
and finally, whether or not the two individu-
als live within a five minute walk from each
other.
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6 Empirical results
In this section, I estimate the average peer effect model to arrive at an estimate of
peer effects in disruptive behavior. The estimates from the regression analysis in
section 6.1 are then used in the key player simulation in section 6.3.

6.1 Estimated peer effects

Column (1) in table 3 displays the baseline estimate of the peer effect in disruptive
behavior estimated by OLS. The average peer effect estimate is positive and signifi-
cant (p<0.01). Unconditional on individual and friends’ characteristics, a one point
increase in the average disruptiveness of friends is, on average, associated with a
0.31 point increase in individual disruptiveness (the mean of the dependent variable
is 6.36).26

Due to simultaneity and omitted variable bias (as discussed in section 5.2), the
average peer effect estimate from OLS reported in table 3 is likely biased. In order
to address these identification issues, I consider two alternative estimation methods:
Generalized Spatial Two-Stage Least Squares (GS2SLS) and Maximum Likelihood
(ML).27 In the next step, I use the GS2SLS and ML estimators for the parameters
of a linear cross-sectional spatial-autoregressive model as suggested by Drukker,
Prucha & Raciborski (2013). Both models are estimated using the spreg command
in Stata (sppack).28

The standard approach in the peer effect literature is to use instrumental vari-
ables. Thus, in order to estimate the GS2SLS model I need to find a set of valid
instruments. Initially, I only consider the predetermined characteristics of friends of
friends, such as gender, age and ethnicity. Next, I also include the parents’ character-
istics (e.g. socio-economic status). The preferred set of instruments, a combination
of predetermined individual characteristics and parental attributes, results in the
highest first-stage F-statistic, although it is still weak (around 6). This set of in-
strumental variables is then used in the estimations using GS2SLS. Note, however,
that a weak instrument could potentially do more harm than good by generating
inconsistent estimates and incorrect confidence intervals, which is why I extend the

26Note that the social conformity coefficient represented by λ is derived from the following
expression: ϕ = λ/(1 + λ) = 0.31.

27See Kelejian & Prucha (1998) and Lee (2003). See also Drukker, Prucha & Raciborski (2013)
and Drukker, Peng, Prucha & Raciborski (2013).

28The output from spreg does not include first-stage F-statistics; hence, I try out alternative
instruments using the Stata package ivreg2. The first-stage F-statistic of these estimations ranges
between 1 and 6 which is much less than the convention or rule of thumb of at least 10. The results
from the estimations with the “Best IV” are presented in table C1 in Appendix C.
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analysis with ML estimations.29

The regression results for the GS2SLS and ML estimators for the average model
are reported in table 3. As the spatial-weighing matrix is row-normalized, the pa-
rameter space of ϕ is (-1,1). The average peer effect estimate is 0.169 and it is
insignificant in the GS2SLS case with network fixed effects (table 3, column (2)),
whereas it is strongly significant when using the ML estimator (column (3)). Thus,
in both cases, the peer effect estimate is positive and of moderate size. Importantly,
the estimates are almost of equal size. Since the results indicate that GS2SLS is less
efficient than the ML, the latter is my preferred model.

Table 3 indicates that in all specifications (columns (1)-(4)), the sign and sig-
nificance of the individual covariates are consistent. Columns (2) and (3) show the
average peer effect conditional on covariates (controls of individual and friends aver-
age characteristics). The individual characteristics consist of language and cognitive
test scores, gender, socioeconomic background, region of origin and age.

29See Anselin (1988) for a discussion on the finite sample properties of the IV estimator. A
drawback of the ML approach is the restrictive assumptions about the distribution of the error
terms.
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Table 3: Outcome equation (OE) and link formation (LF)

Baseline OE OE OE and LF
(1) (2) (3) (4)

OLS GS2SLS ML ML

Dependent variable: Disruptiveness

Constant 4.39***
(0.23)

Language test scores -0.0185* -0.0186** -0.0187**
(0.0102) (0.00890) (0.00890)

Cognitive ability test scores -0.0370*** -0.0370*** -0.0370***
(0.00878) (0.00865) (0.00865)

Age 0.208 0.208 0.208
(0.134) (0.133) (0.133)

Male 0.0471 0.0474 0.0463
(0.151) (0.150) (0.150)

Native background 0.219** 0.220** 0.220**
(0.102) (0.0986) (0.0986)

Highest index of occupational status -0.00164 -0.00164 -0.00165
(0.00186) (0.00186) (0.00186)

Missing HISEI 0.417*** 0.417*** 0.417***
(0.148) (0.147) (0.147)

Friends’ average language test scores -0.0593*** -0.0595*** -0.0594***
(0.0190) (0.0156) (0.0156)

Friends’ average cognitive test scores -0.0382* -0.0384** -0.0385**
(0.0199) (0.0151) (0.0151)

Friends’ average age 0.0743* 0.0746** 0.0751**
(0.0443) (0.0357) (0.0357)

Proportion male friends 0.0693 0.0696 0.0701
(0.172) (0.172) (0.172)

Proportion native friends 0.118 0.119 0.120
(0.170) (0.158) (0.158)

Friends’ average HISEI 1.56e-05 1.46e-05 1.78e-05
(0.00327) (0.00327) (0.00327)

Selectivity bias correction 8.05e-06
(1.46e-05)

ϕ 0.31*** 0.169 0.167*** 0.167***
(0.04) (0.206) (0.0182) (0.0182)

σ2 4.460*** 4.460***
(0.0974) (0.0974)

Observations 4,219 4,219 4,219 4,219
Network fixed effects NO YES YES YES

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Column (1) reports the results from the baseline average peer effect model estimated by OLS.
Columns (2) and (3) report the outcome equations. Column (2) shows the results from GS2SLS
estimations of the average model with network fixed effects while column (3) shows the ML estima-
tions with network fixed effects. In column (4), the outcome equation is the average model including
the estimated errors from the link formation model estimated by ML. The selectivity bias correction
is reported in column (4). The standard errors are clustered at the network level.
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In line with expectations, language and cognitive ability test scores are nega-
tively related to individual disruptiveness. Also as expected, friends’ average age
is positively related to the outcome variable. The individual and contextual effects
give rise to the variations in the individual disruptiveness abilities ai’s, (defined in
section 3.2 above) which are used to identify the key player. Since the model includes
spatial lags of the dependent variable, the interpretation is less straightforward than
in the linear model case. The interpretation of the coefficients for the independent
variables is discussed further below.

Next, I turn to the link formation process reported in table 2 in section 5.4.
Column (4) in table 3 reports the outcome equation, namely equation (9) including
the selection correction term. Neither the magnitude nor the significance of the
peer effect changes by including the correction for selection bias. Furthermore,
the size of the standard errors remains unchanged. A plausible explanation for
this result is that link formation is as good as random after controlling for sorting
using individual and friendship characteristics.30 Overall, the other estimates and
their standard errors remain fairly unaffected by including the correction term for
selectivity bias which suggests that conditional exogeneity holds and that the peer
effect can be interpreted in causal terms. Hence, the peer effect estimate that I
will use in the key player analysis is 0.167. The preferred model, the average peer
effect model estimated by ML, indicates that individual disruptiveness is positively
related to the average disruptiveness of best friends.

6.2 Interpretation of estimates

The interpretation of the estimates in table 3 is less straightforward than in the
OLS case. One way of interpreting the coefficients for the independent variables
is to calculate the predicted values at different levels of the dependent variable,
as suggested by for example Drukker, Prucha & Raciborski (2013). Due to the
built-in simultaneity of the model (SARAR), a change in the dependent variable of
one individual can alter the predicted values of all other individuals in the sample.
Either the units of the exogenous variable are changed sequentially (average total
direct impact, ATDI) or simultaneously (average total impact, ATI).

I calculate the predictions using the simultaneous approach. The mean change
in the predictions from increasing the individual cognitive ability score by one point
is -0.0444. The ATI corresponds to about 2.0 percent of a standard deviation in
individual disruptiveness (demeaned).31 The estimated ATI from a one unit change

30See the discussion in Del Bello et al. (2015).
31When presented in percentage terms and the denominator is the sample average of individual

disruptiveness, the absolute ATI from increasing individual cognitive ability by one point corre-
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in the individual language test score is -0.0224 which corresponds to approximately
1.0 percent of a standard deviation in individual disruptiveness.

6.3 Key player simulation

In this section, I proceed by identifying the key player using the concepts presented
in section 3.4. The following analysis is based on the average model of peer effects.
The estimated peer effect of the average model reported in column (4) in table 3 is
positive and statistically significant (0.167, p<0.01).

First, I derive the Bonacich measure of each individual using the estimated peer
effect of 0.167. I use all the estimated coefficients in the average model reported
in table 3 to derive the disruptive ability ai of each individual in the network. As
defined in equation (2), ai depends on individual observable attributes, the average
observable characteristics of an individual’s direct friends and the total number
of friends. Next, I plug each ai into the expression (4) and derive the vector of
Nash equilibrium disruptiveness levels which corresponds to the Bonacich of each
individual (see Definition 1).

The final part of the exercise involves identifying the key player, i.e. the optimal
target. This is done by calculating the intercentrality of all individuals in each net-
work (as defined in equation (7)). The key player is the individual with the highest
intercentrality. Clearly, the number of key players is the same as the number of
networks, which is 374. Networks with less than three members have been removed
from the key player analysis which leaves us with a total of 329 networks in the anal-
ysis sample. Moreover, the number of most active players is larger than the number
of networks since more than one player could have the same level of disruptiveness.

By definition, key players hold important positions in their network and may
act as bridges of both desirable and undesirable behavior.32 The key player is not
necessarily the most active individual in the network. In fact, the key player and
the most active individual is the same person in only 28 out of 329 networks (about
8.5 percent). Table 4 shows the observable characteristics of the key player and the
most active player. Column (1) reports the results from a logistic regression of a
dummy variable, indicating whether an individual is the key player or not, on a
selected set of observable characteristics such as gender and parents’ immigration
status. Column (2) displays the corresponding regression results for the most active
player.

sponds to a very large number. This is because all variables in the preferred specification have
been demeaned at the network level and therefore consist of both positive and negative values
(including individual disruptiveness).

32Bridges have high betweenness centrality.
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According to the results in table 4, the log of odds of being the key player is
positively related to language test scores (p<0.01) and cognitive ability test scores
(p<0.01). In other words, the higher the test scores, the more likely it is that an
individual is the key player.

Table 4: Observable characteristics of the key player vs. the most active or a
random player

(1) (2) (3)
Key player Most active player Random player

Language test scores 1.302∗∗∗ 0.988 1.020
(0.027) (0.014) (0.015)

Cognitive ability test scores 1.135∗∗∗ 0.977∗ 0.980
(0.022) (0.013) (0.013)

Male 1.144 1.271∗∗ 0.875
(0.141) (0.148) (0.102)

Highest index of occupational status 0.998 0.997 1.000
(0.003) (0.003) (0.003)

Native background 0.879 1.161 0.969
(0.151) (0.158) (0.132)

Age 1.099 1.156 1.099
(0.343) (0.244) (0.243)

HISEI missing 0.700 1.019 1.251
(0.190) (0.240) (0.274)

Observations 4129 4129 4129
Pseudo R2 0.184 0.006 0.002

Exponentiated coefficients; Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Results from logistic regressions. Column (1) reports the results from a logistic regression
of a dummy variable, indicating whether an individual is the key player or not, on a selected set
of observable characteristics. Columns (2) and (3) display the corresponding regression results for
the most active player and a random player, respectively.

The odds ratio of 1.141 indicates that boys are 1.141 times more likely to be
the key player but the estimate is insignificant. Thus, I do not find any evidence
in support of the notion that the key player is more likely to be a boy than a girl;
given the same language and cognitive ability test scores, HISEI, age and parents’
immigration status, boys are not more likely to be the key player than girls. This is,
however, not the case for the most active player. Boys are 1.271 times more likely
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to be the most disruptive individual in the network (p<0.05). Moreover, having
at least one native-born parent is negatively related to being the key player and
positively related to being the most active player (both insignificant, however). The
log of odds of being the most active player is negatively related to cognitive ability
test scores (p<0.10).

Next, following the analysis employed in Lindquist & Zenou (2015), I investigate
the percentage reduction in disruptiveness from removing the key player, calculated
as the intercentrality of the key player times 100 divided by the total Bonacich
of that network.33 I run an OLS regression of this value on a constant and the
independent variable network size. The results of these regressions are shown in
table 5. I do the same for the most active player and a random player.

Table 5 reports the predicted reductions without any baseline. The average
reduction in disruptiveness for the average network (size=16) from removing the
key player is roughly 13.2 percent as compared to removing the most active player,
which is about 11.9 percent.34

In table 6, the baseline is the most active player or a random player. This
approach produces estimates of the performance of the key player strategy relative
to other policies such as targeting the most disruptive individual. In the first column
of table 6, the dependent variable is the difference in the percentage reduction in
disruptiveness from removing the key player as compared to removing a random
player. In column (2), the dependent variable is the reduction relative to the most
active player. Networks where the key player and the most active individual or a
random player is the same person have been removed from the analysis in table 6,
which is why the sample sizes are different in columns (1) and (2).

The intercept gives an indication of how much the key player strategy out-
performs the other two policies. The key player strategy outperforms the other
strategies to a significant extent, although the difference is small: the average re-
duction in disruptiveness for the average network (size=13.1) from removing the
key player is 1.41 percent higher than removing a random player and 1.44 percent
higher (size=12.9) than removing the most active player. The estimate of network
size is, as one would expect, negative in both cases.35 Table 6 shows the relationship

33It would have been interesting to look at the actual behavioral changes within networks before
and after a student has left a class (some students are missing in wave 2 since they have either
changed classes or schools) and to compare the predictions of the key player model to actual
outcomes from changing class composition. Due to the small number of missing students in each
school year, such an exercise will not be possible in this study.

34The sample size is the same in all three models since the key player and the most active or
random player are allowed to be the same individual.

35The number of networks in both columns (1) and (2) is less than 374 since the networks in
which the key player and a randomly chosen player coincide are removed from the analysis. The
same applies to the case when the key player is also the most active player in the network. Also,
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between the average predicted reduction and network size. A one point increase in
the number of network members is, on average, associated with a 9.7 percentage
point decrease in the difference in the average reduction in aggregate disruptiveness.

Table 5: Predicted reductions from removing the key player, the most active player
or a random player without any baseline

(1) (2) (3)
Key player Most active player Random player

Network size (demeaned) -1.218*** -1.142*** -1.148***
(0.0416) (0.0404) (0.0418)

Constant 13.17*** 11.88*** 11.95***
(0.272) (0.264) (0.273)

Observations 329 329 329
R-squared 0.724 0.710 0.698

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Results from OLS regressions of the percentage reduction in disruptiveness
from removing either the key player, the most active player or a random player, cal-
culated as the intercentrality of that player times 100 divided by the total Bonacich
of that network, regressed on a constant and the independent variable network size.

In summary, the effect of removing the key player is significantly larger than the
effect of removing the most active player; thus, removing the most active player is
not necessarily the most effective way of lowering aggregate disruptiveness in the
network. The difference in the predicted percentage reduction in disruptiveness is
relatively small, however. Furthermore, the predicted reduction is negatively related
to network size which is a mechanical property: removing the key player (or actually
any player) in a smaller network will have a larger effect than in a bigger network.

as previously mentioned, networks with less than three members are excluded from the key player
analysis.
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Table 6: Predicted reductions from removing the key player (KP) when he or she
is not the most active player (MA) or a random player (RP) in the network

(1) (2)
Difference KP and RP Difference KP and MA

Network size (demeaned) -0.0973*** -0.0973***
(0.0120) (0.0138)

Constant 1.412*** 1.440***
(0.0780) (0.0881)

Observations 295 301
R-squared 0.183 0.144

Notes: Results from OLS regressions. The dependent variable in column (1) is the
difference in the average reduction in aggregate disruptiveness from removing the
key player as compared to removing a random player. The dependent variable in
column (2) is the difference in the average reduction in aggregate disruptiveness from
removing the key player as compared to removing the most active player.

7 Discussion
A deeper understanding of how and when peer effects influence adolescent behavior
could help both researchers and policy makers create effective policy interventions in
education (e.g. how to optimally organize teaching and classrooms) and adolescent
risk behavior (e.g. how to reduce delinquent behavior). Should policy be aimed
at changing the context (teachers, resources etc.) or the composition of students?
Should teachers target the most active individual, i.e. the one making the most
noise, or perhaps the most popular individual such as the key player?

Different classroom situations can bring about different behaviors, as noted by
McFarland (2001): “changing either the student or the classroom would change the
decision to rebel” (p. 617). Disruption could be rectified through organizational
changes of the classroom, for example by altering the formats of instruction or the
grouping of students.36 That said, changing classroom size (teacher/student ratio)
or introducing remedial classes could be costly as compared to altering the group-
ings of students. The implementation of a policy that changes the configuration of
classroom networks of students resistant to learning can prove to be less expensive
than other policies and the potential gains could therefore be substantial.

The optimal target for treatment hinges on the underlying behavioral mechanism
of disruptive conduct. I find that the average model fits the data best, suggesting
group-based policies should be more effective than policies aimed at specific indi-

36Educators can alter the grouping of students either by mixing, matching or random assignment.
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viduals. Thus, in order to reduce aggregate disruptiveness, the social norm – the
behavior of the majority in each network– needs to be changed.

I also find that the key player and the most active individual is the same person
in 28 out of 329 networks (approximately 8.5 percent). I find evidence that remov-
ing the key player has a significantly larger effect on aggregate disruptiveness in a
network than removing the most disruptive individual, implying that policy aimed
at the most noisy individual could be inadequate.

Improving the behavior of the worst-behaved (most active) students clearly has
a positive effect on other students in the classroom because of the social multiplier.
Although in this case, the performance of the two strategies involving either remov-
ing the key player or the most active player is relatively small (on average a 1.44
percent difference in the aggregate disruptiveness reduction). Targeting the most
active individuals is likely less demanding than aiming policy at key players. In prac-
tice, it could be difficult to target key players since they are not as easily identified
(compared to the most noisy individuals). An alternative strategy is to “reshuffle”
classrooms every semester or school year, thereby potentially changing the classroom
norm. A drawback of this approach is that positive spillovers from advantaged to
disadvantaged peers could be lost by randomly reorganizing classrooms.

A related question is whether to mix or match students according to specific
observable characteristics such as grades. The seminal paper of Lazear (2001) derives
optimal class size from a model of educational production that incorporates the
disruptive behavior of students in the classroom. Lazear (2001) finds that the effect
of classroom size is larger for disruptive than for obedient children. From a cost-
benefit point of view, reducing the class size by a small number of students may
not be of any importance for individual behavior when the class sizes are relatively
large.37 In Sweden, students often have the same classmates all through the last
years of compulsory school; hence, classroom networks are fairly stable. This leaves
room for a policy on classroom composition.

Are some classroom environments more likely to facilitate or inhibit aggregate
disruptiveness? The question opens up new avenues of research on classroom com-
position and learning environment. The rules on classroom interaction vary across
schools and classrooms. Future research could investigate the relationship between
the structure of classrooms and specific adolescent undesirable (or desirable?) be-
haviors. Do classrooms where individuals sort around the most disruptive student
stand out in some observable way, for example with respect to density? If so, what
makes students in these types of classrooms more susceptible to disruptive conduct?
Are the externalities from bad apples larger in dense classrooms? One possibility

37In fact, evidence is inconclusive about the effect of class size on student performance. See the
discussion in e.g. Hanushek (2002).
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is to use popularity ranking in the classroom or negative nominations and examine
teacher characteristics more closely (available in CILS4EU). The next step is to also
examine the effect of disruptiveness on individual achievement such as school grades
and later educational outcomes.

Finally, this study has a number of limitations that should be mentioned. First,
since students who were absent on the day of the network questionnaire or who
refused to participate were excluded from the class roster and the set of potential
friend nominees, there is a risk that I underestimate the effect of friends’ disruptive-
ness and the effect of removing the key player (unless these individuals are isolated).
As shown in table C1 in Appendix C.2, the cases dropped from the analysis sample
due to non-response are more likely to have higher scores on the disruptive measure
while lower scores on the language and cognitive ability tests, implying that the
analysis sample is positively selected on these characteristics.

Second, a disadvantage of the CILS4EU data set is that it is based on individuals’
self-reports of problem behavior. Ideally, one would like to have data on disruptive
behavior collected through classroom observations over time.38 Furthermore, an
important question concerns the nature and level of measurement error in the self-
reported variables. Is it systematic or random, i.e. do disruptive students tend to
misreport their behavior to a larger extent than others? This and related issues
could be further investigated using the teacher questionnaire in CILS4EU.

8 Concluding remarks
This paper set out to investigate the peer effect in disruptive behavior using the
architecture of the networks in the classroom and to move towards a policy-relevant
application of the key player strategy. I find that being the individual that exerts
the greatest negative influence on the classroom learning environment is positively
related to test scores in cognitive ability and language proficiency. Moreover, the key
player is not more likely to be a boy than a girl. I also find evidence that removing the
key player has a significantly larger effect on aggregate disruptiveness in a network
than removing the most disruptive individual, implying that policy aimed at the
most active and potentially socially isolated individual could be inadequate.

The findings of this study have implications for educational policy on optimal
classroom composition. The impact of a policy aimed at key players may prove to
be more effective in reducing aggregate disruptiveness and improving the learning
environment for all students in a classroom. I suggest a reshuffling policy where

38The sociological study of McFarland (2001) is based on classroom observations of two schools
and 36 classrooms followed during two school semesters.
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students are reassigned to classrooms regularly during the school year along with
remedial classes for the most disruptive students.
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A Model specification
In order to test the robustness of the average peer effect model specification, I
also estimate the hybrid model and the aggregate model of peer effects. There are
applications of the key player strategy (see, for example, Lindquist et al. (2015)) that
employ a hybrid model of peer effects where both adjacency matrices are included
in the same model estimation. A potential issue here is that the two matrices
could be collinear, i.e. one is a linear combination of the other. To circumvent this
problem, Tatsi (2015) transforms the adjacency matrices. However, even if one of
the matrices comes out as more important than the other, it is still impossible to
rule out collinearity. Hence, in this section, I test the models separately.

The aggregate model suggests that it is the peers sum disruptive behavior that
matters for individual disruptiveness. Furthermore, this effect may be multiplied by
the number of students engaging in disruptive behavior. For example, one students
decision not to disrupt the class can directly influence the behavior of other students
in the classroom. This mechanism is the so-called social multiplier. The model
predicts that the more friends an individual has, the higher is the sum of friends
activity and the higher is individual activity. If it is the complementarities of friends
behavior that affect individual outcome, i.e. if students are more influenced by high-
status peers rather than, for example, the most active individual, then the aggregate
model should be more relevant in explaining peer effects in disruptive conduct. Next,
I present the aggregate model and derive the model equilibrium. In this section, I
closely follow Lindquist et al. (2015).

In the aggregate model, each agent chooses his or her level of disruptiveness, yi,
proxied by problem behavior in order to maximize own utility ui (·), which is an
increasing function of the “gains” of disruptiveness (ai + η + ϵi), the disruptiveness
of other students in network y = (y1, ..., yn)′, the social cost or stigma of being
punished by the teacher −1

2y2
i , and g which captures the friendship network:

ui(y, g) = (ai + η + ϵi)yi − 1
2

y2
i + ϕ

n∑
j=1

gijyiyj. (12)

In the above expression, the parameter ϕ captures the strength of the comple-
mentarities (the social multiplier coefficient) and ϕ ≥ 0. Each individual has his
or her own disruptive ability ai, defined formally in section 3.2, which depends on
his or her observable attributes, the average observable characteristics of his or her
friends, and the total number of friends indicated by gi. The term ϵi represents
idiosyncratic shocks and η are network fixed effects which capture the environment
at the network level.

The difference between equation (12) and (1) is the last term. In contrast to
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the average model, an increase in the total disruptiveness of one’s reference group
increases individual marginal disruptiveness in the aggregate model, represented by
the expression ∑n

j=1 gijyiyj.
In equilibrium, each agent i chooses yi, her own level of disruptiveness, in order

to maximize utility ui(y, g). The choices are made simultaneously by all agents.
Thus, agent i’s best-reply function in the aggregate model is:

y∗
i = ϕ1

n∑
j=1

gijyj + ai + η + ϵi, (13)

where ai + η + ϵi are defined as above.

Definition 3 For all networks g and for all i, the contextual intercentrality measure
(Ballester & Zenou 2014) of agent i is:

di(g, ϕ) = B(g, ϕ) − B(g[−i], ϕ)
= Γ′

nMα − Γ′
nMα[i] − Γ′

nM[i]α[i]

= B(g, ϕ) − B(g[i], ϕ) +
bα[i],i(g, ϕ) ∑n

j=1 mji(g, ϕ)
mii(g, ϕ)

.

(14)

Moving on to Definition 3, B(g, ϕ) corresponds to the total Bonacich intercentral-
ity in network g while B(g[−i], ϕ) is the total intercentrality once agent i has been
removed from the network. B(g, ϕ) = Γ′

nMα[i] where Γn is a vector whose elements
are equal to one and M is a matrix equal to the expression (I − ϕG)−1. α is a
vector keeping track of all αi and is defined as above. α[i] is a (n×1) column vector
where all elements exclude αi except for entry i which stores the initial αi. M[i] is
a matrix whose elements are equal to m

[i]
jk = mjimik

mii
. Finally, B(g[i], ϕ) = Γ′

nMα[i]

and
bα[i],i(g,ϕ)

∑n

j=1 mji(g,ϕ)
mii(g,ϕ) = Γ′

nM[i]α[i]. The first term of the expression in the last
row of equation (14) corresponds to the contextual change effect while the second
term denotes the network structure effect.

The econometric equivalent (written in matrix form) of the best reply function
for disruptive behavior in the aggregate model specified in equation (13) is the
following:

Yr = ϕ1GrYr + Xrβ + G∗
rXrγ + µr + ϵr, (15)

where the parameters are defined as in section 5.1. The corresponding aggregate
model of peer effects with network fixed effects becomes:

JrYr = ϕ1JrGrYr + JrXrβ + JrG
∗
rXrγ + Jrϵr. (16)
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Finally, the aggregate model including the first-stage residuals is the following:

JrYr = ϕ1JrGrYr + JrXrβ + JrG
∗
rXrγ + Jrϵr + νn. (17)

Table A1 shows the results from the regressions for the average, the aggregate
and the hybrid model of peer effects estimated by standard OLS. Columns (1) and
(2) report the results from the average and the aggregate models of peer effects
in disruptiveness, respectively. The baseline model, the raw hybrid model of peer
effects which incorporates both effects of peer spillovers, is shown in column (3). If
both effects are not included, there is a potential upward or downward bias (Liu
et al. 2014).

Unconditional on individual and friends’ characteristics, a one point increase in
the average disruptiveness of friends is, on average, associated with a 0.31 point
increase in individual disruptiveness (the mean of the dependent variable is 6.36).
The estimate in the aggregate model is shown in column (2). A one point increase
in the aggregate disruptiveness of friends is associated with a 0.02 point increase in
individual disruptiveness, on average (p<0.01). In sum, both effects are positive and
significant in the separate models but when they are both included in the hybrid
model, the estimate for the aggregate peer effect vanishes and loses significance (see
column (3)) while the average peer effect estimate remains unchanged (0.31, p<0.01)

Next, I add fixed effects at the network level (table A1, column (5)). Once I
control for possible sorting and common environmental factors, the average peer
effect estimate changes signs and loses significance (-0.10, p<0.10). A plausible
explanation for this result is that too much variation has been lost by introducing
the network fixed effect.

The purpose of this exercise is to try to identify the transmission mechanism.
The question is whether it is operating among direct friends, the friendship network
(friends of friends) or at the classroom level. The network fixed effect should take
care of any extreme cases at the network level. However, if the causal peer effect
operates through a channel other than the friendship level, for instance a factor at
the classroom level, not controlling for sorting into networks is going to result in a
biased peer effect estimate. On the other hand, by introducing a classroom fixed
effect, the network may capture part of this variation rather than the peer effect
estimate at the friendship level. In that case, the estimated coefficient could switch
sign and still be biased because the effect is carried over to the network level. All in
all, the results from the different specifications in table A1, columns (1)(3), suggest
that the average model explains the data best.39

39However, the results should be interpreted with caution. As previously mentioned, a potential
issue here is collinearity between the two adjacency matrices.
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Due to simultaneity and omitted variables, the peer effect estimates from the
OLS regressions reported in table A1 are likely biased. Therefore, I estimate the
models by 2SLS and ML. Moving on to table A2, the average peer effect estimate is
0.169 and insignificant in the GS2SLS case with network fixed effects (column (2)),
whereas strongly significant when using the ML estimator. Thus, in both cases, the
peer effect estimate is positive and of moderate size. Column (3) reports the ML
results for the aggregate model and the peer effect is highly significant and positive,
0.054 (p<0.01). The aggregate model GS2SLS results are found in column (4). The
peer effect estimate equals 0.125 and is significant (p<0.01) but the instrument is
invalid.

The two final candidates are the average model and the aggregate model esti-
mated using ML. As a robustness test, I compare the Log Likelihood of the average
and the aggregate model and they turn out to be almost equal (-9156 versus -9159).
The preferred specification is the average model of peer effects since it produces a
significant and non-negligible peer effect estimate and is the model that explains the
data best as suggested by the results in tables A1 and A2.
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Table A1: Alternative models of peer effects estimated by OLS

Average model Aggregate model Hybrid model Average model

(1) (2) (3) (4) (5)

Dependent variable: Disruptiveness

Constant 4.39*** 5.92*** 4.38*** 3.54
(0.23) (0.12) (0.23) (4.39)

Average peer effect 0.31*** 0.31*** 0.30*** -0.10*
(0.04) (0.04) (0.04) (0.06)

Aggregate peer effect 0.02*** 0.00
(0.00) (0.00)

Language test scores -0.03*** -0.02**
(0.01) (0.01)

Cognitive ability test scores -0.04*** -0.04***
(0.01) (0.01)

Male 0.24** 0.17
(0.10) (0.11)

Highest index of occupational status -0.00 -0.00
(0.00) (0.00)

Native 0.18* 0.18
(0.10) (0.12)

Age 0.15 0.17
(0.16) (0.15)

Missing values: HISEI 0.41** 0.49**
(0.18) (0.20)

Friends’ average language test scores 0.01 0.02
(0.02) (0.02)

Friends average cognitive test scores -0.00 -0.04
(0.02) (0.02)

Proportion male friends -0.21 -0.04
(0.13) (0.15)

Friends’ average HISEI 0.00 -0.01*
(0.00) (0.00)

Proportion native friends -0.07 0.09
(0.15) (0.23)

Friends’ average age -0.02 -0.12
(0.27) (0.35)

Network fixed effects NO NO NO NO YES
Observations 4219 4219 4219 4219 4219
Adj. R2 0.04 0.01 0.04 0.05 0.14

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Columns (1)(3) report the baseline estimates for the average model, the aggregate model and the hybrid model of peer
effects. Columns (4) and (5) present the results from OLS estimations of the average model including covariates. In column (5),
network fixed effects are included. The standard errors are clustered at the network level in all models.
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Table A2: The average and the aggregate model of peer effects in disruptive be-
havior estimated by ML and GS2SLS

Average model Aggregate model

ML G2SLS ML G2SLS
(1) (2) (3) (4)

Dependent variable: Disruptiveness

Language test scores -0.0186** -0.0185* -0.0190** -0.0142
(0.00890) (0.0102) (0.00891) (0.00942)

Cognitive ability test scores -0.0370*** -0.0370*** -0.0368*** -0.0348***
(0.00865) (0.00878) (0.00866) (0.00874)

Age 0.208 0.208 0.206 0.193
(0.133) (0.134) (0.133) (0.134)

Male 0.0474 0.0471 0.0486 0.0306
(0.150) (0.151) (0.150) (0.150)

Native background 0.220** 0.219** 0.234** 0.224**
(0.0986) (0.102) (0.0986) (0.0987)

Highest index of occupational status -0.00164 -0.00164 -0.00161 -0.00173
(0.00186) (0.00186) (0.00186) (0.00186)

Missing HISEI 0.417*** 0.417*** 0.423*** 0.407***
(0.147) (0.148) (0.147) (0.147)

Friends’ average language test scores -0.0595*** -0.0593*** -0.0603*** -0.0496***
(0.0156) (0.0190) (0.0156) (0.0170)

Friends’ average cognitive test scores -0.0384** -0.0382* -0.0400*** -0.0283*
(0.0151) (0.0199) (0.0151) (0.0169)

Friends’ average age 0.0746** 0.0743* 0.0762** 0.0503
(0.0357) (0.0443) (0.0357) (0.0394)

Proportion male friends 0.0696 0.0693 0.0728 0.0581
(0.172) (0.172) (0.172) (0.172)

Proportion native friends 0.119 0.118 0.130 0.0774
(0.158) (0.170) (0.159) (0.162)

Friends’ average HISEI 1.46e-05 1.56e-05 0.000216 0.000563
(0.00327) (0.00327) (0.00327) (0.00328)

ϕ 0.167*** 0.169 0.0540*** 0.125***
(0.0182) (0.206) (0.00606) (0.0465)

σ2 4.460*** 4.468***
(0.0974) (0.0976)

Log-likelihood -9156.496 -9159.382
Observations 4,219 4,219 4,219 4,219
Network fixed effects YES YES YES YES

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Columns (1) and (2) report the average model of peer effects estimated by ML and GS2SLS
while columns (3) and (4) report the aggregate model estimated by ML and GS2SLS. All models
include network fixed effects. The standard errors are clustered at the network level.
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B Data creation notes
CILS4EU is a multileveled survey containing rich information on the family, teacher,
school and classroom. It includes five sub-questionnaires directed at students,
parents and teachers, entitled “Parents”, “Teachers”, “Youth classmates”, “Youth
friends” and “Youth main”. The last three are directed towards students. The
network data in this paper is created using the “Youth main” and the “Youth class-
mates” questionnaires. The number of respondents in the main questionnaire in the
school year 20102011 was 5,025.

The analysis is based on the full data set including 249 classrooms, although
sample restrictions could be considered in order to increase the proportion of par-
ticipants per classroom (see an important discussion in Hjalmarsson & Mood (2015)
on CILS4EU classroom data). Table B1 below shows the number of classrooms if
the sample is conditioned with respect to the degree of participation.

Table B1: Share of participants and sample restrictions. Source: Kruse & Kon-
stanze (2016), Children of Immigrants Longitudinal Survey in Four European Coun-
tries. Sociometric Fieldwork Report. Wave 1 2010/2011, v1.2.0.

ENG GER NET SWE TOTAL
N(classes) N(classes) N(classes) N(classes) N(classes)

>60 percent 202 243 220 250 915
>75 percent 191 201 211 235 838
>90 percent 153 97 158 172 580

The analysis sample is constructed in the following way. The full sample in
the “Youth classmates” file consists of 4,794 individuals (249 classrooms and 129
schools). As a first step, I drop all individuals who have not nominated anyone
in the “Youth classmates” questionnaire (311 individuals). Based on the reduced
sample, I then create an edgelist file including all pairs of friendships. Table B2
shows the classroom characteristics of the full sample.

Table B2: Classroom characteristics, full sample

Variable Mean Std. Dev. Min. Max. N
Classroom size 20.353 4.287 6 31 4794

Next, I prepare the vertex file with all individual background variables including
classid, schoolid, male age, disruptiveness, native, and HISEI. In the following step,
I match the vertex file with a datafile with records of the students’ language and
cognitive ability test scores (4,804 observations). Individuals that performed the
language and cognitive ability tests but did not take part in the main questionnaire
were excluded (221 individuals in total). Individuals with missing values on HISEI
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(272 cases) have been given the sample average. In all regressions that include the
HISEI variable, I add a dummy for missing values on HISEI. I match the vertex file
with the achievement file which leaves me with a total of 4,792 distinct cases. Next,
I merge the vertex file with the edgelist. Since there are more distinct observations
of “friends” (5,149 cases) than of “egos” (4,468 cases), I need to remove cases where
egos are missing among the friends. Thus, I remove the observations from the
edgelist file that contain an island among all the edges. In this step, 806 individuals
are excluded due to matching issues. The analysis sample consists of about 72
percent of the total number of sampled students by CILS4EU. Table B3 reports the
classroom characteristics of the analysis sample.

Table B3: Classroom characteristics, analysis sample

Variable Mean Std. Dev. Min. Max. N
Classroom size 18.298 4.445 3 28 4219

The matrix analyses are done in Stata, Mata (sppack) and R. I use Stata to
construct the vertex file and the edgelist file which are then exported to R (gplot).
In R, I create the network data for the key player simulation. Due to implementa-
tion and data memory issues, the second stage estimations in the control function
approach are done in Mata. Robustness checks are performed in Stata and Mata
(sppack).
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C Robustness checks

C.1 Instruments and exclusion restriction

I perform a number of robustness checks in order to asses the validity of the in-
struments and the exclusion restriction in the control function approach. For the
aggregate model, I complement the friends of friends characteristics instrument with
alternative instruments, including variation in the number of friendship links (Lee
et al. 2010, Liu & Lee 2010). Individuals have different numbers of friends and the
idea here is that the more friends one has, the higher is the aggregate disruptive-
ness in one’s friendship network. The instrument turns out to be very weak and
is therefore considered invalid in this particular setting (the results are available
upon request).40 Table C1 shows the results from two alternative 2SLS estimations.
Column (1) shows the results from rearranging the order of the matrices when de-
riving the instruments in R while column (2) displays the results from the Best IV
approach (Lee 2003). The two alternative methods fail to produce higher first-stage
F-stats than the standard 2SLS estimation.

With regard to the exclusion restriction, tables C2 and C3 report the correlation
between individuals’ characteristics and the average characteristics of their friends
in the classroom conditional and unconditional on their 5 minute distance neighbor-
hood cluster. The size distribution of these neighborhood clusters is presented in
figure C.1. The number of observations is smaller than in the main analysis (3,253
versus 4,219) since individuals have reported friends who are not found in the net-
work analysis sample. Either they opted out or were absent during the day of the
survey. The results found in table C3 indicate that several estimates are noticeably
reduced once I condition on the 5 minute distance network variable.

40The standard practice is to instrument G with G2, i.e. the characteristics of friends of friends.
However, other instruments are also theoretically motivated (for example G3 and/or G4 and/or
G3). Moreover, one could consider parents’ characteristics such as marital status, paid job, religion,
age, nationality and ISCO 2008.
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Table C1: Alternative 2SLS specifications: GJGX versus JGGX estimated using
the Best IV approach

GJGX JGGX
(1) (2)

Constant 0.00 0.00
(0.04) (0.03)

Language test scores -0.03*** -0.03***
(0.01) (0.01)

Cognitive ability test scores -0.04*** -0.04***
(0.01) (0.01)

Male 0.24*** 0.24***
(0.08) (0.08)

Highest index of occupational status -0.00 -0.00
(0.00) (0.00)

Native 0.20* 0.20*
(0.10) (0.10)

Age 0.11 0.10
(0.16) (0.17)

HISEI missing 0.45*** 0.45***
(0.16) (0.16)

Average language friends 0.02 0.02
(0.03) (0.03)

Average cognitive friends -0.00 -0.01
(0.04) (0.04)

Proportion male friends -0.19 -0.18
(0.17) (0.18)

Average HISEI friends -0.01 -0.01
(0.00) (0.00)

Proportion native friends 0.00 0.02
(0.24) (0.25)

Average age friends -0.19 -0.20
(0.33) (0.33)

Average HISEI missing -0.10 -0.09
(0.37) (0.37)

Local average peer effect 0.34 0.28
(0.55) (0.61)

R2 -0.05 -0.03
Adj. R2 -0.06 -0.04
Observations 4219 4219
Wald test 5.962 6.057

Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

Notes: Column (1) reports the estimates from 2SLS regression
with the adjacancy matrix placed in the “reversed” order. Col-
umn (2) shows the results from the Best IV approach. Both
columns (1) and (2) include network fixed effects.
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Figure C.1: Size distribution of neighborhood networks
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Table C2: Correlation between an individual’s characteristics and the average characteristics of his or her self-reported friends in
the classroom unconditional on the five minute distance neighborhood cluster

Model 1 Model 2 Model 3 Model 4 Model 5

Constant 9.11∗∗∗ 10.59∗∗∗ 0.25∗∗∗ 0.19∗∗∗ 13.73∗∗∗

(0.49) (0.50) (0.02) (0.01) (0.50)
Language test scores 0.51∗∗∗

(0.03)
Cognitive ability test scores 0.40∗∗∗

(0.03)
Male 0.49∗∗∗

(0.03)
Native 0.72∗∗∗

(0.02)
Age 0.09∗∗

(0.03)

R2 0.11 0.06 0.10 0.00 0.29
Adj. R2 0.11 0.06 0.10 0.00 0.29
Observations 3253 3253 3253 3253 3253

Standard errors in parentheses
∗∗∗p < 0.001, ∗∗p < 0.05, ∗p < 0.1

Notes: Results from OLS regressions.
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Table C3: Correlation between an individual’s characteristics and the average characteristics of his or her friends in the classroom
conditional on the five minute distance neighborhood cluster

Model 1 Model 2 Model 3 Model 4 Model 5

Language test scores 0.47∗∗∗

(0.03)
Cognitive ability test scores 0.39∗∗∗

(0.03)
Male 0.49∗∗∗

(0.03)
Native 0.70∗∗∗

(0.02)
Age 0.07∗∗

(0.03)

Observations 3253 3253 3253 3253 3253
Adj. R2 0.14 0.08 0.10 0.30 0.02

Standard errors in parentheses
∗∗∗p < 0.001, ∗∗p < 0.05, ∗p < 0.1

Notes: Results from OLS regressions.
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C.2 Individual non-response

In order to estimate the network model, all isolated individuals (students with no
friendship nominations) must be dropped as by construction the adjacency matrix
cannot include missing values. As described in the data creation section B, I drop
all individuals who have not nominated anyone in the “Youth classmates” ques-
tionnaire (311 individuals). None of these “isolated” individuals filled in the main
questionnaire hence I am unable to explore their observable characteristics.

To get an indication of the degree of non-random selection due to individual
non-response I investigate the characteristics of those excluded from the network
analysis, in total 806 individuals. I perform this test on the individuals that are not
matched with the edgelist file (those who did not take the language and cognitive
ability tests are not included since they have already been dropped). It is not
unlikely that these 573 individuals stand out in some way (non-random selection).
Being absent at the time of the survey could be an indication of school shirking
which is likely correlated with individual disruptiveness. I explore their observable
characteristics in the descriptives table C1 below.

The cases dropped from the analysis sample are more likely male and have an
immigrant background. They also have higher scores on the disruptive measure
while lower ones on the language and cognitive ability tests implying that the anal-
ysis sample is positively selected on these characteristics. With regard to the test
scores, the means are significantly different from each other. The dropped individu-
als also have, on average, statistically higher self-reported disruptiveness levels. The
direction of the bias of the estimated effect depends on the network localities of the
excluded individuals (high or low degree nodes?). The mean number of observations
per classroom in the analysis sample is roughly 18 (see table B3).
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Table C1: Observable characteristics, dropped individuals and the analysis sample

Variable Mean Std. Dev. Min. Max. N

PANEL A: Dropped individuals
Language test scores 15.515 5.829 0 30 573
Cognitive ability test scores 15.439 5.726 0 27 573
Age 15.122 0.387 14 17 573
Male 0.571 0.495 0 1 573
Disruptiveness 7.201 3.104 4 20 573
Native background 0.546 0.498 0 1 573
Highest index of occupational status 49.139 20.277 14.21 88.960 573

PANEL B: Analysis sample
Language test scores 18.654 4.949 0 29 4219
Cognitive ability test scores 17.812 4.751 0 27 4219
Age 15.029 0.264 13 17 4219
Male 0.486 0.5 0 1 4219
Disruptiveness 6.364 2.433 4 20 4219
Native background 0.677 0.468 0 1 4219
Highest index of occupational status 52.982 20.35 11.74 88.960 4219
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D Questionnaire items
This section presents a selection of the questionnaire items that were used in
the Children of Immigrants Longitudinal Survey in Four European Countries
(CILS4EU, Kalter et al. (2016), Kruse & Konstanze (2016)).

The “Youth classmates” questionnaire in wave 1:

• (Q1) Who are your best friends in this class? (Here you may write down no
more than five numbers.)

• (Q9) Which of your classmates live within a 5 min walk from your home?

• (Q10) Who do your parents know?

The “Youth main” questionnaire in wave 1:

• (Q20) How often do you... (Every day, Once or several times a week, Once or
several times a month, Less often, Never)

– ... argue with a teacher?
– ... get a punishment in school (for example being kept in detention, being

sent out of class, writing lines)?
– ... skip a lesson?
– ... come late to school?

• (Q81) Have you done the following things in past 3 months? Your answers
will be kept secret. (Yes, No)

– Deliberately damaged things that were not yours?
– Stolen something from a shop/from someone else?
– Carried a knife or weapon?
– Been very drunk?

• (Q93) How often do you... (Every day, Once or several times a week, Once or
several times a month, Less often, Never)

– ... drink alcohol?
– ... smoke cigarettes?
– ... use drugs (for example, hash, paddos, ecstasy pills)?
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