Stockholms universitet

Susanne SjöbergUtbildningsassistent

Publikationer

I urval från Stockholms universitets publikationsdatabas

  • Bubble biofilm

    2020. Susanne Sjöberg (et al.). Biofilm 2

    Artikel

    Microbial mats or biofilms are known to colonize a wide range of substrates in aquatic environments. These dense benthic communities efficiently recycle nutrients and often exhibit high tolerance to environmental stressors, characteristics that enable them to inhabit harsh ecological niches. In some special cases, floating biofilms form at the air-water interface residing on top of a hydrophobic microlayer. Here, we describe biofilms that reside at the air-air interface by forming gas bubbles (bubble biofilms) in the former Ytterby mine, Sweden. The bubbles are built by micrometer thick membrane-like biofilm that holds enough water to sustain microbial activity. Molecular identification shows that the biofilm communities are dominated by the neuston bacterium Nevskia. Gas bubbles contain mostly air with a slightly elevated concentration of carbon dioxide. Biofilm formation and development was monitored in situ using a time-lapse camera over one year, taking one image every second hour. The bubbles were stable over long periods of time (weeks, even months) and gas build-up occurred in pulses as if the bedrock suddenly exhaled. The result was however not a passive inflation of a dying biofilm becoming more fragile with time (as a result of overstretching of the organic material). To the contrary, microbial growth lead to a more robust, hydrophobic bubble biofilm that kept the bubbles inflated for extended periods (several weeks, and in some cases even months).

    Läs mer om Bubble biofilm
  • Microbiomes in a manganese oxide producing ecosystem in the Ytterby mine, Sweden

    2020. Susanne Sjöberg (et al.). FEMS Microbiology Ecology 96 (11)

    Artikel

    Microbe-mediated precipitation of Mn-oxides enriched in rare earth elements (REE) and other trace elements was discovered in tunnels leading to the main shaft of the Ytterby mine, Sweden. Defining the spatial distribution of microorganisms and elements in this ecosystem provide a better understanding of specific niches and parameters driving the emergence of these communities and associated mineral precipitates. Along with elemental analyses, high-throughput sequencing of the following four subsystems were conducted: (i) water seeping from a rock fracture into the tunnel, (ii) Mn-oxides and associated biofilm; referred to as the Ytterby Black Substance (YBS) biofilm (iii) biofilm forming bubbles on the Mn-oxides; referred to as the bubble biofilm and (iv) fracture water that has passed through the biofilms. Each subsystem hosts a specific collection of microorganisms. Differentially abundant bacteria in the YBS biofilm were identified within the Rhizobiales (e.g. Pedomicrobium), PLTA13 Gammaproteobacteria, Pirellulaceae, Hyphomonadaceae, Blastocatellia and Nitrospira. These taxa, likely driving the Mn-oxide production, were not detected in the fracture water. This biofilm binds Mn, REE and other trace elements in an efficient, dynamic process, as indicated by substantial depletion of these metals from the fracture water as it passes through the Mn deposit zone. Microbe-mediated oxidation of Mn(II) and formation of Mn(III/IV)-oxides can thus have considerable local environmental impact by removing metals from aquatic environments.

    Läs mer om Microbiomes in a manganese oxide producing ecosystem in the Ytterby mine, Sweden
  • Rare earth element enriched birnessite in water-bearing fractures, the Ytterby mine, Sweden

    2017. Susanne Sjöberg (et al.). Applied Geochemistry 78, 158-171

    Artikel

    Characterization of a black substance exuding from fractured bedrock in a subterranean tunnel revealed a secondary manganese oxide mineralisation exceptionally enriched in rare earth elements (REE). Concentrations are among the highest observed in secondary ferromanganese precipitates in nature. The tunnel is located in the unsaturated zone at shallow depth in the former Ytterby mine, known for the discovery of yttrium, scandium, tantalum and five rare earth elements.

    Elemental analysis and X-ray diffraction of the black substance establish that the main component is a manganese oxide of the birnessite type. Minor fractions of calcite, other manganese oxides, feldspars, quartz and about 1% organic matter were also found, but no iron oxides were identified. The Ytterby birnessite contains REE, as well as calcium, magnesium and traces of other metals. The REE, which constitute 1% of the dry mass and 2% of the metal content, are firmly included in the mineral structure and are not released by leaching at pH 1.5 or higher. A strong preference for the trivalent REE over divalent and monovalent metals is indicated by concentration ratios of the substance to fracture water. The REE-enriched birnessite has the general formula Mx(Mn3+,Mn4+)(2)O-4 center dot(H2O)(n) with M = (0.37-0.41) Ca + 0.02 (REE + Y), 0.04 Mg and (0.02-0.03) other metals, and with [Mn3+]/[Mn4+] = 0.86-1.00.

    The influence of microorganisms on the accumulation of this REE enriched substance is demonstrated by electron paramagnetic resonance spectroscopy. Results show that it is composed of two or more manganese phases, one of which has a biogenic signature. In addition, the occurrence of C-31 to C-35 extended side chain hopanoids among the identified lipid biomarkers combined with the absence of ergosterol, a fungal lipid biomarker, indicate that the in-situ microbial community is bacterial rather than fungal.

    Läs mer om Rare earth element enriched birnessite in water-bearing fractures, the Ytterby mine, Sweden
  • Effect of Nickel Levels on Hydrogen Partial Pressure and Methane Production in Methanogens

    2016. Anna Neubeck (et al.). PLOS ONE 11 (12)

    Artikel

    Hydrogen (H-2) consumption and methane (CH4) production in pure cultures of three different methanogens were investigated during cultivation with 0, 0.2 and 4.21 mu M added nickel (Ni). The results showed that the level of dissolved Ni in the anaerobic growth medium did not notably affect CH4 production in the cytochrome-free methanogenic species Methanobacterium bryantii and Methanoculleus bourgensis MAB1, but affected CH4 formation rate in the cytochrome-containing Methanosarcina barkeri grown on H-2 and CO2. Methanosarcina barkeri also had the highest amounts of Ni in its cells, indicating that more Ni is needed by cytochrome-containing than by cytochrome-free methanogenic species. The concentration of Ni affected threshold values of H-2 partial pressure (pH(2)) for all three methanogen species studied, with M. bourgensis MAB1 reaching pH(2) values as low as 0.1 Pa when Ni was available in amounts used in normal anaerobic growth medium. To our knowledge, this is the lowest pH(2) threshold recorded to date in pure methanogen culture, which suggests that M. bourgensis MAB1 have a competitive advantage over other species through its ability to grow at low H-2 concentrations. Our study has implications for research on the H-2-driven deep subsurface biosphere and biogas reactor performance.

    Läs mer om Effect of Nickel Levels on Hydrogen Partial Pressure and Methane Production in Methanogens

Visa alla publikationer av Susanne Sjöberg vid Stockholms universitet