Stockholms universitet

Ragnhild LunnanBiträdande lektor

Forskningsprojekt

Publikationer

I urval från Stockholms universitets publikationsdatabas

  • SN 2020qlb: A hydrogen-poor superluminous supernova with well-characterized light curve undulations

    2023. Stuart L. West (et al.). Astronomy and Astrophysics 670

    Artikel

    Context. SN 2020qlb (ZTF20abobpcb) is a hydrogen-poor superluminous supernova (SLSN-I) that is among the most luminous (maximum Mg = −22.25 mag) and that has one of the longest rise times (77 days from explosion to maximum). We estimate the total radiated energy to be > 2.1 × 1051 erg. SN 2020qlb has a well-sampled light curve that exhibits clear near and post peak undulations, a phenomenon seen in other SLSNe, whose physical origin is still unknown.

    Aims. We discuss the potential power source of this immense explosion as well as the mechanisms behind its observed light curve undulations.

    Methods. We analyze photospheric spectra and compare them to other SLSNe-I. We constructed the bolometric light curve using photometry from a large data set of observations from the Zwicky Transient Facility (ZTF), Liverpool Telescope (LT), and Neil Gehrels Swift Observatory and compare it with radioactive, circumstellar interaction and magnetar models. Model residuals and light curve polynomial fit residuals are analyzed to estimate the undulation timescale and amplitude. We also determine host galaxy properties based on imaging and spectroscopy data, including a detection of the [O III]λ4363, auroral line, allowing for a direct metallicity measurement.

    Results. We rule out the Arnett 56Ni decay model for SN 2020qlb’s light curve due to unphysical parameter results. Our most favored power source is the magnetic dipole spin-down energy deposition of a magnetar. Two to three near peak oscillations, intriguingly similar to those of SN 2015bn, were found in the magnetar model residuals with a timescale of 32 ± 6 days and an amplitude of 6% of peak luminosity. We rule out centrally located undulation sources due to timescale considerations; and we favor the result of ejecta interactions with circumstellar material (CSM) density fluctuations as the source of the undulations.

    Läs mer om SN 2020qlb
  • The Hydrogen-poor Superluminous Supernovae from the Zwicky Transient Facility Phase I Survey. I. Light Curves and Measurements

    2023. Z. H. Chen (et al.). Astrophysical Journal 943 (1)

    Artikel

    During the Zwicky Transient Facility (ZTF) Phase I operations, 78 hydrogen-poor superluminous supernovae (SLSNe-I) were discovered in less than 3 yr, constituting the largest sample from a single survey. This paper (Paper I) presents the data, including the optical/UV light curves and classification spectra, while Paper II in this series will focus on the detailed analysis of the light curves and modeling. Our photometry is primarily taken by ZTF in the g, r, and i bands, and with additional data from other ground-based facilities and Swift. The events of our sample cover a redshift range of z = 0.06 − 0.67, with a median and 1σ error (16% and 84% percentiles) of zmed=0.265. The peak luminosity covers −22.8 mag ≤ Mg,peak ≤ −19.8 mag, with a median value of -21.48. The light curves evolve slowly with a mean rest-frame rise time of trise = 41.9 ± 17.8 days. The luminosity and timescale distributions suggest that low-luminosity SLSNe-I with a peak luminosity ∼−20 mag or extremely fast-rising events (<10 days) exist, but are rare. We confirm previous findings that slowly rising SLSNe-I also tend to fade slowly. The rest-frame color and temperature evolution show large scatters, suggesting that the SLSN-I population may have diverse spectral energy distributions. The peak rest-frame color shows a moderate correlation with the peak absolute magnitude, i.e., brighter SLSNe-I tend to have bluer colors. With optical and UV photometry, we construct the bolometric luminosity and derive a bolometric correction relation that is generally applicable for converting g, r-band photometry to the bolometric luminosity for SLSNe-I.

    Läs mer om The Hydrogen-poor Superluminous Supernovae from the Zwicky Transient Facility Phase I Survey. I. Light Curves and Measurements
  • The Hydrogen-poor Superluminous Supernovae from the Zwicky Transient Facility Phase I Survey. II. Light-curve Modeling and Characterization of Undulations

    2023. Z. H. Chen (et al.). Astrophysical Journal 943 (1)

    Artikel

    We present analysis of the light curves (LCs) of 77 hydrogen-poor superluminous supernovae (SLSNe I) discovered during the Zwicky Transient Facility Phase I operation. We find that the majority (67%) of the sample can be fit equally well by both magnetar and ejecta–circumstellar medium (CSM) interaction plus 56Ni decay models. This implies that LCs alone cannot unambiguously constrain the physical power sources for an SLSN I. However, 23% of the sample show inverted V-shape, steep-declining LCs or features of long rise and fast post-peak decay, which are better described by the CSM+Ni model. The remaining 10% of the sample favors the magnetar model. Moreover, our analysis shows that the LC undulations are quite common, with a fraction of 18%–44% in our gold sample. Among those strongly undulating events, about 62% of them are found to be CSM-favored, implying that the undulations tend to occur in the CSM-favored events. Undulations show a wide range in energy and duration, with median values (and 1σ errors) being as  and  days, respectively. Our analysis of the undulation timescales suggests that intrinsic temporal variations of the central engine can explain half of the undulating events, while CSM interaction (CSI) can account for the majority of the sample. Finally, all of the well-observed He-rich SLSNe Ib either have strongly undulating LCs or the LCs are much better fit by the CSM+Ni model. These observations imply that their progenitor stars have not had enough time to lose all of the He-envelopes before supernova explosions, and H-poor CSM are likely to present in these events.

    Läs mer om The Hydrogen-poor Superluminous Supernovae from the Zwicky Transient Facility Phase I Survey. II. Light-curve Modeling and Characterization of Undulations
  • Four (Super)luminous Supernovae from the First Months of the ZTF Survey

    2020. Ragnhild Lunnan (et al.). Astrophysical Journal 901 (1)

    Artikel

    We present photometry and spectroscopy of four hydrogen-poor luminous supernovae discovered during the 2-month long science commissioning and early operations of the Zwicky Transient Facility (ZTF) survey. Three of these objects, SN 2018bym (ZTF18aapgrxo), SN 2018avk (ZTF18aaisyyp), and SN 2018bgv (ZTF18aavrmcg), resemble typical SLSN-I spectroscopically, while SN 2018don (ZTF18aajqcue) may be an object similar to SN 2007bi experiencing considerable host galaxy reddening, or an intrinsically long-lived, luminous, and red SN Ic. We analyze the light curves, spectra, and host galaxy properties of these four objects and put them in context of the population of SLSN-I. SN 2018bgv stands out as the fastest-rising SLSN-I observed to date, with a rest-frame g-band rise time of just 10 days from explosion to peak—if it is powered by magnetar spin-down, the implied ejecta mass is only 1 M . SN 2018don also displays unusual properties—in addition to its red colors and comparatively massive host galaxy, the light curve undergoes some of the strongest light-curve undulations postpeak seen in an SLSN-I, which we speculate may be due to interaction with circumstellar material. We discuss the promises and challenges of finding SLSNe in large-scale surveys like ZTF given the observed diversity in the population.

    Läs mer om Four (Super)luminous Supernovae from the First Months of the ZTF Survey
  • Helium-rich Superluminous Supernovae from the Zwicky Transient Facility

    2020. Lin Yan (et al.). Astrophysical Journal Letters 902 (1)

    Artikel

    Helium is expected to be present in the massive ejecta of some hydrogen-poor superluminous supernovae (SLSN-I). However, until now only one event has been identified with He features in its photospheric spectra (PTF10hgi). We present the discovery of a new He-rich SLSN-I, ZTF19aawfbtg (SN2019hge), atz = 0.0866. This event has more than 10 optical spectra at phases from -41 to +103 days relative to the peak, most of which match well with that of PTF10hgi. Confirmation comes from a near-IR spectrum taken at +34 days, revealing Heifeatures with P-Cygni profiles at 1.083 and 2.058 mu m. Using the optical spectra of PTF10hgi and SN2019hge as templates, we examined 70 other SLSNe-I discovered by Zwicky Transient Facility in the first two years of operation and found five additional SLSNe-I with distinct He-features. The excitation of Heiatoms in normal core-collapse supernovae requires nonthermal radiation, as proposed by previous studies. These He-rich events cannot be explained by the traditional(56)Ni mixing model because of their blue spectra, high peak luminosities, and long rise timescales. Magnetar models offer a possible solution since pulsar winds naturally generate high-energy particles, potential sources of nonthermal excitation. An alternative model is the interaction between the ejecta and dense H-poor circumstellar material, which may be supported by observed undulations in the light curves. These six SLSNe-Ib have relatively low-peak luminosities (rest frameM(g) = -20.06 0.16).

    Läs mer om Helium-rich Superluminous Supernovae from the Zwicky Transient Facility
  • A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova

    2018. Ragnhild Lunnan (et al.). Nature Astronomy 2 (11), 887-895

    Artikel

    Hydrogen-poor superluminous supernovae (SLSN-I) are a class of rare and energetic explosions that have been discovered in untargeted transient surveys in the past decade(1,2). The progenitor stars and the physical mechanism behind their large radiated energies (about 1O(51) erg or 1O(44) J) are both debated, with one class of models primarily requiring a large rotational energy(3,4) and the other requiring very massive progenitors that either convert kinetic energy into radiation through interaction with circumstellar material (CSM)(5-8 )or engender an explosion caused by pair-instability (loss of photon pressure due to particle-antiparticle production)(9,10). Observing the structure of the CSM around SLSN-I offers a powerful test of some scenarios, although direct observations are scarce(11,)(12). Here, we present a series of spectroscopic observations of the SLSN-I iPTF16eh, which reveal both absorption and time- and frequency-variable emission in the Mg n resonance doublet. We show that these observations are naturally explained as a resonance scattering light echo from a circumstellar shell. Modelling the evolution of the emission, we infer a shell radius of 0.1 pc and velocity of 3,300 km s(-1), implying that the shell was ejected three decades before the supernova explosion. These properties match theoretical predictions of shell ejections occurring because of pulsational pair-instability and imply that the progenitor had a helium core mass of about 50-55 M-circle dot, corresponding to an initial mass of about 115 M-circle dot.

    Läs mer om A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova
  • Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey

    2018. Ragnhild Lunnan (et al.). Astrophysical Journal 852 (2)

    Artikel

    We present light curves and classification spectra of 17 hydrogen-poor superluminous supernovae (SLSNe) from the Pan-STARRS1 Medium Deep Survey (PS1 MDS). Our sample contains all objects from the PS1. MDS sample with spectroscopic classification that are similar to either of the prototypes SN 2005ap or SN 2007bi, without an explicit limit on luminosity. With a redshift range 0.3 < z < 1.6, PS1. MDS is the first SLSN sample primarily probing the high-redshift population; our multifilter PS1 light curves probe the rest-frame UV emission, and hence the peak of the spectral energy distribution. We measure the temperature evolution and construct bolometric light curves, and find peak luminosities of (0.5-5) x 10(44) erg s(-1) and lower limits on the total radiated energies of (0.3-2) x 10(51) erg. The light curve shapes are diverse, with both rise and decline times spanning a factor of similar to 5 and several examples of double-peaked light curves. When correcting for the flux-limited nature of our survey, we find a median peak luminosity at 4000 angstrom of M-4000 = -21.1 mag and a spread of sigma = 0.7 mag.

    Läs mer om Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey

Visa alla publikationer av Ragnhild Lunnan vid Stockholms universitet