Resources for training trainers

Introducing the Mastery Rubric for Bioinformatics

PROFESSIONAL GUIDE

Version: 30 June 2022

Introducing the The Mastery Rubric for Bioinformatics

Overview

This Professional Guide introduces the Mastery Rubric for Bioinformatics (MR-Bi), describing its structure and how it maps performance as learners traverse a developmental trajectory from lower- to higher-order critical-thinking skills. The focus here is on understanding the MR-Bi's key elements, and their potential to inform the assessment of learner development and course design.

Teaching Goals & Learning Outcomes

This Guide outlines the principal components of the MR-Bi. On carefully reading this Guide, and engaging with the reflections and exercises, you will be able to:

- *describe* the general structure of the MR-Bi;
- list some of the key Knowledge, Skills and Abilities (KSAs) the MR-Bi was designed to help deliver;
- define the developmental stages of the MR-Bi;
- identify the Bloom's-level(s) of cognitive complexity, and broad academic level(s), compatible with each stage;
- describe how performance and critical thinking change as learners traverse the developmental trajectory;
- identify the KSAs that would need to be modified to adapt the MR-Bi to a closely related scientific discipline(s); and
- pinpoint your own stage of development in some of the requisite KSAs.

1 Introduction

In the last 20 years, life-science education programmes have had to adapt to reflect the increasingly data-intensive nature of the discipline. Yet, data management, data analytics, scripting, and so on are taught relatively rarely in life-science degree programmes, creating a gap between theory and practice, and fuelling demand for bio-informatics training across all educational levels and career roles¹⁻⁶. This has led to the augmentation of some established **curricula** with short bioinformatics courses, and/or to the development of entire bioinformatics degree programmes.

Bioinformatics education and training requires purposeful integration of discipline-specific perspectives and fundamental knowledge (from computational and life sciences), often in limited timeframes^{6,7}. Integrating computational skills and analytical thinking into such courses in systematic and formal ways can therefore be difficult.

To help design education programmes, curriculum guidelines and core bioinformatics **competencies** have been created⁸⁻¹³. Missing from such approaches, however, is often the route (developmental trajectory¹⁴) and time-frame for achieving the competencies; their use in curriculum development has therefore proved challenging¹⁵⁻¹⁸.

To address this issue, a new curriculum-design tool was created: the Mastery Rubric for Bioinformatics (MR-Bi)¹⁹. Unlike conventional **rubrics**, Mastery Rubrics aim to support the development of specific Knowledge, Skills and Abilities (KSAs) along stages in a developmental trajectory (from uninitiated student to independent practitioner) by describing the performance or behaviours typical of learners at each stage. They hence span the full curriculum rather than individual student assignments^{14,19}.

The MR-Bi is a framework that supports bioinformatics curriculum and course design, and self-directed learning. It prioritises the development of independence and scientific reasoning, and is structured to allow individuals (regardless of career stage, disciplinary background, or skill level) to locate themselves within the framework. Based on *The Mastery Rubric for Bioinformatics: a tool to support design and evaluation of career-spanning education and training*¹⁹, this Guide introduces the MR-Bi and forms part of the GOBLET-ELIXIR train-the-trainer resources. Its companion Guide, *Using the Mastery Rubric for Bioinformatics – a Professional Guide*²⁰ offers insights into how to use the tool in practical education and training scenarios.

2 About this Guide

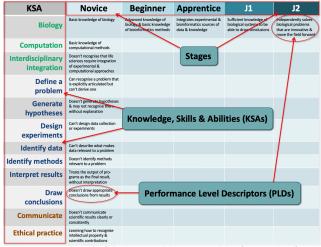
This Guide provides an overview of the principal features of the MR-Bi. Exercises and Reflections are provided to help readers to consider how the MR-Bi can be used to gauge learners' (and indeed their own) levels of performance and to highlight their requisite training needs, and how this knowledge may be used to support their teaching practice and/or course development. Throughout the text, key terms – rendered in **bold** type – are defined in boxes. Additional information is provided in supplementary boxes and figures.

KEY TERMS

- **Competencies:** multi-dimensional, complex, task-specific behaviours that represent what individuals can do when they bring their knowledge, skills & abilities together appropriately, at the right level(s) for the right application, to achieve a given task
- Curriculum: the inventory of tasks involving the design, organisation & planning of an education or training enterprise, including specification of Learning Outcomes (LOS), content, materials & assessments, & arrangements for training teachers & trainers
- Learning Outcome (LO): the KSAs that learners should be able to demonstrate after instruction, the tangible evidence that the teaching goals have been achieved; LOs are *learner-centric*
- Rubric: in education, a tool used to evaluate & grade student work; often presented in tabular form, rubrics generally contain evaluative criteria, qualitative performance descriptions for those criteria at specific achievement levels & an associated scoring system

3 What is the MR-Bi?

Like other rubrics used in education, the MR-Bi is essentially just a table – in fact, it's a very large 12 by 5 matrix! Just as a conventional rubric encapsulates evaluative criteria to help instructors assess student performance at defined achievement levels, so the MR-Bi also contains descriptions of learner performance; here, however, performance is characterised across career-spanning stages of the full academic spectrum rather than focusing on a particular piece of work. This has ramifications for individuals engaging in professional development (whether to augment existing skills or to acquire new ones), for supervisors aiming to upskill their students, and for instructors developing bioinformatics courses or programmes.


Comparison of the MR-Bi with conventional rubrics

Rubrics are routinely used in a range of educational settings. They're generally used as scoring guides to facilitate rigorous and consistent evaluation of learner performance on a given piece of work. Here, we compare and contrast conventional rubrics with the MR-Bi.

Conventional rubrics	MR-Bi
Cover a single assignment or	Covers a full curriculum across the
task during or after a course	entire academic career span
Itemise specific assignment	Itemises discipline- and scientific-
elements for grading (layout,	method-related KSAs for
figures, discussion, grammar)	evaluation
Use scores to help grade	Uses qualitative descriptions to
performance on each element	help assess performance of KSAs
Help learners to identify and	Helps learners to identify their de-
understand what they must do	velopmental stage and hence to
to achieve a certain grade	pinpoint their training needs

3.1 Structure of the MR-Bi

So, what does the MR-Bi look like? The axes of the MR-Bi list i) the KSAs that form the bedrock of bioinformatics as a scientific discipline, and that are hence the focus of instruction; and ii) five stages of a developmental trajectory, from less to more expert (*i.e.*, from a student, new to the field, to an experienced, fully independent scientist). For each KSA, the table's cells give brief descriptions (the Performance Level Descriptors (PLDs)) of how a learner might be expected to perform at each stage and thence to change over time.

Figure 1 *Structure of the MR-Bi.* The *x*-axis outlines five stages of a developmental trajectory, from Novice to Journeyman; the y-axis lists the KSAs to be delivered by a course; the cells describe how a learner might typically perform, & change over time, when traversing the trajectory.

Figure 1 provides a summary of this general structure. Note that, as the figure is an overview, the PLD excerpts shown aren't intended either to be complete or to be fully legible – the entire MR-Bi, including the complete set of PLDs¹⁹, is presented later, in **Table 2**. Let's take a closer look at the MR-Bi's components in turn.

The KSAs

The MR-Bi encapsulates 12 content-/topic-agnostic KSAs. The first two are foundational, discipline-specific KSAs, the rudimentary components of bioinformatics, while the third concerns their integration. Seven other KSAs are based on core elements of the scientific method. The last two reflect the importance of being able to communicate scientific results, and the necessity for sound ethics to underpin all aspects of the scientific enterprise. The full set of KSAs is as follows:

- 1. Prerequisite knowledge, biology
- 2. Prerequisite knowledge, computational methods
- 3. Interdisciplinary integration
- 4. Define a problem based on critical review of existing knowledge
- 5. Hypothesis generation
- 6. Experimental design
- 7. Identify data relevant to the problem
- 8. Identify and use appropriate analytical methods
- 9. Interpretation of results/output
- 10. Draw and contextualise conclusions
- 11. Communication
- 12. Ethical Practice

As the core KSAs relate to generic scientific practice, this structure can be readily customised by changing the discipline-specific KSAs.

A closer look at the MR-Bi's KSAs

The KSAs deliberately aren't restricted to specific facts or content, as tools and topics change quickly. They're broader, higher-level concepts than competencies or KSAs captured in other frameworks, which may drill down, say, to specific scripting skills, programming languages, operating systems, *etc.* The MR-Bi's KSAs provide focal points for building curricula (see table below), making it adaptable and robust.

MR-Bi KSAs	
Prerequisite knowledge (PK), biology and PK, computational methods	Cover the foundational, background knowledge, and basic skills and abilities of biology and computing
Interdisciplinary integration	Concerns the ability to integrate across the bio- and computing domains, and/or other domains
Define a problem based on critical review of exist- ing knowledge	Concerns the application of critical evaluation skills and judgement; aims to promote the ability to identify and solve biological problems
Hypothesis generation and Experimental design	Cover scientific reasoning, statistics, hypothesis testing, methodology and pilot testing
Identify data relevant to the problem and Identify & use appropri- ate analytical methods	Cover the ability to find and use rele- vant data and methods, and to under- stand their strengths and weaknesses
Interpretation of re- sults/output and Draw & contextualise conclusions	Concern the ability to correctly inter- pret <i>p</i> -values and dependencies of multiple methods, and to align results with conclusions and existing knowlege
Communication and Ethical practice	Cover the ability to present scientific work to diverse audiences, and follow ethical practices relating to transpar- ency, rigour and reproducibility

- 1 Write down & explain the three principal components of the MR-Bi.
- 2 Consider these competencies: General biology; Bioinformatics tools & their use; Web-based computing skills; Command-line skills; Professional, ethical, legal & social issues of bioinformatics data; Communication of bioinformatics topics to a range of audiences¹⁰. Which KSAs (refer to box above) might include each competence?
- 3 Does any competence span more than one KSA? What challenges might this bring to course designers and/or instructors?

The developmental stages

The Mastery Rubric¹⁴ builds on the European Guild Structure, which outlines a trajectory from Apprentice, through what's known as the Journeyman stage, ultimately to Master Craftsman (or Master Tradesman) status. The MR-Bi differs from this structure by adding Novice and Beginner stages; it further distinguishes itself by eliminating the Master stage and differentiating the Journeyman period into early and late stages (designated J1 and J2), as this is generally the longest phase of training, and qualitative differences are evident between a newly qualified Journeyman and one with, say, 10 or more years of experience. Overall, then, the MR-Bi's trajectory progresses from Novice, Beginner and Apprentice, to the proficient J1 Journeyman, ultimately to the expert, fully independent J2 Journeyman, who is deemed *subject master* and *teacher of the next generation(s)*.

A closer look at the MR-Bi's developmental stages

The stages of the MR-Bi form an evidence-based developmental trajectory of increasing cognitive complexity. Learners' performance, behaviours, habits of mind and required level of supervision at each stage are observably different on the road to independent practice and subject mastery, as outlined in the table below.

Novice	Deals with <i>facts</i> : memorises them, generally without questioning; can engage with well- defined problems, with known solutions (<i>e.g.</i> , early undergraduate-level thinking)
Beginner	Beginning to understand the uncertainty of scientific 'facts'; uses and applies given tools as instructed (<i>e.g.</i> , early Master's-level thinking)
Apprentice	Choooses and applies techniques to given prob- lems; analyses and contextualises results; seeks guidance to improve (<i>e.g.</i> , early PhD level)
Journeyman 1	Newly qualified for independent practice; typi- cally still requires some supervision to help evaluate research results (e.g., postdoc level)
Journeyman 2	Fully independent scientific practitioner; exper- tly analyses, synthesies and evaluates research results (<i>e.g.</i> , principal investigator level)

REFLECTIONS

Think of a course you teach or that you're currently designing.
 Considering the table above, can you identify, and explain, the entry- and exit-level developmental stage(s) your course targets?
 Overall, how many developmental stages does your course span?

The Performance Level Descriptors (PLDs)

For each KSA, at each developmental stage, the MR-Bi provides a set of PLDs, describing performance and mapping progression as learners traverse the trajectory from Novice to Journeyman, gaining greater expertise at each level. The PLDs were devised to give a

broad, high-level guide, to illustrate the types of learner performance, behaviour or habits of mind that are characteristic at each stage: they generally state what learners *can* do; however, for comparison, they sometimes point to what they can't *yet* do. It's important to note that the PLDs aren't a gold standard of truth, devised by worldwide consensus: they aren't set in stone or intended to be definitive; hence, if deemed more appropriate, instructors could devise other, different (and perhaps more detailsed) PLDs, for example to better reflect the nature of their own courses or programmes. The PLDs here are intended as a starting point: the idea is that they should be familiar as *general* traits, showing instructors how learner performance *typically* changes as their cognitive skills develop over time.

By way of example, a Novice is described, here, as someone who has basic knowledge, who reads and generally understands – but doesn't question – research results, whose thinking is based on uncritical acceptance of given information as factual or true. An Apprentice is beginning to understand the relative strengths of experimental methods, and *does* appreciate the uncertainty in research results, but still requires some guidance. By contrast, the J2 Journeyman is a fully independent expert in design and critical evaluation of experimental methods and their results, can solve innovative biological problems and can generalise to other systems.

A closer look at the MR-Bi's PLDs

PLDs are examples of concrete, observable learner behaviours that, with practice, can be developed over time. They prompt instructors to consider what specific learner behaviours will demonstrate particular KSAs, and what tasks will elicit these behaviours. They thus clarify what instructors need to teach *and* assess at each developmental stage; they also indicate to students what evidence they need to show that they've 'achieved' a given KSA. The table below illustrates how, for KSA *Identify data relevant to the problem*, the PLDs, hence learner behaviours, cognitive skills and independence, change at each stage.

Example PLDs, sh	owing independence evolving across stages
Novice	Uses data, as directed. Doesn't find relevant data; can't describe what makes data or a given data-resource 'relevant' to a given problem
Apprentice	Can search for data and will ask if unsure about the relevance to a given problem. Learning how to identify (and evaluate strengths/weaknesses of) data-resources, to determine their relevance for a given problem. With guidance, learning how to use these to address given research problems
Journeyman 2	Identifies data that are directly relevant to a problem of own or others' devising. Consistently identifies (and evaluates strengths/weaknesses of) a variety of data-resources that can address a problem or help to formulate it more clearly; rec- ognises if the necessary data don't yet exist

REFLECTIONS

- 1 Review the PLDs for KSA *Identify data relevant to the problem* in the table above refer to **Table 2** for more details.
- 2 In what ways do you think the Novice changes en route to Apprentice level in terms of independent thought and practice?
- 3 Consider the same question for KSA PK, computational methods.

3.2 Bloom's taxonomy in the context of the MR-Bi

Although the concepts of Novice, Beginner and Apprentice may be broadly familiar to many readers, it's likely that the concept of Journeyman is not. To try to make these developmental stages more concrete in terms of what they mean, or how they relate to cognitive complexity, or academic stage, each can be mapped to a specific level, or levels, of Bloom's taxonomy²¹.

Bloom's taxonomy of cognitive complexity

Created in 1956, Bloom's taxonomy is a widely used classification of cognitive skills. It features a six-level hierarchy of increasing complexity, ranging from the basic skill of *remembering* (being able to recall facts and basic concepts) to the advanced skill of *evaluating* (being able to defend opinions or decisions). There has been some debate about the order of the final two levels of the hierarchy (does *synthesising* or does *evaluating* represent the pinnacle of cognitive skills?)²²; however, leaving the minutiae aside for the sake of simplicity, the original hierarchy is illustrated in Figure 2.

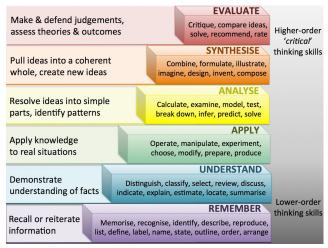


Figure 2 The six-level hierarchy of Bloom's taxonomy of cognitive complexity. Remembering information sits at the bottom & evaluation at the top of the hierarchy of thinking skills. Associated with each level is a set of verbs (only a sample is shown here) that express observable & hence measurable learner behaviours characteristic of that level.

As shown in the Figure, each Bloom's level is accompanied by a set of active verbs that express expected, measurable learner behaviours at that level: *e.g.*, achieving the level *understand* means to be able to classify, select or explain a piece of information: here, *classify*, *select*, *explain* are observable learner behaviours that may be readily assessed by an instructor.

Typical illustrations of the taxonomy, like Figure 2, depict successive discrete levels, suggesting a fixed, step-wise *developmental trajectory* from lower- to higher-order critical-thinking skills. However, as mentioned above, an alternative version²² places *synthesise* (the ability to create new or original work) at the top of the hierarchy; the structure shouldn't therefore be regarded as completely rigid. It's helpful instead to regard the taxonomy as a continuum of cognitive levels (hence the spectral colours used in Figures 2 and 3, and in Table 1), where each merges into the next, providing a structured tool in which cognitive complexity is made explicit through a set of observable, assessable learner behaviours. Indeed, some qualification frameworks, such as the Dublin Descriptors, elide successive Bloom's levels (*Knowledge and understanding, Applying knowledge and understanding, etc.*) to clarify or simplify the relationships between them²³.

Bloom's, the MR-Bi stages & academic progression

Because the MR-Bi explicitly outlines a developmental trajectory (albeit with five stages rather than six), it's relatively straightforward to relate its stages to Bloom's levels. Moreover, as Bloom's is widely used in the development of education programmes, we can consider how the stages of the MR-Bi, in tandem with Bloom's levels, might relate to traditional stages of academic progression – Table 1.

Table 1 Relationship between stages of the MR-Bi, Bloom's cognitive levels & academic stages. Some typical characteristics of learners at each stage are described in the right-hand column.

MR-Bi stage	Bloom's level	Academic stage	Typical learner traits at this level
Late Journeyman (J2)	late 6: evaluate	Career post doc, Pl	Independent scientist, expert in design/critical evaluation of experi- mental paradigms and their results; expertly integrates bioinform- atics into research prac- tice; can apply/develop new methods, formu-
Early Journeyman (J1)	5, early 6: evaluate, synthesise	Late PhD student, early postdoc	late problems. Proficient scientist , but still needs mentoring; synthesises knowledge; beginning to critically evaluate experimental paradigms and their results; accepts uncer- tainty; contributes to problem formulation.
Apprentice	3-4, early 5: synthesise, analyse, apply	Master's early PhD student	Fluent scientist, who can choose and apply methods to given prob- lems, analyse and inter- pret data, identify basic limitations, and contex- tualise results; doesn't generate new prob- lems; seeks guidance to improve performance.
Beginner	2-3: apply, g understand	Late under- graduate, early Master's	Learning how to ana- lyse given problems; beginning to under- stand uncertainty; can use tools and apply them as instructed.
Novice	1-2: understand, remember	Early under- graduate	Engages with given problems, with known solutions, but doesn't question research results; limited under- standing of uncertainty.

REFLECTIONS

- 1 Consider **Table 1**. In what ways do you think the Novice changes en route to Apprentice level in terms of critical thinking?
- 2 Are these changes evident within the PLDs for KSAs *Identify data* relevant to the problem and PK, computational methods?

We can now frame these basic elements within the complete MR-Bi, which is presented in **Table 2**. The structure is the same as that in **Figure 1**, but includes a general description (broadly tracking the *typical* development of a student progressing through university) in the first row, and a description of the requisite Bloom's level in the second; these are followed by the KSAs and PLDs at each stage.

_

 Table 2 The complete Mastery Rubric for Bioinformatics (MR-Bi).
 PLDs are shown at each stage for each KSA; they are preceded by general descriptions of a bioinformatics practitioner at each stage & a set of considerations for evidence of performance at the requisite Bloom's level.

	Novice	Beginner	Apprentice	J1	J2
		5		Journeyman	Journeyman
General description of a bioinformatics prac- titioner	Reads, generally under- stands, but doesn't question, life science re- search results. Begin- ning to recognise that 'facts' are actually just the best-currently-sup- ported theory. Limited engagement with uncer- tainty associated with 'facts'; developing un- derstanding of experi- mental design para- digms in biology, & own specific area of study.	Consolidates reading & understanding, begin- ning to learn how to an- alyse given biology prob- lems (with software). Growing recognition that 'facts' are typically the best-currently-sup- ported theory. Engaging consistently with uncer- tainty associated with 'facts'; deepening un- derstanding of experi- mental design para- digms in biology, & own specific area of study.	Reads & understands; relia- bly identifies methods (soft- ware & programming) for given problems. Chooses & executes correct analysis, but not necessarily able to identify several methods that could be equally viable, depending on given re- search objectives. Qualified as a fluent, but not as an in- dependent, scientist who uses bioinformatics as a tool, but doesn't yet synthe- sise technology with biology to generate new research problems.	Qualified as a proficient, independent scientist who uses bioinformatics meth- odologies as part of routine practice. Can pose novel scientific questions; identifies data & technol- ogy to align appropriate statistical/analytical meth- ods to desired scientific objectives. Experienced reviewer of technical fea- tures of bioinformatics methods. Newly inde- pendent, able to integrate bioinformatics techniques into novel research prob- lems in area of expertise.	Independent scientist who expertly integrates bioinfor- matics & more traditional methodologies, as needed, to achieve desired objec- tives & contribute to the body of knowledge. Expert reviewer of relevant tech- nical features of available bi- oinformatics options.
Considerations for ev- idence of perfor- mance at this level	Bloom's 1, early 2: re- member, understand. Can engage with well- defined problems, with known solutions. Work doesn't generally reflect self-assessment.	Bloom's 2-3: under- stand, apply. Can en- gage with well-defined problems. Applies only what he/she is told to apply. Work reflects some self-assessment, when directed to do so.	Bloom's 3-4, early 5: apply, analyse, synthesise. Can choose & apply techniques to problems that have been defined (by or with others). Can analyse & interpret ap- propriate data, identify basic limitations & concep- tualise a need for next steps, & for contextualisa- tion of results with the liter- ature. Seeks guidance to im- prove self-assessment.	Bloom's 5, early 6: evalu- ate, synthesise. Evaluates life-science knowledge, while developing abilities to integrate bioinformatics into research practice. Shows independent exper- tise in a specific life-sci- ence area, & confidently integrates bioinformatics technology into that area. Beginning to critically eval- uate experimental para- digms & their results, without requiring there to be 'one right answer'. Consistently self-assesses.	Bloom's 6: evaluate. Pre- pared for independent sci- entific work. Expert in de- sign & critical evaluation of experimental paradigms & their results. Consistently self-assesses, & encourages others to develop this skill.
Ethical practice	Exhibits respect for community standards/ rules for public behav- iour & personal interac- tion. Learning to recog- nise, & show respect for, intellectual prop- erty, professional ac- countability & scientific contributions.	Learning to recognise scientific 'misconduct' . Learning to avoid, & respond to, misconduct, & the importance of neither condoning nor promoting it.	Learning the principles of ethical professional & scientific conduct. Seeks guidance to strengthen applications of these principles in own practice. Learning how to respond to unethical practice.	Practices bioinformatics in an ethical way, & doesn't promote or tolerate professional or scientific misconduct. Seeks guid- ance in how/when to take appropriate action when aware of unethical prac- tices by others.	Practices, & encourages all others to practice, bioinformatics in an ethical way. Doesn't promote or tolerate professional or sci- entific misconduct. Takes appropriate action when aware of unethical practices by others.
Prerequisite knowledge – biology (includes statistical inference & experi- mental design consid- erations)	Basic knowledge of biol- ogy; little-to-no aware- ness of the uncertainty inherent in experi- mental designs common in the life sciences. Thinking about the life sciences is based on un- critical acceptance of in- formation as 'factual' or 'true'.	Advanced knowledge of biology, & basic knowledge of key bioin- formatics methods. Can run very simple statis- tics/programs to answer pre-defined scientific questions. Learning to understand the uncer- tainty inherent in the scientific method; ques- tions assumptions in the data & their relevance for given scientific prob- lems (which are defined by others).	Integrates experimental & bioinformatics/technologi- cal sources of data & knowledge. Understands the uncertainty inherent in the scientific method; ques- tions assumptions in the data & their relevance for given scientific problems (which are typically defined by or with others). Exploits experimental design & sta- tistical inference, with guid- ance, to answer given scien- tific problems. Recognises inconsistencies in biological data/experiments identified by others, but can't trouble- shoot experimental meth- ods independently.	Recognises the im- portance of, & is able to critically evaluate, the rel- evant literature, & under- stands historical back- ground of the relevant bi- ological system(s). Suffi- cient knowledge of a bio- logical system(s) to be able to draw functional conclusions from analyti- cal results. Collaborates with experts to inform the next stages in the experi- mental design process (validating results, follow- up analyses, <i>etc.</i>).	Makes predictions to inform next stages of the experi- mental design process. Eval- uates relevant experimental methods that can be applied in any problem. Can gener- alise to other biological sys- tems; independently solves biological problems that are innovative & move the field forward.

Prerequisite	Basic knowledge of	Computers, software,	Learning to test software &	Recognises the im-	Develops robust, well-docu-
knowledge –	computational methods;	tools & programming	programming approaches to	portance of, & critically	mented, optimised, repro-
computational meth-	little-to-no awareness of	are understood to be	different types of problem.	evaluates & understands,	ducible code &/or uses tools
ods (includes statisti-	the relevance of compu-	options for scientific	Experimental design & sta-	historical background of	to address biological prob-
cal inference & exper-	tational methods for life	work. Learning how to	tistical inference using com-	the relevant data, data-	lems; moves away from
imental design con-	sciences. No awareness	write & test code, run	puting & algorithms are rec-	bases, algorithms, tools,	standard procedures & inno-
siderations)	of experimental designs	software, or use tools,	ognised & applied, with	analysis/statistical meth-	vates to accommodate new
	or how these can be	as appropriate. Develop-	guidance, to answer given	ods & computational re-	data types, tools & tech-
	used or implemented in	ing awareness of the va-	scientific problems. Learn-	sources. Can use these &	niques, as needed. Can gen-
	computational applica-	riety of bioinformatics	ing best practices for pro-	justify trade-offs across	eralise to new coding lan-
	tions. Thinking about	tools, designs & re-	gramming, if programming	methodologies (e.g.,	guages or software/tools/re-
	tools, computers, soft-	sources, but isn't able to	is part of the task. Can write	which statistical test to ap-	sources.
	ware & programming is	choose or apply the	basic code in a given lan-	ply & what computational	
	strictly uni-dimensional:	most appropriate of	guage or run appropriate	methods to use). Collabo-	
	<i>i.e.</i> , extrapolation &/or	these for any given	software, using judgement,	ratively synthesises & criti-	
	abstraction of knowledge about com-	question; when choices	but not inventing or inno-	cally questions analysis re-	
	putational methods to	are made, tools are used	vating. Can't troubleshoot	sults & output from tools.	
	other systems, pro-	uncritically. Developing awareness that compu-	complex computational methods – will ask for guid-	Recognises the iterative nature of experiments	
	grams or problems	tational tools require in-			
	aren't possible. Can run	put parameters, but	ance. Exploring alternatives to default input parameters	(<i>e.g.,</i> bench, data analysis, back to bench). Can write	
	given software or exe-	uses default settings.	across computational tools.	code/use tools to accom- plish these, but collabo-	
	cute given code with	Learning to read, under- stand, troubleshoot &	Can apply knowledge of tools to interpret results &	plish these, but collabo- rates with experts for	
	precise instructions;				
	can't write a script or debug/troubleshoot.	make minor modifica-	output. Seeks guidance in	identifying & articulating	
	debug/troubleshoot.	tions to existing code/	synthesis of results or out-	biological problems that are innovative & move the	
		scripts. Doesn't synthe-	puts.	field forward.	
Integrate integralizated	Doorn't recognize life	sise results or outputs.	Understands that life and		Formulator innovative his
Integrate interdiscipli-	Doesn't recognise life	Beginning to think about life sciences as requiring	Understands that life sci- ences integrate both experi-	Collaboratively integrates	Formulates innovative bio-
narity	sciences as requiring in- tegration of both experi-	integration of experi-	mental & computa-	across relevant disciplines to address, & solve, inno-	logical problems that re- quire interdisciplinary solu-
	mental & computa-	mental & computa-	tional/modelling ap-	vative biological problems.	tions. Integrates methods &
	tional/modelling ap-	tional/modelling ap-	proaches; seeks guidance	Tests multiple avenues to	results to derive & contextu-
	proaches. Perceives dis-	proaches. Recognises	about how & when to inte-	triangluate solutions, with	alise solutions to biological
	ciplines as separate; in-	that interdisciplinarity is	grate. Developing an under-	minimal guidance. Recog-	problems. Consistently tests
	tegration only occurs	needed, but doesn't	standing of the strengths &	nises the roles of interdis-	multiple avenues to trian-
	when/as directed. Infor-	know how (or when) to	weaknesses of biological &	ciplinary teams in the re-	gluate solutions, while ex-
	mation, ideas & tools	do it, & requires direc-	computational methods,	search process, & the im-	ploiting relevant findings
	that are interdisciplinary	tion. Learning the inte-	beginning to question fun-	portance of integrating in-	from other disciplines. Ac-
	are used without ques-	grating process; learning	damental assumptions from	terdisciplinarity early on.	tively builds interdisciplinary
	tion.	strengths & weaknesses	these & other disciplines for	Works effectively on inter-	teams, as needed.
		of biological & computa-	any given scientific problem	disciplinary teams with mi-	teams, as needed.
		tional methods, but not	(which is typically defined	nimal guidance.	
		sufficient to question as-	by, or in conjunction with,		
		sumptions from these &	others).		
		other disciplines.			
Define a problem	Can recognise a problem	Developing awareness	Beginning to use, with guid-	Can explore & critically re-	Independently defines & ar-
based on a critical re-	that's explicitly articu-	of the depth & breadth	ance, the appropriate	view the relevant	ticulates theoretical or
view of existing	lated or concretely	of the knowledge base	knowledge base to address	knowledge base, & collab-	methodological problems
knowledge	given, but can't derive	that is, or could be, rele-	a given problem. Recognises	oratively articulate a prob-	based on a critical review of
	one. Unaware of the	vant for the formulation	the need to consider a	lem based on that review.	the relevant knowledge
	depth & breadth of the	of a problem. Can't dif-	wider scope of knowledge	Reviews include assess-	base(s). Knows the hall-
	knowledge base that is,	ferentiate gaps in own	for alternative solutions to a	ment of relevance from	marks of guestionable re-
	or could be, relevant for	knowledge from gaps in	problem common across	(potentially) ancillary do-	search hypotheses & mis-
	the formulation of a	'the knowledge base'.	contexts or domains. In	mains, bias, reproducibil-	alignment of testing/statis-
	problem. Doesn't recog-	Developing the ability to	guided critical reviews,	ity & rigour; recognises	tics with poorly articulated
	nise design features or	recognise that uncer-	learning to recognise that	when appropriate & inap-	research problems; consist-
	other evidence as the	tainty may have arisen	design features & evidence	propriate methodology is	ently finds & identifies
	basis of/support for	in the formulation of so-	base are important to draw-	used. Recognises when in-	sources of bias. Articulates
	problem articulation.	lutions to problems.	ing conclusions. Recognises	complete review is pro-	when appropriate & inap-
	Doesn't recognise un-		the role of uncertainty in re-	vided (by themselves or	propriate methodology is
	certainty or how this af-		search, & that reproducibil-	others). Can discern repro-	used/reported. Critical re-
	fects the formulation of		ity & potential bias should	ducible from non-repro-	view & problem articulation
	solveable problems.		be considered for every re-	ducible results; can iden-	integrate diverse discipli-
			sult.	tify major sources of bias	nary perspectives when ap-
				in the knowledge base.	propriate.
Hypothesis genera-	When directed, follows	When directed, uses the	With guidance, can leverage	Collaboratively integrates	Independently generates
tion	instructions to test hy-	default settings of soft-	tools, software, data &	hypothesis generation into	testable hypotheses that are
	, potheses; doesn't gen-	ware, tools or GUI to	other technologies	the consideration of litera-	scientifically innovative as
	erate them & may not	test hypotheses in pre-	(GUI/programming) to test	ture, data & analysis op-	well as feasible (possible for
	recognise them without	planned analyses;	hypotheses; can generate	tions. Seeks appropriate	economic reasons, time, im-
	explanation. Uses the	doesn't generate testa-	hypotheses based on the	guidance in the synthesis	pact, etc.). In own & others'
	default settings of soft-	ble hypotheses. Doesn't	data or the technology, but	of data & technology to	work, recognises that, & ar-
	ware & other tools, ra-	recognise that hypothe-	not on their combination.	generate novel, testable	ticulates how, hypothesis
	ther than a hypothesis,	ses may be generated &	Hypothesis generation pos-	hypotheses. Considers the	generation from planned &
	to guide any analysis.	tested within the inter-	sible in concrete, fully pa-	process of hypothesis gen-	unplanned analyses differ in
	to guide any analysis.				
	Doesn't question meth-	mediate steps of an	rameterised problems; de-	eration & testing to be it-	their evidentiary weight &
					their evidentiary weight & their need for independent

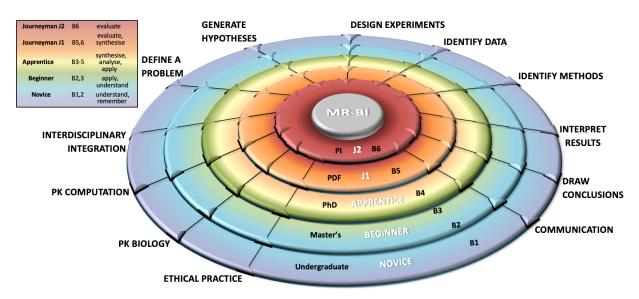
		and a set of the state of the			and institute Fully such as all
	assumptions of methods that are used.	understanding that all methods involve as- sumptions.	identify whether a hypothe- sis is testable. Learning to recognise that experimental design & design of soft- ware/programming solu- tions include hypothesis generation to some extent. Developing the abilities to identify, & plan to address, assumptions that different hypotheses necessitate.	appropriate. Hypothesis generation is done with consideration of reproduc- ibility & potential for bias, & takes into account the most clearly relevant liter- ature; recognises that less-obviously relevant lit- erature may also be in- formative for hypothesis generation.	replication. Fully explores all relevant knowledge base(s) to support rigour & repro- ducibility, & to avoid bias, in the generation of hypothe- ses.
Experimental design	Can recognise concrete features of experiments only if they're de- scribed/given and they match basic design ele- ments (e.g., dependent, independent variables). Can't design data collec- tion or experiments. Un- aware of covariates or their importance in analysis or interpreta- tion. Doesn't recognise the importance of de- sign, data collection, data quality, storage/ access, analysis & inter- pretation to promote rigour & reproducibility in experimental design.	Can identify salient fea- tures of experiments that are dscribed/given, if they match previously encountered design ele- ments, but can't derive them if they're not pre- sent. Recognises covari- ates if mentioned, but doesn't require formal consideration (or justifi- cation) or evaluation of covariates. Doesn't rec- ognise that one experi- ment alone can't ade- quately address mean- ingful biological research problems. Understands that experimental de- sign involves identifying, gathering, storing, ana- lysing, interpreting & in- tegrating data & results.	Can match the correct data- collection design to the in- struments & outcomes of interest. May include/ex- clude covariates, or other design features, 'because that is what's done', with- out being able to justify their roles in the hypothe- ses to be tested. Developing an understanding that weak experimental design yields weak data & results. Needs help in conceptualising co- variates & their potential roles in planned analyses. Beginning to recognise that, & can explain why, one study is usually insufficient to answer given research problems adequately. Fol- lows templates for identify- ing, gathering, storing, ana- lysing, interpreting & inte- grating data. Learning to consider reproducibility & rigour in experimental de- sign, & to question tem- plates that do/don't include these concepts.	Recognising that explicit attention to experimental design will result in more informative data; designs experiments in consulta- tion with experts in con- tent & statistics: these ex- periments may include power calculation consid- erations, if relevant; mod- elling requirements; meas- urement/sampling error & missing data. Collabora- tively designs experiments that address the need for reproducibility & sensitiv- ity analysis. Learning to conceptualise pilot studies & sensitivity analyses. Learning to adapt prob- lems so that hypotheses can be generated & made testable via experiments.	Independently designs ap- propriate & reproducible ex- periments & other data-col- lection projects, using meth- odologies that are aligned with the testing of specific hypotheses. Consistently identifies & justifies choices of instruments & outcomes (& covariates if relevant). Collaborates with experts as needed on appropriate use of advanced methods, in- cluding accommodating measurement & sampling error, attrition (if needed) & modelling requirements; can adapt complex prob- lems so that hypotheses can be generated & made testa- ble via experiments. Under- stands, & can exploit the strengths & weaknesses of, experimental design, data & modelling approaches with respect to the biological problem under considera- tion. Uses pilot studies & sensitivity analyses approp- riately.
Identify data relevant to the problem	Uses data, as directed. Doesn't find relevant data; can't describe what makes data or a given data-resource rel- evant to a given prob- lem.	Correctly uses data that are provided, or can fol- low a script/'recipe' to obtain (access, manage) relevant data to which they're guided. Can't de- termine whether a given data-set or -type is rele- vant for a given prob- lem, but is developing an awareness that not all data are equally rele- vant, or equally well suited, to all research problems. Developing awareness of the fea- tures of data/data-re- sources that constitute 'relevance', & that these features must be as- sessed before choosing data to use.	Can initiate a search for data & will ask if uncertain about the relevance for any given problem. Learning how to identify, & evaluate strengths & weaknesses of, data-resources, to deter- mine whether a given data- set or data-type is relevant for a given problem; &, with guidance, learning how to leverage these to address given research problems. Learning how reproducibil- ity can be affected by the choice (& features) of data.	Collaboratively identifies relevant data-resources. Understands the relative strengths & weaknesses of data-sets & -types for ad- dressing a specific prob- lem. Learning to address & formulate scientific prob- lems (based on recognised gaps in the knowledge base) using relevant data- resources. In own & oth- ers' work, recognises that, & articulates how, choices for data (collection or use) require assumptions & jus- tification, & must yield reproducible results.	Identifies data that are relevant to a problem. Consist- ently identifies, & evaluates strengths & weaknesses of, data-resources that can ad- dress a problem or help to formulate it more clearly; recognises if the necessary data don't yet exist. Justifies the relevance of data-sets to a problem in terms of their individual strengths & weak- nesses. Articulates hypothe- ses, & designs experiments, that leverage strengths in the data; includes triangu- lating data or results to ad- dress weaknesses in the data. Identifies whether data appropriate to the spe- cific scientific question were used when reviewing pro- posals, protocols, manu- scripts &/or other documen- tation describing data & re- search results.

Identify & use appro-	Uses methods that are	Uses methods as di-	Can identify methods, soft-	Collaboratively considers	Recognises if/when the nec-
priate analytical methods	provided & in a given or- der (<i>i.e.,</i> a pipeline; &	rected, & learning about the concepts of pipe-	ware & pipelines that are relevant for a given prob-	the knowledge base, & features of the relevant	essary methods, pipelines & workflows to tackle a scien-
	treats workflows* as if	lines & workflows; still	lem; seeks guidance about	data & analysis options, in	tific question don't yet exist.
	they're pipelines).	uses workflows as if	the best approach. Learning	identifying the most ap-	Consistently controls FDR to
	Doesn't identify relevant methods; can't describe	they're pipelines, but beginning to attend to	to evaluate/rank & justify alternative methods in	propriate approach(es) to tackle a scientific ques-	promote reproducible re- sults. Identifies whether ap-
	what makes a method	decision points. Learning	terms of general features of	tion. Uses appropriate an-	propriate analytical meth-
	relevant to a given prob-	to recognise pros & cons	their efficiency & relevance	alytic methods, pipelines	ods were used when review-
	lem. Unaware that	of methods/software,	for the given research prob-	& workflows, recognising,	ing proposals, protocols,
	methods & software have default settings.	but can't yet effectively compare, evaluate or	lem. Beginning to recognise that a 'pipeline' involves	& taking advantage of the fact, that these may repre-	manuscripts &/or other doc- umentation describing
	Doesn't question propri-	rank them. Becoming	only the choice of which	sent distinct approaches	methods, pipelines, work-
	ety, assumptions or the order of methods em-	aware of default settings of software or methods	method(s) to use; while a	to the same problem. Knows when & how to	flows & research results.
	ployed; focus is on the	& their effects on re-	'workflow' requires many choices & decisions. With	control False Discovery	
	superficial attributes of	sults; & beginning to ex-	guidance, seeks to identify	Rates (FDR) to promote	
	given methods & proto-	plore & enquire about	& implement appropriate	reproducible results	
	cols.	tailored settings. Under- stands that more than	workflows to address given research problems. Learning	across methods. In own & others' work, recognises	
		one method/tool may	how reproducibility can be	that, & articulates how,	
		be available to deal with	affected by the choice & im-	choices for methods, pipe-	
		a problem or data-type, but can't choose effec-	plementation of methods, including independent repli-	lines & workflows require assumptions & justifica-	
		tively. Learning about	cation of essentially the	tion, & must yield	
		similarities & differences	same method vs. independ-	reproducible results.	
		across methods, & that choices (particularly of	ent replication using diverse methods.		
		multiple methodologies			
		for one question) should			
		leverage independence of methods to support			
		reproducible results.			
Interpretation of re-	Treats the output of a	Interpretation of results	Seeks guidance to interpret	Can discern, based on re-	Interprets results critically &
sults/output	program as the final/ complete result – with	depends on <i>p</i> -values, but understanding of <i>p</i> -	results/output, including considerations of alignment	sults, methods & hypothe- ses, whether more experi-	with respect to the analysis plan; seeks/promotes align-
	no interpretation re-	values is incomplete.	of methods & results. Un-	ments &/or data-pro-	ment of methods, results &
	quired – & is unaware of the concepts of valida-	Learning to recognise that interpretation of	derstands that the <i>p</i> -value represents evidence about	cessing are required for robust result interpreta-	interpretation. Prioritises in- terpretable & reproducible
	tion & cross-validation	output critically depends	the null hypothesis, not the	tion; collaboratively uses	results above any other out-
	or their importance for	on methods used & the	study hypothesis, but	the appropriate	come (e.g., publication or
	interpretation of re- sults/output. Uses the p-	pipeline in which the re- sults are obtained. De-	doesn't consistently avoid reification. Recognises that,	knowledge base & data- resources to interpret re-	completion of tasks/pro- ject), & insists on FDR con-
	value to indicate 'truth'	veloping awareness of	but doesn't always act as if,	sults; resists reification &	trols & other sensitivity
	in statistical analysis.	FDR controls. Learning	very small p-values are not	is committed to good-faith	analyses in all work. Avoids
	Over-interpretation is typical. Unaware of the	that the interpretation of immediate results	'highly significant results'. Can apply FDR controls, but	efforts to falsify hypothe- ses. Consistently & ap-	problems that can arise in interpreting results, includ-
	importance of FDR con-	could be an interim step	does so only when re-	propriately uses FDR con-	ing bias, reification & other
	trols. Doesn't seek co-	in an overall problem-	minded/required. Recog-	trols.	failures of positivism. Evalu-
	herence in/recognise in- coherence of results	solving context.	nises when the interpreta- tion of immediate results is		ates the quality & appropri- ateness of procedures, sta-
	with the analysis plan or		an interim step in an overall		tistical analyses & models
	pipeline; can't align		problem-solving context.		when reviewing papers &
	methods, results & in- terpretation.				projects/proposals, based on the writers' – & own – in-
					terpretation of results.
Draw & contextualise	Doesn't draw appropri-	Learning fundamentals	With guidance, can draw	Can extract scientific	Expertly contextualises re-
conclusions	ate conclusions from given results; without	of how appropriate con- clusions are drawn from	conclusions in own work that are coherent with the	meaning from data analy- sis & knows the difference	sults & conclusions with prior literature, across ex-
	direction, will not even	results, but may not be	research hypothesis/hypo-	between statistical & bio-	periments or studies, &
	contextualise conclu-	able to draw those con-	theses & across the entire	logical significance. In own	within any given document
	sions with the protocol that was followed. Not	clusions from given re- sults themselves. Learn-	manuscript/write-up (as ap- propriate). Learning to criti-	& others' work, seeks competing, plausible alter-	(e.g., manuscript, write-up). Strives to fully contextualise
	aware of the difference	ing to differentiate be-	cally contextualise results;	native conclusions. Can	conclusions in own work, &
	between conclusions	tween conclusions about	draws the most obvious	judge the scientific im-	also requires this in others'
	about the null hypothe- sis & those about the re-	the null hypothesis & those about the re-	conclusions, but struggles to see patterns, or draw more	portance of results, & draw conclusions accord-	work. Draws & contextual- ises more subtle conclusions
	search hypothesis. Con-	search hypothesis.	subtle conclusions. Learning	ingly. Can draw conclu-	than at earlier stages. Can
	clusions may over- or	Learning why <i>p</i> -value-	that 'full' contextualisation	sions & contextualise re-	conceptualise new experi-
	understate results & be driven by <i>p</i> -values or	driven conclusions, & the lack of FDR controls,	of conclusions requires con- sideration of limitations de-	sults with respect to an entire manuscript/write-	ments based on the lack of robust &/or defensible con-
	other superficial cues.	are not conducive to re-	riving from methods & their	up in a given project or	clusions in others' work.
	Doesn't recognise the	producible work. Con-	applications, & their effects	study, or to the literature	Carefully considers con-
	importance of identify- ing & acknowledging	clusions are generally aligned with given re-	on results & conclusions. Learning to recognise how	(as appropriate). Can de- tect when conclusions	sistency of conclusions with the other parts of own or
	methodological limita-	sults, but when multiple	independence of multiple	aren't aligned with other	others' work.
	tions, or their implica-	methods are used,	methods applied to similar	aspects of the work (e.g.,	
	tions, for conclusions.	doesn't recognise the		introduction/background,	

	Doesn't, or can't, apply rules of logic to scientific arguments, & commits logical fallacies when drawing conclusions.	dependencies among methods that appear to reinforce, but actually replicate, results. Con- clusions are neither fully contextualised with the rest of a document (write-up, paper, <i>etc.</i>) or study/experiments/par- adigm (contextualisation for <i>coherence</i>), nor with the literature (<i>critical</i> <i>contextualisation</i>).	data/problems supports reproducible conclusions.	methods, results). Gives careful consideration to limitations deriving from the method & its applica- tion in a specific study. Sees patterns, & perceives more subtle conclusions than earlier-stage scien- tists, & collaborates to fully articulate & motivate them. Writes the Discus- sion & Conclusions sec- tions, including limita- tions, of own articles, with collaboration.	
Communication	Doesn't communicate scientific information clearly or consistently; is unaware of community standards for scientific communication. Gener- ally relies on lay sum- maries to support own communication; doesn't recognise that using original literature strengthens scientific communication. Doesn't differentiate appropri- ate & inappropriate sci- entific communication, nor understand the ethi- cal implications of each.	Learning both to recog- nise the value of clear communication, & about the role of communica- tion in sharing & pub- lishing research, data, code, data-management protocols, tools & re- sources. Developing an awareness of commu- nity standards for scien- tific communication, & that these include docu- menting code, annotat- ing data & adding appro- priate metadata. Doesn't adapt communi- cation to fit the receiver. Learning to differentiate appropriate & inappro- priate scientific commu- nication, but doesn't yet understand that trans- parency in all communi- cation represents ethical practice, even when the desired results have not been achieved.	Understands the roles of sharing & publishing re- search, data, code, data- management protocols, tools & resources in scien- tific communication. Seeks guidance so that own com- munication is coherent, ac- curate & consistent with community standards (<i>e.g.</i> , following FAIR‡ principles; ensuring socially responsi- ble science). Learning to document code, annotate data & add appropriate metadata – & the im- portance of these (as appro- priate given their re- search/context) for sharing & integration. Learning the importance of adapting communication to fit the re- ceiver, seeking opportuni- ties to practice this. Learn- ing that transparency in all communication represents ethical practice, even when the desired results have not been achieved.	Consistently & proficiently uses technical language to correctly describe what was done, why & how. Sufficient consideration given to limitations, with explicit contextualisation of results consistently in- cluded in the communica- tion of results & their in- terpretation. Adapts com- munication to fit the re- ceiver; recognises that sometimes communica- tion must be consistent with community standards beyond own discipline. Appropriately documents/ annotates all data, code, tools & resources for shar- ing, integration & re-use. Understands that transpa- rency in all communica- tion represents ethical practice.	Expert communicator & re- viewer of scientific commu- nication; adheres to, & pro- motes, disciplinary stand- ards for communication. Communicates in a manner that is consistent with standards across communi- ties beyond own discipline, as appropriate. Ensures communication is appropri- ate for a target audience, expertly adapting to fit the receiver(s). Communication is transparent, & appropri- ate to support reproducibil- ity – &, thereby, ethical practice – in every context.

*Workflows support decisions: they aren't necessarily linear, but can be multi-directional and iterative; any point can be iterated, or new starts from within the workflow can be made. Pipelines are uni-directional, not iterative, and don't have decision points. Pipelines can exist within workflows, but workflows don't exist in pipelines. ‡ FAIR: Findable, Accessible, Interoperable, Reusable.

Clearly, there's a lot to digest in **Table 2**, and readers are not expected to assimilate all the details; rather, the MR-Bi should be seen as a multi-functional tool, from which users may select, and focus on, only those parts that are required to achieve a given purpose (more guidance on using the MR-Bi is available in the companion Guide, *Using the Mastery Rubric for Bioinformatics – a Professional Guide*²⁰).


For now, without getting too distracted by the details, we can make a few key observations. Note, for example, how the PLDs evolve between stages, how the need for guidance diminishes along the route to independent thought and practice, and how the sense of selfawareness changes: e.g., Novices have gaps in their knowledge, but generally lack awareness of them, while Beginners are starting to recognise that gaps exist - both need guidance; Apprentices do recognise limits to their knowledge, and will actively seek help to try to address them, while Journeymen strategically seek to collaborate with those whose expertise complements their own. These general categorisations, or stages, broadly map to recognisable steps along the academic trajectory, from undergraduate to principal investigator. Note also how the KSAs are heavily influenced by core aspects of the scientific method and scientific reasoning; hence, the MR-Bi doesn't focus on subject-specific content (R or Ruby programming, using BLAST, ClustalO, Galaxy, etc.), but does seek to move learners towards independent scientific practice.

The overall structure of the MR-Bi is summarised in Figure 3. The figure illustrates how each developmental stage builds, layer upon layer, onto the next in terms of cognitive complexity (advancing from Bloom's level 1 to level 6) as a learner progresses from less to more expert, from Novice (outermost layer) to independent scientist (innermost layer). Beneath each layer (not shown) are the PLDs that describe learner performance for each KSA at each level, as detailed in Table 2. Together, the KSAs and their PLDs promote scientific problem formulation and problem solving, lending the MR-Bi durability and flexibility.

EXERCISES

- 1 Consider your own level of bioinformatics training. For each KSA, write down the stage that most appropriately reflects your level of expertise (reviewing the PLDs in **Table 2** might help you do this).
- 2 Alternatively, examine the high-level summary shown in **Figure 3**. On the figure, for each KSA, tick the stage with which you identify.
- 3 Are there KSAs in which you are less proficient? If so, can you pinpoint the type of training or practice that might help you progress to a higher level of accomplishment for that, or those, KSA(s)?
- 4 If you supervise Master's or PhD students, how might this approach be used to identify their training needs?

A Professional Guide to the Mastery Rubric for Bioinformatics

Figure 3 *Overview of the structure of the MR-Bi.* 12 KSAs (outermost labels) are encapsulated, together with a developmental trajectory, from Novice (outer circle) to late Journeyman (inner circle). The stages broadly map to the continuum of Bloom's levels, B1-B6 (denoted by the blending of each spectral colour into the next) & to familiar stages of academic progression, from undergraduate, Master's & PhD (which require considerable supervision) to the increasingly independent Post Doctoral Fellow (PDF), & thereafter to Principal Investigator (PI) & subject mastery. The structure is highly adaptable to other disciplines because only two of its KSAs are discipline-specific, so these alone would need altering to focus the Rubric on closely related subjects.

4 Discussion

A Mastery Rubric is an organising framework that both articulates KSAs, and describes and *stages* their performance levels such that they can be achieved progressively. As we've seen, the framework has three components: i) a set of domain-relevant, transferable KSAs; ii) a set of developmental stages denoting progression along a path of increasing cognitive complexity, towards independence; and iii) descriptions of the range of expected KSA performance levels.

The interplay between these elements affords the Mastery Rubric significant flexibility: it facilitates consistent evaluation of performance of any given KSA, and recognises that individuals may be at different levels in different KSAs, and may progress through them at different speeds. This allows individuals wishing to acquire bioinformatics skills to locate themselves within the table, regardless of their current skill level or disciplinary background: e.g., a person may consider him/herself a J2 Journeyman in the life sciences, yet a Novice in computational methods. Importantly, then, the MR-Bi can pinpoint a learner's stage (hence current level of performance of any KSA), and also explicitly highlight a route(s) for self-directed learning, from lower-level skills to higher levels of achievement. This feature can also be exploited by instructors, who may have a mix of students within their class with different aptitudes, some at Novice and some at Beginner level of cognitive complexity, with others perhaps even at Apprentice level. Such understanding can help instructors to pitch, and if necessary to adjust, their teaching accordingly. Similarly, it can help mentors to identify, and thence to plug, skills gaps in the doctoral students or post-doctoral researchers under their supervision.

Being built on core scientific-method-related KSAs, the MR-Bi is essentially a standard framework that's readily adaptable to related disciplines simply by changing the discipline-specific KSAs. So, for example, if an instructor wished to develop a Mastery Rubric for a closely related discipline – say, health informatics – the resulting Rubric would have virtually the same KSAs, but with *Prerequisite knowledge of biology* replaced by *Prerequisite knowledge of health sciences*. The PLDs in that Mastery Rubric would then be tailored to describe development of the health-informatics practitioner.

Elaborating any kind of framework to support the development of skills or competencies is challenging: the task involves multiple stakeholders, from different backgrounds, with diverse perspectives and disparate educational goals. One of the challenges is the lack of a standard vocabulary: some frameworks refer to knowledge, skills and *attitudes*²⁴, others refer to knowledge, skills and *behaviours*²⁵, while the MR-Bi describes knowledge, skills and *abilities*¹⁹. In the latter, *abilities* is the preferred term because these are considered more tangible and observable than, say, attitudes. The box below clarifies the distinction between knowledge, skills and abilities.

A closer look at knowledge, skills & abilities

The terms *knowledge, skills* and *abilities* can be confusing: indeed, the distinction between skills and abilities can be especially troubling, as these are often used interchangeably. Accepting that many different definitions exist, the simple working guide below can help to understand their meaning in the context of the MR-Bi, where emphasis is placed on what can be reliably observed and hence measured.

Knowledge	The <i>conceptual</i> or <i>theoretical</i> understanding of facts or information
Skills	The <i>practical</i> execution of particular tasks or ac- tions
Abilities	The efficacy with which (<i>i.e.</i> , how well) know- ledge is put into action or skills are performed, given time, energy, motivation and practice

In addition, as we saw earlier, the MR-Bi's KSAs are much broader, higher-level concepts than the knowledge, skills and abilities/ attitudes/behaviours and competencies encapsulated in other frameworks: *e.g.*, Mulder *et al*.¹⁰ define 16 core bioinformatics competencies, including command-line and scripting skills, Webbased computing skills, creating software systems, defining computing requirements, *etc.*; while Matser *et al*.²⁵ describe ~30 finegrained competencies, including knowledge of operating systems, writing/adapting computer programs and scripts, parallel programming, installing simulation software, *etc.* Many of these competencies are encapsulated implicitly in the MR-Bi's broader KSAs (here, for example, the 'parent' KSA would be *PK*, *computational methods*).

Together, the PLDs and KSAs focus on fostering independent scientific practice and developing critical-thinking skills. This emphasis obviates the need either to enumerate all possible subject-specific competencies (the details of which are likely to change over time) or to articulate individual profiles (*personae*) for particular types of practitioner in different settings – in the workplace, individuals will practice bioinformatics in very different ways according to a vast array of possible roles; trying to describe unique *personae* for all such roles is therefore likely to be a relentlessly challenging task (the issues surrounding the robustness, authenticity and scalability of personae in the field of informatics are well-documented²⁶).

Nevertheless, understanding the MR-Bi and its applications still requires thought and time. Because it was developed as a tool for *curriculum* development, it may be difficult to see how it can be used to design short training courses. Here, however, it can help instructors to focus on prerequisite knowledge and teaching goals (and requisite learning outcomes) that are time-limited; with its explicit developmental trajectory, it can also be used to direct individuals' acquisition of new, or to deepen existing, skills: *i.e.*, it can help learners recognise their own training needs, identify targeted training opportunities, and thus track their professional development from their current to a higher level of performance.

It's worth making one last point about the MR-Bi's developmental trajectory. At the top of the learning tree is the J2 Journeyman, an independent scientist who, via years of training, has become a discipline expert or subject 'master'. These professionals (like the Guilds' Master Craftsmen) are generally charged with teaching students (the Novices, Beginners and Apprentices) and likely also with mentoring doctoral students and postdocs (the J1 Journeymen). However, many of these individuals will never have been taught *how* to teach: as qualified experts, it's traditionally been assumed (and thus expected) that they're intuitively equipped to convey their mastery to classes full of eager students, or to labs full of enthusiastic researchers.

Recently, the tide has been turning against this assumption, with growing recognition that teaching is itself a skill needing to be taught and nurtured. Reflecting this notion, Mastery Rubrics treat 'subject mastery' separately from the 'Master Level', for which a unique Mastery Rubric for the Master Level (MR-ML) has been created, focusing on teaching and learning about *teaching and learning*²⁷. It isn't in scope to discuss the MR-ML here; suffice it to say that it articulates five KSAs (including setting teaching and learning goals, designing learning experiences, and evaluating teaching) at developmental levels Apprentice Master, Journeyman Master and Master. Those wishing to know more are encouraged to read Tractenberg 2021²⁷.

A closer look at mastery

The concept of 'mastery' has different connotations, according to the context and era in which it's used. The status of master grew from medieval trades and crafts, and was ultimately enshrined in the European Guild structure. Here, an apprentice would learn a trade from a field expert – a master craftsman; having trained with that master for several years, and produced a qualifying piece of work, the apprentice could be recognised as a journeyman. This afforded the individual opportunities to travel across Europe to learn new skills from different masters²⁸. After several more years of experience, and often the submission of a 'masterpiece', approved by the Guild masters, journeymen could then be received as master craftsmen²⁹, thence able to take on – and teach – their own apprentices.

A key outcome of the Guild framework was the creation of universities at Bologna, Oxford and Paris, which began as guilds of students or masters³⁰. The Master's degree dates back to those European universities. Then, an individual who'd earned 'mastership' – a master – was allowed to teach in any other university. Since then, the Master's degree (and with it, the notion of master and/or mastery) has changed significantly. Today, the Master's often sits as a kind of stepping-stone between Batchelor's and doctoral degrees; and, despite its name, few would grant their Master's students a licence to teach! Nevertheless, it's long been expected that those progressing beyond PhD level *will* teach, because they've reached the tops of their fields. Today, subject mastery and the ability to teach are recognised as very different skills, the latter itself requiring teaching and nurturing in its own right.

In this Guide, we've seen that the MR-Bi provides a framework for decision-making and learner progression. The ways in which the tool may be used to inform structured approaches to course design is the subject of its companion Guide, Using the Mastery Rubric for Bioinformatics – a Professional Guide²⁰.

TAKE HOMES

- 1 The MR-Bi maps performance as learners traverse a developmental trajectory from lower- to higher-order critical-thinking skills;
- 2 The tool can be used to assess learner development and to inform course design; it can also facilitate self-assessment and hence help individuals to recognise their own training needs;
- 3 The MR-Bi defines five developmental stages (Novice, Beginner, Apprentice, early- and late-Journeyman) on a trajectory to independent practice and subject mastery;
- 4 The MR-Bi also defines 12 Knowledge, Skills and Abilities (KSAs): two of these are discipline-specific; others are based on core elements of the scientific method and scientific reasoning;
- 5 For each KSA, associated Performance Level Descriptors (PLDs) describe how performance and critical thinking change as learners progress through the developmental trajectory;
- 6 The developmental stages can be mapped both to specific Bloom'slevel(s) of cognitive complexity and to broad academic levels; and
- 7 The MR-Bi can be adapted to apply to closely related scientific disciplines simply by changing the discipline-specific KSAs and their cognate PLDs.

5 References & further reading

- 1 MacLean M & Miles C. (1999) Swift action needed to close the skills gap in bioinformatics. *Nature*, 401, 10. doi: 10.1038/43269
- 2 Pevzner P & Shamir R. (2009) Computing has changed biology biology education must catch up. Science, 325, 541-542. doi: 10.1126/science.1173876

- 3 Abeln S et al. (2013) Bioinformatics and Systems Biology: bridging the gap between heterogeneous student backgrounds. Brief. Bioinform., 14, 589-598. doi: 10.1093/bib/bbt023
- 4 Rubinstein A & Chor B. (2014) Computational Thinking in Life Science Education. PLoS Comput. Biol., 10(11), e1003897. doi: 10.1371/journal.pcbi.1003897
- 5 Attwood TK et al. (2017) Plug gap in essential bioinformatics skills. Nature, 544, 161. doi: 10.1038/544161c
- Attwood TK *et al.* (2019) A global perspective on evolving bioinformatics and data science training needs. *Brief. Bioinform.*, 20(2), 398-404. doi: 10.1093/bib/bbx100
- 7 Feldon DF et al. (2017) Null effects of boot camps and short-format training for PhD students in life sciences. Proc. Natl. Acad. Sci., 114, 9854-9858. doi: 10.1073/ pnas.1705783114
- 8 Welch L et al. (2014) Bioinformatics curriculum guidelines: toward a definition of core competencies. PLoS Comput. Biol., 10(3), e1003496. doi: 10.1371/journal.pcbi. 1003496
- 9 Welch L et al. (2016) Applying, evaluating and refining bioinformatics core competencies (An update from the Curriculum Task Force of ISCB's Education Committee). PLoS Comput. Biol., 12(5), e1004943. doi: 10.1371/journal.pcbi. 1004943
- Mulder N et al. (2018) The development and application of bioinformatics core competencies to improve bioinformatics training and education. PLoS Comput. Biol., 14(2), e1005772. doi: 10.1371/journal.pcbi.1005772
- 11 Wilson Sayres MA et al. (2018) Bioinformatics core competencies for undergraduate life sciences education. PLoS One, 13(6), e0196878. doi: 10.1371/journal.pone. 0196878
- 12 Via A et al. (2020) Course design: considerations for trainers a Professional Guide. [version 1; not peer reviewed]. F1000Research, 9, 1377 (document). doi: 10.7490/ f1000research.1118395.1
- 13 Tractenberg RE *et al.* (2020) Guidelines for curriculum and course development in higher education and training. *SocArXiv.* doi: 10.31235/osf.io/7qeht
- 14 Tractenberg RE. (2017) The Mastery Rubric: a tool for curriculum development and evaluation in higher, graduate/post-graduate and professional education. *SocArXiv*. doi: 10.31235/ osf.io/qd2ae
- Fernandez N et al. (2012) Varying conceptions of competence: an analysis of how health science educators define competence. Med. Educ., 46, 357-365. doi: 10.1111/j.1365-2923.2011.04183.x
- 16 Bennett CJ & Walston SL. (2015) Improving the use of competencies in public health education. Am. J. Public Health, 105, S65-S67. doi: 10.2105/AJPH.2014.302329
- Miner KR *et al.* (2017) The MACH Model: from competencies to instruction and performance of the public health workforce. *Public Health Rep.*, 120, 9-15. doi: 10.1177/ 00333549051200s104
- 18 Caverzagie KJ et al. (2017) Overarching challenges to the implementation of competency-based medical education. Med. Teach., 39, 588-593. doi: 10.1080/0142159X.2017.1315075
- 19 Tractenberg RE et al. (2019) The Mastery Rubric for Bioinformatics: a tool to support design and evaluation of career-spanning education and training. PLoS ONE, 14(11), e0225256 doi: 10.1371/journal.pone.0225256
- 20 Via A et al. (2022) Using the Mastery Rubric for Bioinformatics:
 a Professional Guide. [version 1; not peer reviewed].
 F1000Research (document). In press.

- 21 Bloom BS. (1956) Taxonomy of educational objectives: the classification of educational goals. Handbook 1: The cognitive domain. David McKay, New York, USA.
- 22 Anderson LW et al. (2001) A taxonomy for learning, teaching and assessing: a revision of Bloom's taxonomy of educational objectives. Addison Wesley Longman, New York, USA. ISBN-10: 080131903X
- 23 Bologna Working Group on Qualification Frameworks. (2005) A framework for Qualifications of the European Higher Education Area. Ministry of Science, Technology & Innovation, Copenhagen, DK. ISBN: 87-91469-54-6
- 24 Magana AJ et al. (2014) A survey of scholarly literature describing the field of bioinformatics education and bioinformatics educational research. CBE Life Sci. Educ., 13(4), 607–603. doi: 10.1187/cbe.13-10-0193
- 25 Matser V. (2016) BioExcel Deliverable 4.2 Competency framework, mapping to current training & initial training plan. *Zenodo*. doi: 10.5281/zenodo.264231
- 26 Jansen BJ et al. (2021) In Data-Driven Personas. Synthesis Lectures on Human-Centered Informatics. Carroll JM. (Ed) Morgan-Claypool, San Rafael, USA. pp1-10. ISBN: 9781636390680
- 27 Tractenberg RE. (2021) Teaching and learning about teaching and learning: the Mastery Rubric for the Master Level (MR-ML). SocArXiv. doi: 10.31235/osf.io/md65v
- 28 Ogilvie S. (2011) Institutions and European trade: Merchant Guilds, 1000-1800. Cambridge University Press, Cambridge, UK. ISBN: 978-1-139-50039-5
- 29 Prak MR (Ed.) et al. (2006) Craft Guilds in Early Modern Low Countries: Work, Power and Representation. Ashgate Publishing, Farnham, UK. ISBN: 978-0-7546-5339-4
- 30 Rashdall H. (1895) The Universities of Europe in the Middle Ages: Volume 1, Salerno, Bologna, Paris. Clarendon Press, Oxford, UK. ISBN-10: 1108018106

6 Acknowledgements & funding

GOBLET Professional Guides build on GOBLET's Critical Guide concept, using layout ideas from the Higher Apprenticeship specification for college-level students in England. The contents herein build on *The Mastery Rubric for Bioinformatics: a tool to support design and evaluation of career-spanning education and training* by Tractenberg *et al.*, 2019¹⁹.

7 Licensing & availability

This Guide is freely accessible under creative commons licence CC-BY-SA 2.5. The contents may be re-used and adapted for education and training purposes.

The Guide is freely available for download via the GOBLET portal (www.mygoblet.org) and the F1000Research Bioinformatics Education and Training Collection (f1000research.com/collections/ bioinformaticsedu?selectedDomain=documents).

8 Disclaimer

Every effort has been made to ensure the accuracy of this Guide; GOBLET cannot be held responsible for any errors/omissions it may contain, and cannot accept liability arising from reliance placed on the information herein.

Organisations

GOBLET

GOBLET (Global Organisation for Bioinformatics Learning, Education & Training; www.mygoblet.org) was established in 2012 as a not-for-profit foundation to unite, inspire and equip bioinformatics trainers worldwide; its mission, to cultivate the global bioinformatics trainer community, set standards and provide high-quality resources to support learning, education and training.

GOBLET's ethos embraces:

- inclusivity: welcoming all relevant organisations & people
- sharing: expertise, best practices, materials, resources
- openness: using Creative Commons Licences
- innovation: welcoming imaginative ideas & approaches
- tolerance: transcending national, political, cultural, social & disciplinary boundaries

For general enquiries, contact info@mygoblet.org.

- Attwood *et al.* (2015) GOBLET: the Global Organisation for Bioinformatics Learning, Education & Training. *PLoS Comput. Biol.*, **11**(5), e1004281.
- Corpas et al. (2014) The GOBLET training portal: a global repository of bioinformatics training materials, courses & trainers. Bioinformatics, 31(1), 140-142.

ELIXIR

ELIXIR is an intergovernmental organisation that brings together life-science resources (databases, software tools, training courses, cloud storage, *etc.*) from across Europe. The aim is to create a single infrastructure, making it easier for scientists to find and share data, exchange expertise, and agree on best practices: elixir-europe.org.

Through its Training Platform, ELIXIR is:

- providing services and tools for bioinformatics training, such as the Training e-Support System, TeSS (tess.elixir-uk.org), the ELIXIR Training Metrics Database (training-metricsdev.elixir-europe.org) and the training Toolkit;
- supporting training providers across Europe by creating and delivering training for developers, researchers and trainers;
- building a sustainable training infrastructure.

Since 2015, the ELIXIR Training Platform and GOBLET have worked closely to promote and develop standards and best practices in bioinformatics training; the outcomes of this enterprise (peer-re-viewed articles, training documents (Guides), posters, slides) are available from the F1000Research Bioinformatics Education & Training collection (f1000research.com/collections/bioinformaticsedu). Together, they have built a Train-the-Trainer (TtT) programme, which comprises a standard curriculum, associated training materials and well-trained instructors. To date, thousands of scientists have benefitted from this programme.

For general enquiries, contact info@elixir-europe.org.

About the authors

Allegra Via (orcid.org/0000-0002-3398-5462)§

Allegra Via has 20 years' experience in academia; her current focus is on educational psychology and curriculum development. She is a research scientist at the IBPM-CNR (Italy), the ELIXIR-IT Training Coordinator, and leads ELIXIR's TtT programme. She is Adjunct

Professor at Sapienza University and University of Bologna, and expert consultant of Sapienza's Teaching Innovation and Quality working group, and of the University of Campania "Luigi Vanvitelli".

- Via A et al. (2017) A new pan-European Train-the-Trainer programme for bioinformatics. Brief. Bioinform., bbx112.
- Via A et al. (2013) Best practices in bioinformatics training for life scientists. Brief. Bioinform., 14(5), 528-537.

Patricia M Palagi (orcid.org/0000-0001-9062-6303)[‡]

Patricia Palagi has more than 21 years' experience teaching bioinformatics, proteomics and programming in Swiss universities and international training programmes. Since 2013, she has led the SIB Training Group; she is the ELIXIR-CH Training Coordinator, leads

ELIXIR's TtT programme, and is Instructor in ELIXIR's TtT courses.

- Palagi PM. (2020) Lessons learned when moving SIB Training courses from in-person to online – anything in bioinformatics can be taught online, but not anyhow. F1000Research, 9, 1148.
- Garcia L et al. (2020) Ten simple rules to make training materials FAIR. PLoS Comput. Biol., 16(5), e1007854.

Jessica M Lindvall (orcid.org/0000-0002-5042-8481)*

Jessica Lindvall is Associate Professor in Bioinformatics at Stockholm University, and joint head of facility for the SciLifeLab Bioinformatics platform in Sweden. She is the ELIXIR-SE Training Coordinator and an ELIXIR TtT instructor.

- Tractenberg RE *et al.* (2019) The Mastery Rubric for Bioinformatics: a tool to support design and evaluation of career-spanning education and training. *PLoS ONE*, **14**(11), *e0225256*.
- Gurwitz KT et al. (2020) A framework to assess the quality and impact of bioinformatics training across ELIXIR. PLoS Comput. Biol., 16(7), e1007976.

Teresa K Attwood (orcid.org/0000-0003-2409-4235)*

Terri Attwood is Professor emerita of Bioinformatics, with more than 25 years' experience teaching bioinformatics in BSc, MSc and PhD programmes, and in courses and summer schools, in the UK and abroad. She wrote the first bioinformatics text-book; her third book was published in 2016:

- Attwood TK & Parry-Smith DJ. (1999) Introduction to Bioinformatics. Prentice Hall. ISBN-10: 0-582-32788-1
- Higgs P & Attwood TK. (2005) Bioinformatics & Molecular Evolution. Wiley-Blackwell. ISBN: 9781405106832
- Attwood TK, Pettifer SR & Thorne D. (2016) Bioinformatics challenges at the interface of biology and computer science: Mind the Gap. Wiley-Blackwell. ISBN: 978-1-119-24345-8
 Affiliations

Sapienza University, Rome (IT); *SIB Swiss Institute of Bioinformatics, Lausanne (CH); *Stockholm University, Stockholm (SE); †The University of Manchester, Manchester (UK).