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Introducing the 
The Mastery Rubric for Bioinformatics 

 

Overview  
This Professional Guide introduces the Mastery Rubric for Bioinformatics (MR-Bi), describing its structure and how it maps 
performance as learners traverse a developmental trajectory from lower- to higher-order critical-thinking skills. The focus here is on 
understanding the MR-Bi’s key elements, and their potential to inform the assessment of learner development and course design.  

Teaching Goals & Learning Outcomes  
This Guide outlines the principal components of the MR-Bi. On carefully reading this Guide, and engaging with the reflections and 
exercises, you will be able to:  

• describe the general structure of the MR-Bi; 
• list some of the key Knowledge, Skills and Abilities (KSAs) the MR-Bi was designed to help deliver;  
• define the developmental stages of the MR-Bi;  
• identify the Bloom’s-level(s) of cognitive complexity, and broad academic level(s), compatible with each stage; 
• describe how performance and critical thinking change as learners traverse the developmental trajectory;    
• identify the KSAs that would need to be modified to adapt the MR-Bi to a closely related scientific discipline(s); and 
• pinpoint your own stage of development in some of the requisite KSAs. 

1 Introduction  

In the last 20 years, life-science education programmes have had 
to adapt to reflect the increasingly data-intensive nature of the 
discipline. Yet, data management, data analytics, scripting, and so on 
are taught relatively rarely in life-science degree programmes, creat-
ing a gap between theory and practice, and fuelling demand for bio-
informatics training across all educational levels and career roles1-6. 
This has led to the augmentation of some established curricula with 
short bioinformatics courses, and/or to the development of entire 
bioinformatics degree programmes.  

Bioinformatics education and training requires purposeful integr-
ation of discipline-specific perspectives and fundamental knowledge 
(from computational and life sciences), often in limited time-
frames6,7. Integrating computational skills and analytical thinking into 
such courses in systematic and formal ways can therefore be difficult.  

To help design education programmes, curriculum guidelines and 
core bioinformatics competencies have been created8-13. Missing 
from such approaches, however, is often the route (developmental 
trajectory14) and time-frame for achieving the competencies; their 
use in curriculum development has therefore proved challenging15-18.  

To address this issue, a new curriculum-design tool was created: 
the Mastery Rubric for Bioinformatics (MR-Bi)19. Unlike conventional 
rubrics, Mastery Rubrics aim to support the development of specific 
Knowledge, Skills and Abilities (KSAs) along stages in a developmental 
trajectory (from uninitiated student to independent practitioner) by 
describing the performance or behaviours typical of learners at each 
stage. They hence span the full curriculum rather than individual 
student assignments14,19. 

 The MR-Bi is a framework that supports bioinformatics curriculum 
and course design, and self-directed learning. It prioritises the 
development of independence and scientific reasoning, and is 
structured to allow individuals (regardless of career stage, disciplinary 
background, or skill level) to locate themselves within the framework.  

Based on The Mastery Rubric for Bioinformatics: a tool to support 
design and evaluation of career-spanning education and training19, 
this Guide introduces the MR-Bi and forms part of the GOBLET-ELIXIR 
train-the-trainer resources. Its companion Guide, Using the Mastery 
Rubric for Bioinformatics – a Professional Guide20 offers insights into 
how to use the tool in practical education and training scenarios. 

2 About this Guide 

This Guide provides an overview of the principal features of the 
MR-Bi. Exercises and Reflections are provided to help readers to con-
sider how the MR-Bi can be used to gauge learners’ (and indeed their 
own) levels of performance and to highlight their requisite training 
needs, and how this knowledge may be used to support their teach-
ing practice and/or course development. Throughout the text, key 
terms – rendered in bold type – are defined in boxes. Additional in-
formation is provided in supplementary boxes and figures.  

KEY TERMS 

Competencies: multi-dimensional, complex, task-specific behaviours 
that represent what individuals can do when they bring their know-
ledge, skills & abilities together appropriately, at the right level(s) 
for the right application, to achieve a given task 

Curriculum: the inventory of tasks involving the design, organisation & 
planning of an education or training enterprise, including specifica-
tion of Learning Outcomes (LOs), content, materials & assessments, 
& arrangements for training teachers & trainers 

Learning Outcome (LO): the KSAs that learners should be able to 
demonstrate after instruction, the tangible evidence that the 
teaching goals have been achieved; LOs are learner-centric 

Rubric: in education, a tool used to evaluate & grade student work; 
often presented in tabular form, rubrics generally contain eval-
uative criteria, qualitative performance descriptions for those crite-
ria at specific achievement levels & an associated scoring system 
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3  What is the MR-Bi? 

Like other rubrics used in education, the MR-Bi is essentially just a 
table – in fact, it’s a very large 12 by 5 matrix! Just as a conventional 
rubric encapsulates evaluative criteria to help instructors assess 
student performance at defined achievement levels, so the MR-Bi 
also contains descriptions of learner performance; here, however, 
performance is characterised across career-spanning stages of the full 
academic spectrum rather than focusing on a particular piece of 
work. This has ramifications for individuals engaging in professional 
development (whether to augment existing skills or to acquire new 
ones), for supervisors aiming to upskill their students, and for 
instructors developing bioinformatics courses or programmes.  

Comparison of the MR-Bi with conventional rubrics 

Rubrics are routinely used in a range of educational settings. They’re 
generally used as scoring guides to facilitate rigorous and consistent 
evaluation of learner performance on a given piece of work. Here, we 
compare and contrast conventional rubrics with the MR-Bi. 

Conventional rubrics MR-Bi 
Cover a single assignment or 
task during or after a course 

Covers a full curriculum across the 
entire academic career span 

Itemise specific assignment 
elements for grading (layout, 
figures, discussion, grammar...) 

Itemises discipline- and scientific-
method-related KSAs for 
evaluation 

Use scores to help grade 
performance on each element 

Uses qualitative descriptions to 
help assess performance of KSAs 

Help learners to identify and 
understand what they must do 
to achieve a certain grade 

Helps learners to identify their de-
velopmental stage and hence to 
pinpoint their training needs 

? 

3.1 Structure of the MR-Bi  
So, what does the MR-Bi look like? The axes of the MR-Bi list i) the 

KSAs that form the bedrock of bioinformatics as a scientific discipline, 
and that are hence the focus of instruction; and ii) five stages of a 
developmental trajectory, from less to more expert (i.e., from a 
student, new to the field, to an experienced, fully independent 
scientist). For each KSA, the table’s cells give brief descriptions (the 
Performance Level Descriptors (PLDs)) of how a learner might be 
expected to perform at each stage and thence to change over time.  

Figure 1 Structure of the MR-Bi. The x-axis outlines five stages of a 
developmental trajectory, from Novice to Journeyman; the y-axis lists the 
KSAs to be delivered by a course; the cells describe how a learner might 
typically perform, & change over time, when traversing the trajectory. 

Figure 1 provides a summary of this general structure. Note that, 
as the figure is an overview, the PLD excerpts shown aren’t intended 
either to be complete or to be fully legible – the entire MR-Bi, 
including the complete set of PLDs19, is presented later, in Table 2. 
Let’s take a closer look at the MR-Bi’s components in turn.  

The KSAs 
The MR-Bi encapsulates 12 content-/topic-agnostic KSAs. The first 

two are foundational, discipline-specific KSAs, the rudimentary com-
ponents of bioinformatics, while the third concerns their integration. 
Seven other KSAs are based on core elements of the scientific meth-
od. The last two reflect the importance of being able to communicate 
scientific results, and the necessity for sound ethics to underpin all 
aspects of the scientific enterprise. The full set of KSAs is as follows: 

1. Prerequisite knowledge, biology 
2. Prerequisite knowledge, computational methods 
3. Interdisciplinary integration  
4. Define a problem based on critical review of existing knowledge  
5. Hypothesis generation  
6. Experimental design 
7. Identify data relevant to the problem  
8. Identify and use appropriate analytical methods 
9. Interpretation of results/output 
10. Draw and contextualise conclusions 
11. Communication 
12. Ethical Practice 

As the core KSAs relate to generic scientific practice, this structure 
can be readily customised by changing the discipline-specific KSAs.  

A closer look at the MR-Bi’s KSAs  

The KSAs deliberately aren’t restricted to specific facts or content, 
as tools and topics change quickly. They’re broader, higher-level con-
cepts than competencies or KSAs captured in other frameworks, which 
may drill down, say, to specific scripting skills, programming languages, 
operating systems, etc. The MR-Bi’s KSAs provide focal points for 
building curricula (see table below), making it adaptable and robust. 

MR-Bi KSAs 
Prerequisite knowledge 
(PK), biology and PK, 
computational methods 

Cover the foundational, background 
knowledge, and basic skills and abilities 
of biology and computing  

Interdisciplinary 
integration 

Concerns the ability to integrate across 
the bio- and computing domains, 
and/or other domains  

Define a problem based 
on critical review of exist-
ing knowledge 

Concerns the application of critical 
evaluation skills and judgement; aims 
to promote the ability to identify and 
solve biological problems 

Hypothesis generation 
and Experimental design 

Cover scientific reasoning, statistics, 
hypothesis testing, methodology and 
pilot testing 

Identify data relevant to 
the problem and  
Identify & use appropri-
ate analytical methods 

Cover the ability to find and use rele-
vant data and methods, and to under-
stand their strengths and weaknesses  

Interpretation of re-
sults/output and 
Draw & contextualise 
conclusions 

Concern the ability to correctly inter-
pret p-values and dependencies of 
multiple methods, and to align results 
with conclusions and existing knowlege 

Communication and 
Ethical practice  

Cover the ability to present scientific 
work to diverse audiences, and follow 
ethical practices relating to transpar-
ency, rigour and reproducibility  

? 
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EXERCISES 

1 Write down & explain the three principal components of the MR-Bi. 
2 Consider these competencies:  General biology; Bioinformatics tools 

& their use; Web-based computing skills; Command-line skills; Pro-
fessional, ethical, legal & social issues of bioinformatics data; Com-
munication of bioinformatics topics to a range of audiences10. 
Which KSAs (refer to  box above) might include each competence? 

3 Does any competence span more than one KSA? What challenges 
might this bring to course designers and/or instructors? 

The developmental stages 
The Mastery Rubric14 builds on the European Guild Structure, 

which outlines a trajectory from Apprentice, through what’s known 
as the Journeyman stage, ultimately to Master Craftsman (or Master 
Tradesman) status. The MR-Bi differs from this structure by adding 
Novice and Beginner stages; it further distinguishes itself by eliminat-
ing the Master stage and differentiating the Journeyman period into 
early and late stages (designated J1 and J2), as this is generally the 
longest phase of training, and qualitative differences are evident 
between a newly qualified Journeyman and one with, say, 10 or more 
years of experience. Overall, then, the MR-Bi’s trajectory progresses 
from Novice, Beginner and Apprentice, to the proficient J1 Journey-
man, ultimately to the expert, fully independent J2 Journeyman, who 
is deemed subject master and teacher of the next generation(s).  

A closer look at the MR-Bi’s developmental stages  

The stages of the MR-Bi form an evidence-based developmental 
trajectory of increasing cognitive complexity. Learners’ performance, 
behaviours, habits of mind and required level of supervision at each 
stage are observably different on the road to independent practice 
and subject mastery, as outlined in the table below.  

Novice Deals with facts: memorises them, generally 
without questioning; can engage with well-
defined problems, with known solutions (e.g., 
early undergraduate-level thinking) 

Beginner Beginning to understand the uncertainty of 
scientific ‘facts’; uses and applies given tools as 
instructed (e.g., early Master’s-level thinking) 

Apprentice Choooses and applies techniques to given prob-
lems; analyses and contextualises results; seeks 
guidance to improve (e.g., early PhD level) 

Journeyman 1 Newly qualified for independent practice; typi-
cally still requires some supervision to help 
evaluate research results  (e.g., postdoc level) 

Journeyman 2 Fully independent scientific practitioner; exper-
tly analyses, synthesies and evaluates research 
results  (e.g., principal investigator level) 

? 

 
REFLECTIONS  

1 Think of a course you teach or that you’re currently designing. 
2 Considering the table above, can you identify, and explain, the en-

try- and exit-level developmental stage(s) your course targets?   
3 Overall, how many developmental stages does your course span? 

The Performance Level Descriptors (PLDs) 
For each KSA, at each developmental stage, the MR-Bi provides a 

set of PLDs, describing performance and mapping progression as 
learners traverse the trajectory from Novice to Journeyman, gaining 
greater expertise at each level. The PLDs were devised to give a 

broad, high-level guide, to illustrate the types of learner performance, 
behaviour or habits of mind that are characteristic at each stage: they 
generally state what learners can do; however, for comparison, they 
sometimes point to what they can’t yet do. It’s important to note that 
the PLDs aren’t a gold standard of truth, devised by worldwide con-
sensus: they aren’t set in stone or intended to be definitive; hence, if 
deemed more appropriate, instructors could devise other, different 
(and perhaps more detailsed) PLDs, for example to better reflect the 
nature of their own courses or programmes. The PLDs here are in-
tended as a starting point: the idea is that they should be familiar as 
general traits, showing instructors how learner performance typically 
changes as their cognitive skills develop over time.  

By way of example, a Novice is described, here, as someone who 
has basic knowledge, who reads and generally understands – but 
doesn’t question – research results, whose thinking is based on un-
critical acceptance of given information as factual or true. An 
Apprentice is beginning to understand the relative strengths of 
experimental methods, and does appreciate the uncertainty in re-
search results, but still requires some guidance. By contrast, the J2 
Journeyman is a fully independent expert in design and critical evalu-
ation of experimental methods and their results, can solve innovative 
biological problems and can generalise to other systems. 

A closer look at the MR-Bi’s PLDs 

PLDs are examples of concrete, observable learner behaviours that, 
with practice, can be developed over time. They prompt instructors to 
consider what specific learner behaviours will demonstrate particular 
KSAs, and what tasks will elicit these behaviours. They thus clarify what 
instructors need to teach and assess at each developmental stage; 
they also indicate to students what evidence they need to show that 
they’ve ‘achieved’ a given KSA. The table below illustrates how, for KSA 
Identify data relevant to the problem, the PLDs, hence learner 
behaviours, cognitive skills and independence, change at each stage. 

Example PLDs, showing independence evolving across stages 

Novice Uses data, as directed. Doesn’t find relevant 
data; can’t describe what makes data or a given 
data-resource ‘relevant’ to a given problem 

Apprentice Can search for data and will ask if unsure about 
the relevance to a given problem. Learning how 
to identify (and evaluate strengths/weaknesses 
of) data-resources, to determine their relevance 
for a given problem. With guidance, learning how 
to use these to address given research problems 

Journeyman 2 Identifies data that are directly relevant to a 
problem of own or others’ devising. Consistently 
identifies (and evaluates strengths/weaknesses 
of) a variety of data-resources that can address a 
problem or help to formulate it more clearly; rec-
ognises if the necessary data don’t yet exist 

? 

 
REFLECTIONS  

1 Review the PLDs for KSA Identify data relevant to the problem in the 
table above – refer to Table 2 for more details. 

2 In what ways do you think the Novice changes en route to Appren-
tice level in terms of independent thought and practice?  

3 Consider the same question for KSA PK, computational methods.  

3.2 Bloom’s taxonomy in the context of the MR-Bi  
Although the concepts of Novice, Beginner and Apprentice may be 

broadly familiar to many readers, it’s likely that the concept of 
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Journeyman is not. To try to make these developmental stages more 
concrete in terms of what they mean, or how they relate to cognitive 
complexity, or academic stage, each can be mapped to a specific 
level, or levels, of Bloom’s taxonomy21.  

Bloom’s taxonomy of cognitive complexity 
Created in 1956, Bloom’s taxonomy is a widely used classification 

of cognitive skills. It features a six-level hierarchy of increasing 
complexity, ranging from the basic skill of remembering (being able 
to recall facts and basic concepts) to the advanced skill of evaluating 
(being able to defend opinions or decisions). There has been some 
debate about the order of the final two levels of the hierarchy (does 
synthesising or does evaluating represent the pinnacle of cognitive 
skills?)22; however, leaving the minutiae aside for the sake of 
simplicity, the original hierarchy is illustrated in Figure 2.  

Figure 2 The six-level hierarchy of Bloom’s taxonomy of cognitive com-
plexity. Remembering information sits at the bottom & evaluation at the 
top of the hierarchy of thinking skills. Associated with each level is a set 
of verbs (only a sample is shown here) that express observable & hence 

measurable learner behaviours characteristic of that level. 

As shown in the Figure, each Bloom’s level is accompanied by a set 
of active verbs that express expected, measurable learner behaviours 
at that level: e.g., achieving the level understand means to be able to 
classify, select or explain a piece of information: here, classify, select, 
explain are observable learner behaviours that may be readily 
assessed by an instructor.  

Typical illustrations of the taxonomy, like Figure 2, depict succes-
sive discrete levels, suggesting a fixed, step-wise developmental tra-
jectory from lower- to higher-order critical-thinking skills. However, 
as mentioned above, an alternative version22 places synthesise (the 
ability to create new or original work) at the top of the hierarchy; the 
structure shouldn’t therefore be regarded as completely rigid. It’s 
helpful instead to regard the taxonomy as a continuum of cognitive 
levels (hence the spectral colours used in Figures 2 and 3, and in Table 
1), where each merges into the next, providing a structured tool in 
which cognitive complexity is made explicit through a set of observa-
ble, assessable learner behaviours. Indeed, some qualification frame-
works, such as the Dublin Descriptors, elide successive Bloom’s levels 
(Knowledge and understanding, Applying knowledge and understand-
ing, etc.) to clarify or simplify the relationships between them23.  

Bloom’s, the MR-Bi stages & academic progression 
Because the MR-Bi explicitly outlines a developmental trajectory 

(albeit with five stages rather than six), it’s relatively straightforward 

to relate its stages to Bloom’s levels. Moreover, as Bloom’s is widely 
used in the development of education programmes, we can consider 
how the stages of the MR-Bi, in tandem with Bloom’s levels, might 
relate to traditional stages of academic progression – Table 1. 

Table 1 Relationship between stages of the MR-Bi, Bloom’s cognitive 
levels & academic stages. Some typical characteristics of learners at 

each stage are described in the right-hand column. 

MR-Bi 
stage 

Bloom’s 
level 

Academic 
stage 

Typical learner 
traits at this level 

  
REFLECTIONS 

1 Consider Table 1. In what ways do you think the Novice changes en 
route to Apprentice level in terms of critical thinking?  

2 Are these changes evident within the PLDs for KSAs Identify data 
relevant to the problem and PK, computational methods? 

We can now frame these basic elements within the complete MR-
Bi, which is presented in Table 2. The structure is the same as that in 
Figure 1, but includes a general description (broadly tracking the typ-
ical development of a student progressing through university) in the 
first row, and a description of the requisite Bloom’s level in the sec-
ond; these are followed by the KSAs and PLDs at each stage.  
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Table 2 The complete Mastery Rubric for Bioinformatics (MR-Bi). PLDs are shown at each stage for each KSA; they are preceded by general descriptions of a 
bioinformatics practitioner at each stage & a set of considerations for evidence of performance at the requisite Bloom’s level. 

 Novice Beginner Apprentice J1 
Journeyman 

J2 
Journeyman 

General description of 
a bioinformatics prac-
titioner 

Reads, generally under-
stands, but doesn’t 
question, life science re-
search results. Begin-
ning to recognise that 
‘facts’ are actually just 
the best-currently-sup-
ported theory. Limited 
engagement with uncer-
tainty associated with 
‘facts’; developing un-
derstanding of experi-
mental design para-
digms in biology, & own 
specific area of study.  

Consolidates reading & 
understanding, begin-
ning to learn how to an-
alyse given biology prob-
lems (with software). 
Growing recognition 
that ‘facts’ are typically 
the best-currently-sup-
ported theory. Engaging 
consistently with uncer-
tainty associated with 
‘facts’; deepening un-
derstanding of experi-
mental design para-
digms in biology, & own 
specific area of study.  

Reads & understands; relia-
bly identifies methods (soft-
ware & programming) for 
given problems. Chooses & 
executes correct analysis, 
but not necessarily able to 
identify several methods 
that could be equally viable, 
depending on given re-
search objectives. Qualified 
as a fluent, but not as an in-
dependent, scientist who 
uses bioinformatics as a 
tool, but doesn’t yet synthe-
sise technology with biology 
to generate new research 
problems. 

Qualified as a proficient, 
independent scientist who 
uses bioinformatics meth-
odologies as part of 
routine practice. Can pose 
novel scientific questions; 
identifies data & technol-
ogy to align appropriate 
statistical/analytical meth-
ods to desired scientific 
objectives. Experienced 
reviewer of technical fea-
tures of bioinformatics 
methods. Newly inde-
pendent, able to integrate 
bioinformatics techniques 
into novel research prob-
lems in area of expertise. 

Independent scientist who 
expertly integrates bioinfor-
matics & more traditional 
methodologies, as needed, 
to achieve desired objec-
tives & contribute to the 
body of knowledge. Expert 
reviewer of relevant tech-
nical features of available bi-
oinformatics options. 

Considerations for ev-
idence of perfor-
mance at this level 

Bloom’s 1, early 2: re-
member, understand. 
Can engage with well-
defined problems, with 
known solutions. Work 
doesn’t generally reflect 
self-assessment. 

Bloom’s 2-3: under-
stand, apply.  Can en-
gage with well-defined 
problems. Applies only 
what he/she is told to 
apply. Work reflects 
some self-assessment, 
when directed to do so. 

Bloom’s 3-4, early 5: apply, 
analyse, synthesise. Can 
choose & apply techniques 
to problems that have been 
defined (by or with others). 
Can analyse & interpret ap-
propriate data, identify 
basic limitations & concep-
tualise a need for next 
steps, & for contextualisa-
tion of results with the liter-
ature. Seeks guidance to im-
prove self-assessment. 

Bloom’s 5, early 6: evalu-
ate, synthesise. Evaluates 
life-science knowledge, 
while developing abilities 
to integrate bioinformatics 
into research practice. 
Shows independent exper-
tise in a specific life-sci-
ence area, & confidently 
integrates bioinformatics 
technology into that area. 
Beginning to critically eval-
uate experimental para-
digms & their results, 
without requiring there to 
be ‘one right answer’. 
Consistently self-assesses. 

Bloom’s 6: evaluate. Pre-
pared for independent sci-
entific work. Expert in de-
sign & critical evaluation of 
experimental paradigms & 
their results. Consistently 
self-assesses, & encourages 
others to develop this skill. 

Ethical practice 
Exhibits respect for 
community standards/ 
rules for public behav-
iour & personal interac-
tion. Learning to recog-
nise, & show respect 
for, intellectual prop-
erty, professional ac-
countability & scientific 
contributions. 

Learning to recognise 
scientific ‘misconduct’ . 
Learning to avoid, & 
respond to, misconduct, 
& the importance of 
neither condoning nor 
promoting it. 

Learning the principles of 
ethical professional & 
scientific conduct. Seeks 
guidance to strengthen 
applications of these 
principles in own practice. 
Learning how to respond to 
unethical practice. 

Practices bioinformatics in 
an ethical way, & doesn’t 
promote or tolerate 
professional or scientific 
misconduct. Seeks guid-
ance in how/when to take 
appropriate action when 
aware of unethical prac-
tices by others. 

Practices, & encourages all 
others to practice, 
bioinformatics in an ethical 
way. Doesn’t promote or 
tolerate professional or sci-
entific misconduct. Takes 
appropriate action when 
aware of unethical practices 
by others. 

Prerequisite 
knowledge – biology 
(includes statistical 
inference & experi-
mental design consid-
erations) 

Basic knowledge of biol-
ogy; little-to-no aware-
ness of the uncertainty 
inherent in experi-
mental designs common 
in the life sciences. 
Thinking about the life 
sciences is based on un-
critical acceptance of in-
formation as ‘factual’ or 
‘true’. 

Advanced knowledge of 
biology, & basic 
knowledge of key bioin-
formatics methods. Can 
run very simple statis-
tics/programs to answer 
pre-defined scientific 
questions. Learning to 
understand the uncer-
tainty inherent in the 
scientific method; ques-
tions assumptions in the 
data & their relevance 
for given scientific prob-
lems (which are defined 
by others). 

Integrates experimental & 
bioinformatics/technologi-
cal sources of data & 
knowledge. Understands 
the uncertainty inherent in 
the scientific method; ques-
tions assumptions in the 
data & their relevance for 
given scientific problems 
(which are typically defined 
by or with others). Exploits 
experimental design & sta-
tistical inference, with guid-
ance, to answer given scien-
tific problems. Recognises 
inconsistencies in biological 
data/experiments identified 
by others, but can’t trouble-
shoot experimental meth-
ods independently. 

Recognises the im-
portance of, & is able to 
critically evaluate, the rel-
evant literature, & under-
stands historical back-
ground of the relevant bi-
ological system(s). Suffi-
cient knowledge of a bio-
logical system(s) to be 
able to draw functional 
conclusions from analyti-
cal results. Collaborates 
with experts to inform the 
next stages in the experi-
mental design process 
(validating results, follow-
up analyses, etc.). 

Makes predictions to inform 
next stages of the experi-
mental design process. Eval-
uates relevant experimental 
methods that can be applied 
in any problem. Can gener-
alise to other biological sys-
tems; independently solves 
biological problems that are 
innovative & move the field 
forward. 
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Prerequisite 
knowledge – 
computational meth-
ods (includes statisti-
cal inference & exper-
imental design con-
siderations) 

Basic knowledge of 
computational methods; 
little-to-no awareness of 
the relevance of compu-
tational methods for life 
sciences. No awareness 
of experimental designs 
or how these can be 
used or implemented in 
computational applica-
tions. Thinking about 
tools, computers, soft-
ware & programming is 
strictly uni-dimensional: 
i.e., extrapolation &/or 
abstraction of 
knowledge about com-
putational methods to 
other systems, pro-
grams or problems 
aren’t possible. Can run 
given software or exe-
cute given code with 
precise instructions; 
can’t write a script or 
debug/troubleshoot. 

Computers, software, 
tools & programming 
are understood to be 
options for scientific 
work. Learning how to 
write & test code, run 
software, or use tools, 
as appropriate. Develop-
ing awareness of the va-
riety of bioinformatics 
tools, designs & re-
sources, but isn’t able to 
choose or apply the 
most appropriate of 
these for any given 
question; when choices 
are made, tools are used 
uncritically. Developing 
awareness that compu-
tational tools require in-
put parameters, but 
uses default settings. 
Learning to read, under-
stand, troubleshoot & 
make minor modifica-
tions to existing code/ 
scripts. Doesn’t synthe-
sise results or outputs. 

Learning to test software & 
programming approaches to 
different types of problem. 
Experimental design & sta-
tistical inference using com-
puting & algorithms are rec-
ognised & applied, with 
guidance, to answer given 
scientific problems. Learn-
ing best practices for pro-
gramming, if programming 
is part of the task. Can write 
basic code in a given lan-
guage or run appropriate 
software, using judgement, 
but not inventing or inno-
vating. Can’t troubleshoot 
complex computational 
methods – will ask for guid-
ance. Exploring alternatives 
to default input parameters 
across computational tools. 
Can apply knowledge of 
tools to interpret results & 
output. Seeks guidance in 
synthesis of results or out-
puts.  

Recognises the im-
portance of, & critically 
evaluates & understands, 
historical background of 
the relevant data, data-
bases, algorithms, tools, 
analysis/statistical meth-
ods & computational re-
sources. Can use these & 
justify trade-offs across 
methodologies (e.g., 
which statistical test to ap-
ply & what computational 
methods to use). Collabo-
ratively synthesises & criti-
cally questions analysis re-
sults & output from tools. 
Recognises the iterative 
nature of experiments 
(e.g., bench, data analysis, 
back to bench). Can write 
code/use tools to accom-
plish these, but collabo-
rates with experts for 
identifying & articulating 
biological problems that 
are innovative & move the 
field forward.  

Develops robust, well-docu-
mented, optimised, repro-
ducible code &/or uses tools 
to address biological prob-
lems; moves away from 
standard procedures & inno-
vates to accommodate new 
data types, tools & tech-
niques, as needed. Can gen-
eralise to new coding lan-
guages or software/tools/re-
sources.  

Integrate interdiscipli-
narity 

Doesn’t recognise life 
sciences as requiring in-
tegration of both experi-
mental & computa-
tional/modelling ap-
proaches. Perceives dis-
ciplines as separate; in-
tegration only occurs 
when/as directed. Infor-
mation, ideas & tools 
that are interdisciplinary 
are used without ques-
tion. 

Beginning to think about 
life sciences as requiring 
integration of experi-
mental & computa-
tional/modelling ap-
proaches. Recognises 
that interdisciplinarity is 
needed, but doesn’t 
know how (or when) to 
do it, & requires direc-
tion. Learning the inte-
grating process; learning 
strengths & weaknesses 
of biological & computa-
tional methods, but not 
sufficient to question as-
sumptions from these & 
other disciplines. 

Understands that life sci-
ences integrate both experi-
mental & computa-
tional/modelling ap-
proaches; seeks guidance 
about how & when to inte-
grate. Developing an under-
standing of the strengths & 
weaknesses of biological & 
computational methods, 
beginning to question fun-
damental assumptions from 
these & other disciplines for 
any given scientific problem 
(which is typically defined 
by, or in conjunction with, 
others).  

Collaboratively integrates 
across relevant disciplines 
to address, & solve, inno-
vative biological problems. 
Tests multiple avenues to 
triangluate solutions, with 
minimal guidance. Recog-
nises the roles of interdis-
ciplinary teams in the re-
search process, & the im-
portance of integrating in-
terdisciplinarity early on. 
Works effectively on inter-
disciplinary teams with mi-
nimal guidance.  

Formulates innovative bio-
logical problems that re-
quire interdisciplinary solu-
tions. Integrates methods & 
results to derive & contextu-
alise solutions to biological 
problems. Consistently tests 
multiple avenues to trian-
gluate solutions, while ex-
ploiting relevant findings 
from other disciplines. Ac-
tively builds interdisciplinary 
teams, as needed.  

Define a problem 
based on a critical re-
view of existing 
knowledge 

Can recognise a problem 
that’s explicitly articu-
lated or concretely 
given, but can’t derive 
one. Unaware of the 
depth & breadth of the 
knowledge base that is, 
or could be, relevant for 
the formulation of a 
problem. Doesn’t recog-
nise design features or 
other evidence as the 
basis of/support for 
problem articulation. 
Doesn’t recognise un-
certainty or how this af-
fects the formulation of 
solveable problems.  

Developing awareness 
of the depth & breadth 
of the knowledge base 
that is, or could be, rele-
vant for the formulation 
of a problem. Can’t dif-
ferentiate gaps in own 
knowledge from gaps in 
‘the knowledge base’. 
Developing the ability to 
recognise that uncer-
tainty may have arisen 
in the formulation of so-
lutions to problems.  

Beginning to use, with guid-
ance, the appropriate 
knowledge base to address 
a given problem. Recognises 
the need to consider a 
wider scope of knowledge 
for alternative solutions to a 
problem common across 
contexts or domains. In 
guided critical reviews, 
learning to recognise that 
design features & evidence 
base are important to draw-
ing conclusions. Recognises 
the role of uncertainty in re-
search, & that reproducibil-
ity & potential bias should 
be considered for every re-
sult.  

Can explore & critically re-
view the relevant 
knowledge base, & collab-
oratively articulate a prob-
lem based on that review. 
Reviews include assess-
ment of relevance from 
(potentially) ancillary do-
mains, bias, reproducibil-
ity & rigour; recognises 
when appropriate & inap-
propriate methodology is 
used. Recognises when in-
complete review is pro-
vided (by themselves or 
others). Can discern repro-
ducible from non-repro-
ducible results; can iden-
tify major sources of bias 
in the knowledge base. 

Independently defines & ar-
ticulates theoretical or 
methodological problems 
based on a critical review of 
the relevant knowledge 
base(s). Knows the hall-
marks of questionable re-
search hypotheses & mis-
alignment of testing/statis-
tics with poorly articulated 
research problems; consist-
ently finds & identifies 
sources of bias. Articulates 
when appropriate & inap-
propriate methodology is 
used/reported. Critical re-
view & problem articulation 
integrate diverse discipli-
nary perspectives when ap-
propriate.  

Hypothesis genera-
tion  

When directed, follows 
instructions to test hy-
potheses; doesn’t gen-
erate them & may not 
recognise them without 
explanation. Uses the 
default settings of soft-
ware & other tools, ra-
ther than a hypothesis, 
to guide any analysis. 
Doesn’t question meth-
ods to be used, or 

When directed, uses the 
default settings of soft-
ware, tools or GUI to 
test hypotheses in pre-
planned analyses; 
doesn’t generate testa-
ble hypotheses. Doesn’t 
recognise that hypothe-
ses may be generated & 
tested within the inter-
mediate steps of an 
analysis. Developing the 

With guidance, can leverage 
tools, software, data & 
other technologies 
(GUI/programming) to test 
hypotheses; can generate 
hypotheses based on the 
data or the technology, but 
not on their combination. 
Hypothesis generation pos-
sible in concrete, fully pa-
rameterised problems; de-
veloping the ability to 

Collaboratively integrates 
hypothesis generation into 
the consideration of litera-
ture, data & analysis op-
tions. Seeks appropriate 
guidance in the synthesis 
of data & technology to 
generate novel, testable 
hypotheses. Considers the 
process of hypothesis gen-
eration & testing to be it-
erative, when this is 

Independently generates 
testable hypotheses that are 
scientifically innovative as 
well as feasible (possible for 
economic reasons, time, im-
pact, etc.). In own & others’ 
work, recognises that, & ar-
ticulates how, hypothesis 
generation from planned & 
unplanned analyses differ in 
their evidentiary weight & 
their need for independent 
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assumptions of methods 
that are used. 

understanding that all 
methods involve as-
sumptions. 

identify whether a hypothe-
sis is testable. Learning to 
recognise that experimental 
design & design of soft-
ware/programming solu-
tions include hypothesis 
generation to some extent. 
Developing the abilities to 
identify, & plan to address, 
assumptions that different 
hypotheses necessitate.  

appropriate. Hypothesis 
generation is done with 
consideration of reproduc-
ibility & potential for bias, 
& takes into account the 
most clearly relevant liter-
ature; recognises that 
less-obviously relevant lit-
erature may also be in-
formative for hypothesis 
generation. 

replication. Fully explores all 
relevant knowledge base(s) 
to support rigour & repro-
ducibility, & to avoid bias, in 
the generation of hypothe-
ses. 

Experimental design Can recognise concrete 
features of experiments 
only if they’re de-
scribed/given and they 
match basic design ele-
ments (e.g., dependent, 
independent variables). 
Can’t design data collec-
tion or experiments. Un-
aware of covariates or 
their importance in 
analysis or interpreta-
tion. Doesn’t recognise 
the importance of de-
sign, data collection, 
data quality, storage/ 
access, analysis & inter-
pretation to promote 
rigour & reproducibility 
in experimental design.  

Can identify salient fea-
tures of experiments 
that are dscribed/given, 
if they match previously 
encountered design ele-
ments, but can’t derive 
them if they’re not pre-
sent. Recognises covari-
ates if mentioned, but 
doesn’t require formal 
consideration (or justifi-
cation) or evaluation of 
covariates. Doesn’t rec-
ognise that one experi-
ment alone can’t ade-
quately address mean-
ingful biological research 
problems. Understands 
that experimental de-
sign involves identifying, 
gathering, storing, ana-
lysing, interpreting & in-
tegrating data & results. 

Can match the correct data-
collection design to the in-
struments & outcomes of 
interest. May include/ex-
clude covariates, or other 
design features, ‘because 
that is what’s done’, with-
out being able to justify 
their roles in the hypothe-
ses to be tested. Developing 
an understanding that weak 
experimental design yields 
weak data & results. Needs 
help in conceptualising co-
variates & their potential 
roles in planned analyses. 
Beginning to recognise that, 
& can explain why, one 
study is usually insufficient 
to answer given research 
problems/solve biological 
problems adequately. Fol-
lows templates for identify-
ing, gathering, storing, ana-
lysing, interpreting & inte-
grating data. Learning to 
consider reproducibility & 
rigour in experimental de-
sign, & to question tem-
plates that do/don’t include 
these concepts. 

Recognising that explicit 
attention to experimental 
design will result in more 
informative data; designs 
experiments in consulta-
tion with experts in con-
tent & statistics: these ex-
periments may include 
power calculation consid-
erations, if relevant; mod-
elling requirements; meas-
urement/sampling error & 
missing data. Collabora-
tively designs experiments 
that address the need for 
reproducibility & sensitiv-
ity analysis. Learning to 
conceptualise pilot studies 
& sensitivity analyses. 
Learning to adapt prob-
lems so that hypotheses 
can be generated & made 
testable via experiments. 

 

Independently designs ap-
propriate & reproducible ex-
periments & other data-col-
lection projects, using meth-
odologies that are aligned 
with the testing of specific 
hypotheses. Consistently 
identifies & justifies choices 
of instruments & outcomes 
(& covariates if relevant). 
Collaborates with experts as 
needed on appropriate use 
of advanced methods, in-
cluding accommodating 
measurement & sampling 
error, attrition (if needed) & 
modelling requirements; 
can adapt complex prob-
lems so that hypotheses can 
be generated & made testa-
ble via experiments. Under-
stands, & can exploit the 
strengths & weaknesses of, 
experimental design, data & 
modelling approaches with 
respect to the biological 
problem under considera-
tion. Uses pilot studies & 
sensitivity analyses approp-
riately. 

Identify data relevant 
to the problem 

Uses data, as directed. 
Doesn’t find relevant 
data; can’t describe 
what makes data or a 
given data-resource rel-
evant to a given prob-
lem. 
 

Correctly uses data that 
are provided, or can fol-
low a script/’recipe’ to 
obtain (access, manage) 
relevant data to which 
they’re guided. Can’t de-
termine whether a given 
data-set or -type is rele-
vant for a given prob-
lem, but is developing 
an awareness that not 
all data are equally rele-
vant, or equally well 
suited, to all research 
problems. Developing 
awareness of the fea-
tures of data/data-re-
sources that constitute 
‘relevance’, & that these 
features must be as-
sessed before choosing 
data to use. 

Can initiate a search for 
data & will ask if uncertain 
about the relevance for any 
given problem. Learning 
how to identify, & evaluate 
strengths & weaknesses of, 
data-resources, to deter-
mine whether a given data-
set or data-type is relevant 
for a given problem; &, with 
guidance, learning how to 
leverage these to address 
given research problems. 
Learning how reproducibil-
ity can be affected by the 
choice (& features) of data. 

Collaboratively identifies 
relevant data-resources. 
Understands the relative 
strengths & weaknesses of 
data-sets & -types for ad-
dressing a specific prob-
lem. Learning to address & 
formulate scientific prob-
lems (based on recognised 
gaps in the knowledge 
base) using relevant data-
resources. In own & oth-
ers’ work, recognises that, 
& articulates how, choices 
for data (collection or use) 
require assumptions & jus-
tification, & must yield 
reproducible results. 

Identifies data that are rele-
vant to a problem. Consist-
ently identifies, & evaluates 
strengths & weaknesses of, 
data-resources that can ad-
dress a problem or help to 
formulate it more clearly; 
recognises if the necessary 
data don’t yet exist. Justifies 
the relevance of data-sets to 
a problem in terms of their 
individual strengths & weak-
nesses. Articulates hypothe-
ses, & designs experiments, 
that leverage strengths in 
the data; includes triangu-
lating data or results to ad-
dress weaknesses in the 
data. Identifies whether 
data appropriate to the spe-
cific scientific question were 
used when reviewing pro-
posals, protocols, manu-
scripts &/or other documen-
tation describing data & re-
search results. 
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Identify & use appro-
priate analytical 
methods 

Uses methods that are 
provided & in a given or-
der (i.e., a pipeline; & 
treats workflows* as if 
they’re pipelines). 
Doesn’t identify relevant 
methods; can’t describe 
what makes a method 
relevant to a given prob-
lem. Unaware that 
methods & software 
have default settings. 
Doesn’t question propri-
ety, assumptions or the 
order of methods em-
ployed; focus is on the 
superficial attributes of 
given methods & proto-
cols.  

Uses methods as di-
rected, & learning about 
the concepts of pipe-
lines & workflows; still 
uses workflows as if 
they’re pipelines, but 
beginning to attend to 
decision points. Learning 
to recognise pros & cons 
of methods/software, 
but can’t yet effectively 
compare, evaluate or 
rank them. Becoming 
aware of default settings 
of software or methods 
& their effects on re-
sults; & beginning to ex-
plore & enquire about 
tailored settings. Under-
stands that more than 
one method/tool may 
be available to deal with 
a problem or data-type, 
but can’t choose effec-
tively. Learning about 
similarities & differences 
across methods, & that 
choices (particularly of 
multiple methodologies 
for one question) should 
leverage independence 
of methods to support 
reproducible results. 

Can identify methods, soft-
ware & pipelines that are 
relevant for a given prob-
lem; seeks guidance about 
the best approach. Learning 
to evaluate/rank & justify 
alternative methods in 
terms of general features of 
their efficiency & relevance 
for the given research prob-
lem. Beginning to recognise 
that a ‘pipeline’ involves 
only the choice of which 
method(s) to use; while a 
‘workflow’ requires many 
choices & decisions. With 
guidance, seeks to identify 
& implement appropriate 
workflows to address given 
research problems. Learning 
how reproducibility can be 
affected by the choice & im-
plementation of methods, 
including independent repli-
cation of essentially the 
same method vs. independ-
ent replication using diverse 
methods. 

Collaboratively considers 
the knowledge base, & 
features of the relevant 
data & analysis options, in 
identifying the most ap-
propriate approach(es) to 
tackle a scientific ques-
tion. Uses appropriate an-
alytic methods, pipelines 
& workflows, recognising, 
& taking advantage of the 
fact, that these may repre-
sent distinct approaches 
to the same problem. 
Knows when & how to 
control False Discovery 
Rates (FDR) to promote 
reproducible results 
across methods. In own & 
others’ work, recognises 
that, & articulates how, 
choices for methods, pipe-
lines & workflows require 
assumptions & justifica-
tion, & must yield 
reproducible results. 
 

Recognises if/when the nec-
essary methods, pipelines & 
workflows to tackle a scien-
tific question don’t yet exist. 
Consistently controls FDR to 
promote reproducible re-
sults. Identifies whether ap-
propriate analytical meth-
ods were used when review-
ing proposals, protocols, 
manuscripts &/or other doc-
umentation describing 
methods, pipelines, work-
flows & research results. 
 

Interpretation of re-
sults/output 

Treats the output of a 
program as the final/ 
complete result – with 
no interpretation re-
quired – & is unaware of 
the concepts of valida-
tion & cross-validation 
or their importance for 
interpretation of re-
sults/output. Uses the p-
value to indicate ‘truth’ 
in statistical analysis. 
Over-interpretation is 
typical. Unaware of the 
importance of FDR con-
trols. Doesn’t seek co-
herence in/recognise in-
coherence of results 
with the analysis plan or 
pipeline; can’t align 
methods, results & in-
terpretation. 

Interpretation of results 
depends on p-values, 
but understanding of p-
values is incomplete. 
Learning to recognise 
that interpretation of 
output critically depends 
on methods used & the 
pipeline in which the re-
sults are obtained. De-
veloping awareness of 
FDR controls. Learning 
that the interpretation 
of immediate results 
could be an interim step 
in an overall problem-
solving context.  

Seeks guidance to interpret 
results/output, including 
considerations of alignment 
of methods & results. Un-
derstands that the p-value 
represents evidence about 
the null hypothesis, not the 
study hypothesis, but 
doesn’t consistently avoid 
reification. Recognises that, 
but doesn’t always act as if, 
very small p-values are not 
‘highly significant results’. 
Can apply FDR controls, but 
does so only when re-
minded/required. Recog-
nises when the interpreta-
tion of immediate results is 
an interim step in an overall 
problem-solving context. 
 

Can discern, based on re-
sults, methods & hypothe-
ses, whether more experi-
ments &/or data-pro-
cessing are required for 
robust result interpreta-
tion; collaboratively uses 
the appropriate 
knowledge base & data-
resources to interpret re-
sults; resists reification & 
is committed to good-faith 
efforts to falsify hypothe-
ses. Consistently & ap-
propriately uses FDR con-
trols.  

Interprets results critically & 
with respect to the analysis 
plan; seeks/promotes align-
ment of methods, results & 
interpretation. Prioritises in-
terpretable & reproducible 
results above any other out-
come (e.g., publication or 
completion of tasks/pro-
ject), & insists on FDR con-
trols & other sensitivity 
analyses in all work. Avoids 
problems that can arise in 
interpreting results, includ-
ing bias, reification & other 
failures of positivism. Evalu-
ates the quality & appropri-
ateness of procedures, sta-
tistical analyses & models 
when reviewing papers & 
projects/proposals, based 
on the writers’ – & own – in-
terpretation of results.   

Draw & contextualise 
conclusions 

Doesn’t draw appropri-
ate conclusions from 
given results; without 
direction, will not even 
contextualise conclu-
sions with the protocol 
that was followed. Not 
aware of the difference 
between conclusions 
about the null hypothe-
sis & those about the re-
search hypothesis. Con-
clusions may over- or 
understate results & be 
driven by p-values or 
other superficial cues. 
Doesn’t recognise the 
importance of identify-
ing & acknowledging 
methodological limita-
tions, or their implica-
tions, for conclusions.  

Learning fundamentals 
of how appropriate con-
clusions are drawn from 
results, but may not be 
able to draw those con-
clusions from given re-
sults themselves. Learn-
ing to differentiate be-
tween conclusions about 
the null hypothesis & 
those about the re-
search hypothesis. 
Learning why p-value-
driven conclusions, & 
the lack of FDR controls, 
are not conducive to re-
producible work. Con-
clusions are generally 
aligned with given re-
sults, but when multiple 
methods are used, 
doesn’t recognise the 

With guidance, can draw 
conclusions in own work 
that are coherent with the 
research hypothesis/hypo-
theses & across the entire 
manuscript/write-up (as ap-
propriate). Learning to criti-
cally contextualise results; 
draws the most obvious 
conclusions, but struggles to 
see patterns, or draw more 
subtle conclusions. Learning 
that ‘full’ contextualisation 
of conclusions requires con-
sideration of limitations de-
riving from methods & their 
applications, & their effects 
on results & conclusions. 
Learning to recognise how 
independence of multiple 
methods applied to similar 

Can extract scientific 
meaning from data analy-
sis & knows the difference 
between statistical & bio-
logical significance. In own 
& others’ work, seeks 
competing, plausible alter-
native conclusions. Can 
judge the scientific im-
portance of results, & 
draw conclusions accord-
ingly. Can draw conclu-
sions & contextualise re-
sults with respect to an 
entire manuscript/write-
up in a given project or 
study, or to the literature 
(as appropriate). Can de-
tect when conclusions 
aren’t aligned with other 
aspects of the work (e.g., 
introduction/background, 

Expertly contextualises re-
sults & conclusions with 
prior literature, across ex-
periments or studies, & 
within any given document 
(e.g., manuscript, write-up). 
Strives to fully contextualise 
conclusions in own work, & 
also requires this in others’ 
work. Draws & contextual-
ises more subtle conclusions 
than at earlier stages. Can 
conceptualise new experi-
ments based on the lack of 
robust &/or defensible con-
clusions in others’ work. 
Carefully considers con-
sistency of conclusions with 
the other parts of own or 
others’ work.  
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Doesn’t, or can’t, apply 
rules of logic to scientific 
arguments, & commits 
logical fallacies when 
drawing conclusions.  

dependencies among 
methods that appear to 
reinforce, but actually 
replicate, results. Con-
clusions are neither fully 
contextualised with the 
rest of a document 
(write-up, paper, etc.) or 
study/experiments/par-
adigm (contextualisation 
for coherence), nor with 
the literature (critical 
contextualisation). 

data/problems supports re-
producible conclusions. 

methods, results). Gives 
careful consideration to 
limitations deriving from 
the method & its applica-
tion in a specific study. 
Sees patterns, & perceives 
more subtle conclusions 
than earlier-stage scien-
tists, & collaborates to 
fully articulate & motivate 
them. Writes the Discus-
sion & Conclusions sec-
tions, including limita-
tions, of own articles, with 
collaboration. 

Communication Doesn’t communicate 
scientific information 
clearly or consistently; is 
unaware of community 
standards for scientific 
communication. Gener-
ally relies on lay sum-
maries to support own 
communication; doesn’t 
recognise that using 
original literature 
strengthens scientific 
communication. Doesn’t 
differentiate appropri-
ate & inappropriate sci-
entific communication, 
nor understand the ethi-
cal implications of each.  

Learning both to recog-
nise the value of clear 
communication, & about 
the role of communica-
tion in sharing & pub-
lishing research, data, 
code, data-management 
protocols, tools & re-
sources. Developing an 
awareness of commu-
nity standards for scien-
tific communication, & 
that these include docu-
menting code, annotat-
ing data & adding appro-
priate metadata. 
Doesn’t adapt communi-
cation to fit the receiver. 
Learning to differentiate 
appropriate & inappro-
priate scientific commu-
nication, but doesn’t yet 
understand that trans-
parency in all communi-
cation represents ethical 
practice, even when the 
desired results have not 
been achieved. 

Understands the roles of 
sharing & publishing re-
search, data, code, data-
management protocols, 
tools & resources in scien-
tific communication. Seeks 
guidance so that own com-
munication is coherent, ac-
curate & consistent with 
community standards (e.g., 
following FAIR‡ principles; 
ensuring socially responsi-
ble science). Learning to 
document code, annotate 
data & add appropriate 
metadata – & the im-
portance of these (as appro-
priate given their re-
search/context) for sharing 
& integration. Learning the 
importance of adapting 
communication to fit the re-
ceiver, seeking opportuni-
ties to practice this. Learn-
ing that transparency in all 
communication represents 
ethical practice, even when 
the desired results have not 
been achieved. 

Consistently & proficiently 
uses technical language to 
correctly describe what 
was done, why & how. 
Sufficient consideration 
given to limitations, with 
explicit contextualisation 
of results consistently in-
cluded in the communica-
tion of results & their in-
terpretation. Adapts com-
munication to fit the re-
ceiver; recognises that 
sometimes communica-
tion must be consistent 
with community standards 
beyond own discipline. 
Appropriately documents/ 
annotates all data, code, 
tools & resources for shar-
ing, integration & re-use. 
Understands that transpa-
rency in all communica-
tion represents ethical 
practice.  

Expert communicator & re-
viewer of scientific commu-
nication; adheres to, & pro-
motes, disciplinary stand-
ards for communication. 
Communicates in a manner 
that is consistent with 
standards across communi-
ties beyond own discipline, 
as appropriate. Ensures 
communication is appropri-
ate for a target audience, 
expertly adapting to fit the 
receiver(s). Communication 
is transparent, & appropri-
ate to support reproducibil-
ity – &, thereby, ethical 
practice – in every context.  
 

*Workflows support decisions: they aren’t necessarily linear, but can be multi-directional and iterative; any point can be iterated, or new starts from within the workflow can 
be made. Pipelines are uni-directional, not iterative, and don’t have decision points. Pipelines can exist within workflows, but workflows don’t exist in pipelines. 
‡ FAIR: Findable, Accessible, Interoperable, Reusable. 

 

Clearly, there’s a lot to digest in Table 2, and readers are not ex-
pected to assimilate all the details; rather, the MR-Bi should be seen 
as a multi-functional tool, from which users may select, and focus on, 
only those parts that are required to achieve a given purpose (more 
guidance on using the MR-Bi is available in the companion Guide, Us-
ing the Mastery Rubric for Bioinformatics – a Professional Guide20).  

For now, without getting too distracted by the details, we can make 
a few key observations. Note, for example, how the PLDs evolve be-
tween stages, how the need for guidance diminishes along the route 
to independent thought and practice, and how the sense of self-
awareness changes: e.g., Novices have gaps in their knowledge, but 
generally lack awareness of them, while Beginners are starting to rec-
ognise that gaps exist – both need guidance; Apprentices do recog-
nise limits to their knowledge, and will actively seek help to try to ad-
dress them, while Journeymen strategically seek to collaborate with 
those whose expertise complements their own. These general cate-
gorisations, or stages, broadly map to recognisable steps along the 
academic trajectory, from undergraduate to principal investigator. 
Note also how the KSAs are heavily influenced by core aspects of the 
scientific method and scientific reasoning; hence, the MR-Bi doesn’t 
focus on subject-specific content (R or Ruby programming, using 
BLAST, ClustalO, Galaxy, etc.), but does seek to move learners to-
wards independent scientific practice. 

The overall structure of the MR-Bi is summarised in Figure 3. The 
figure illustrates how each developmental stage builds, layer upon 
layer, onto the next in terms of cognitive complexity (advancing from 
Bloom’s level 1 to level 6) as a learner progresses from less to more 
expert, from Novice (outermost layer) to independent scientist (in-
nermost layer). Beneath each layer (not shown) are the PLDs that de-
scribe learner performance for each KSA at each level, as detailed in 
Table 2. Together, the KSAs and their PLDs promote scientific 
problem formulation and problem solving, lending the MR-Bi 
durability and flexibility. 

EXERCISES 
1 Consider your own level of bioinformatics training. For each KSA, 

write down the stage that most appropriately reflects your level of 
expertise (reviewing the PLDs in Table 2 might help you do this). 

2 Alternatively, examine the high-level summary shown in Figure 3. 
On the figure, for each KSA, tick the stage with which you identify.  

3 Are there KSAs in which you are less proficient? If so, can you pin-
point the type of training or practice that might help you progress 
to a higher level of accomplishment for that, or those, KSA(s)?  

4 If you supervise Master’s or PhD students, how might this approach 
be used to identify their training needs? 
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Figure 3 Overview of the structure of the MR-Bi. 12 KSAs (outermost labels) are encapsulated, together with a developmental trajectory, from Novice 
(outer circle) to late Journeyman (inner circle). The stages broadly map to the continuum of Bloom’s levels, B1-B6 (denoted by the blending of each spec-
tral colour into the next) & to familiar stages of academic progression, from undergraduate, Master’s & PhD (which require considerable supervision) to 
the increasingly independent Post Doctoral Fellow (PDF), & thereafter to Principal Investigator (PI) & subject mastery. The structure is highly adaptable 

to other disciplines because only two of its KSAs are discipline-specific, so these alone would need altering to focus the Rubric on closely related subjects.

4 Discussion  

A Mastery Rubric is an organising framework that both articulates 
KSAs, and describes and stages their performance levels such that 
they can be achieved progressively. As we’ve seen, the framework 
has three components: i) a set of domain-relevant, transferable KSAs; 
ii) a set of developmental stages denoting progression along a path of 
increasing cognitive complexity, towards independence; and iii) de-
scriptions of the range of expected KSA performance levels. 

The interplay between these elements affords the Mastery Rubric 
significant flexibility: it facilitates consistent evaluation of perfor-
mance of any given KSA, and recognises that individuals may be at 
different levels in different KSAs, and may progress through them at 
different speeds. This allows individuals wishing to acquire bioinfor-
matics skills to locate themselves within the table, regardless of their 
current skill level or disciplinary background: e.g., a person may con-
sider him/herself a J2 Journeyman in the life sciences, yet a Novice in 
computational methods. Importantly, then, the MR-Bi can pinpoint a 
learner’s stage (hence current level of performance of any KSA), and 
also explicitly highlight a route(s) for self-directed learning, from 
lower-level skills to higher levels of achievement. This feature can also 
be exploited by instructors, who may have a mix of students within 
their class with different aptitudes, some at Novice and some at Be-
ginner level of cognitive complexity, with others perhaps even at Ap-
prentice level. Such understanding can help instructors to pitch, and 
if necessary to adjust, their teaching accordingly.  Similarly, it can help 
mentors to identify, and thence to plug, skills gaps in the doctoral stu-
dents or post-doctoral researchers under their supervision. 

 Being built on core scientific-method-related KSAs, the MR-Bi is 
essentially a standard framework that’s readily adaptable to related 
disciplines simply by changing the discipline-specific KSAs. So, for 

example, if an instructor wished to develop a Mastery Rubric for a 
closely related discipline – say, health informatics – the resulting 
Rubric would have virtually the same KSAs, but with Prerequisite 
knowledge of biology replaced by Prerequisite knowledge of health 
sciences. The PLDs in that Mastery Rubric would then be tailored to 
describe development of the health-informatics practitioner.   

Elaborating any kind of framework to support the development of 
skills or competencies is challenging: the task involves multiple 
stakeholders, from different backgrounds, with diverse perspectives 
and disparate educational goals. One of the challenges is the lack of 
a standard vocabulary: some frameworks refer to knowledge, skills 
and attitudes24, others refer to knowledge, skills and behaviours25, 
while the MR-Bi describes knowledge, skills and abilities19. In the 
latter, abilities is the preferred term because these are considered 
more tangible and observable than, say, attitudes. The box below 
clarifies the distinction between knowledge, skills and abilities.  

A closer look at knowledge, skills & abilities  

The terms knowledge, skills and abilities can be confusing: indeed, 
the distinction between skills and abilities can be especially troubling, 
as these are often used interchangeably. Accepting that many differ-
ent definitions exist, the simple working guide below can help to un-
derstand their meaning in the context of the MR-Bi, where emphasis 
is placed on what can be reliably observed and hence measured.  

Knowledge The conceptual or theoretical understanding of 
facts or information 

Skills The practical execution of particular tasks or ac-
tions 

Abilities The efficacy with which (i.e., how well) know-
ledge is put into action or skills are performed, 
given time, energy, motivation and practice 

? 
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In addition, as we saw earlier, the MR-Bi’s KSAs are much broader, 
higher-level concepts than the knowledge, skills and abilities/ 
attitudes/behaviours and competencies encapsulated in other 
frameworks: e.g., Mulder et al.10 define 16 core bioinformatics 
competencies, including command-line and scripting skills, Web-
based computing skills, creating software systems, defining 
computing requirements, etc.; while Matser et al.25 describe ~30 fine-
grained competencies, including knowledge of operating systems, 
writing/adapting computer programs and scripts, parallel program-
ming, installing simulation software, etc. Many of these competen-
cies are encapsulated implicitly in the MR-Bi’s broader KSAs (here, for 
example, the ‘parent’ KSA would be PK, computational methods).  

Together, the PLDs and KSAs focus on fostering independent 
scientific practice and developing critical-thinking skills. This empha-
sis obviates the need either to enumerate all possible subject-specific 
competencies (the details of which are likely to change over time) or 
to articulate individual profiles (personae) for particular types of 
practitioner in different settings – in the workplace, individuals will 
practice bioinformatics in very different ways according to a vast 
array of possible roles; trying to describe unique personae for all such 
roles is therefore likely to be a relentlessly challenging task (the issues 
surrounding the robustness, authenticity and scalability of personae 
in the field of informatics are well-documented26).  

Nevertheless, understanding the MR-Bi and its applications still 
requires thought and time. Because it was developed as a tool for 
curriculum development, it may be difficult to see how it can be used 
to design short training courses. Here, however, it can help 
instructors to focus on prerequisite knowledge and teaching goals 
(and requisite learning outcomes) that are time-limited; with its 
explicit developmental trajectory, it can also be used to direct 
individuals’ acquisition of new, or to deepen existing, skills: i.e., it can 
help learners recognise their own training needs, identify targeted 
training opportunities, and thus track their professional development 
from their current to a higher level of performance.  

It’s worth making one last point about the MR-Bi’s developmental 
trajectory. At the top of the learning tree is the J2 Journeyman, an 
independent scientist who, via years of training, has become a disci-
pline expert or subject ‘master’. These professionals (like the Guilds’ 
Master Craftsmen) are generally charged with teaching students (the 
Novices, Beginners and Apprentices) and likely also with mentoring 
doctoral students and postdocs (the J1 Journeymen). However, many 
of these individuals will never have been taught how to teach: as 
qualified experts, it’s traditionally been assumed (and thus expected) 
that they’re intuitively equipped to convey their mastery to classes 
full of eager students, or to labs full of enthusiastic researchers.  

Recently, the tide has been turning against this assumption, with 
growing recognition that teaching is itself a skill needing to be taught 
and nurtured. Reflecting this notion, Mastery Rubrics treat ‘subject 
mastery’ separately from the ‘Master Level’, for which a unique 
Mastery Rubric for the Master Level (MR-ML) has been created, fo-
cusing on teaching and learning about teaching and learning27. It isn’t 
in scope to discuss the MR-ML here; suffice it to say that it articulates 
five KSAs (including setting teaching and learning goals, designing 
learning experiences, and evaluating teaching) at developmental 
levels Apprentice Master, Journeyman Master and Master. Those 
wishing to know more are encouraged to read Tractenberg 202127. 

A closer look at mastery  

The concept of ‘mastery’ has different connotations, according to 
the context and era in which it’s used. The status of master grew from 
medieval trades and crafts, and was ultimately enshrined in the 

European Guild structure. Here, an apprentice would learn a trade 
from a field expert – a master craftsman; having trained with that 
master for several years, and produced a qualifying piece of work, the 
apprentice could be recognised as a journeyman. This afforded the 
individual opportunities to travel across Europe to learn new skills 
from different masters28. After several more years of experience, and 
often the submission of a ‘masterpiece’, approved by the Guild 
masters, journeymen could then be received as master craftsmen29, 
thence able to take on – and teach –  their own apprentices.  

A key outcome of the Guild framework was the creation of univer-
sities at Bologna, Oxford and Paris, which began as guilds of students 
or masters30. The Master’s degree dates back to those European 
universities. Then, an individual who’d earned ‘mastership’ – a master 
– was allowed to teach in any other university. Since then, the Master’s 
degree (and with it, the notion of master and/or mastery) has changed 
significantly. Today, the Master’s often sits as a kind of stepping-stone 
between Batchelor’s and doctoral degrees; and, despite its name, few 
would grant their Master’s students a licence to teach! Nevertheless, 
it’s long been expected that those progressing beyond PhD level will 
teach, because they’ve reached the tops of their fields. Today, subject 
mastery and the ability to teach are recognised as very different skills, 
the latter itself requiring teaching and nurturing in its own right.  

In this Guide, we’ve seen that the MR-Bi provides a framework for 
decision-making and learner progression. The ways in which the tool 
may be used to inform structured approaches to course design is the 
subject of its companion Guide, Using the Mastery Rubric for 
Bioinformatics – a Professional Guide20. 

TAKE HOMES 

1 The MR-Bi maps performance as learners traverse a developmen-
tal trajectory from lower- to higher-order critical-thinking skills; 

2 The tool can be used to assess learner development and to inform 
course design; it can also facilitate self-assessment and hence help 
individuals to recognise their own training needs; 

3 The MR-Bi defines five developmental stages (Novice, Beginner, 
Apprentice, early- and late-Journeyman) on a trajectory to inde-
pendent practice and subject mastery;  

4 The MR-Bi also defines 12 Knowledge, Skills and Abilities (KSAs): 
two of these are discipline-specific; others are based on core ele-
ments of the scientific method and scientific reasoning;  

5 For each KSA, associated Performance Level Descriptors (PLDs) de-
scribe how performance and critical thinking change as learners 
progress through the developmental trajectory;    

6 The developmental stages can be mapped both to specific Bloom’s-
level(s) of cognitive complexity and to broad academic levels; and 

7 The MR-Bi can be adapted to apply to closely related scientific dis-
ciplines simply by changing the discipline-specific KSAs and their 
cognate PLDs. 
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Organisations  

GOBLET 
GOBLET (Global Organisation for Bioinformatics Learning, Educa-

tion & Training; www.mygoblet.org) was established in 2012 as a 
not-for-profit foundation to unite, inspire and equip bioinformatics 
trainers worldwide; its mission, to cultivate the global bioinformatics 
trainer community, set standards and provide high-quality resources 
to support learning, education and training.  

GOBLET’s ethos embraces: 
• inclusivity: welcoming all relevant organisations & people 
• sharing: expertise, best practices, materials, resources 
• openness: using Creative Commons Licences 
• innovation: welcoming imaginative ideas & approaches 
• tolerance: transcending national, political, cultural, social & 

disciplinary boundaries  

For general enquiries, contact info@mygoblet.org. 
• Attwood et al. (2015) GOBLET: the Global Organisation for Bi-

oinformatics Learning, Education & Training. PLoS Comput. 
Biol., 11(5), e1004281.  

• Corpas et al. (2014) The GOBLET training portal: a global 
repository of bioinformatics training materials, courses & 
trainers. Bioinformatics, 31(1), 140-142.  

ELIXIR 
ELIXIR is an intergovernmental organisation that brings together 

life-science resources (databases, software tools, training courses, 
cloud storage, etc.) from across Europe. The aim is to create a single 
infrastructure, making it easier for scientists to find and share data, 
exchange expertise, and agree on best practices: elixir-europe.org. 

Through its Training Platform, ELIXIR is: 
• providing services and tools for bioinformatics training, such 

as the Training e-Support System, TeSS (tess.elixir-uk.org), 
the ELIXIR Training Metrics Database (training-metrics-
dev.elixir-europe.org) and the training Toolkit; 

• supporting training providers across Europe by creating and 
delivering training for developers, researchers and trainers; 

• building a sustainable training infrastructure. 
Since 2015, the ELIXIR Training Platform and GOBLET have worked 

closely to promote and develop standards and best practices in 
bioinformatics training; the outcomes of this enterprise (peer-re-
viewed articles, training documents (Guides), posters, slides) are 
available from the F1000Research Bioinformatics Education & Train-
ing collection (f1000research.com/collections/bioinformaticsedu). 
Together, they have built a Train-the-Trainer (TtT) programme, which 
comprises a standard curriculum, associated training materials and 
well-trained instructors. To date, thousands of scientists have 
benefitted from this programme.  

For general enquiries, contact info@elixir-europe.org. 
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