
Dynamic vs. Classical Consequence

Denis Bonnay and Dag Westerståhl

Abstract The shift of interest in logic from just reasoning to all forms of informa-
tion flow has considerably widened the scope of the discipline, as amply illustrated
in Johan van Benthem’s recent book Logical Dynamics of Information and Inter-
action. But how much does this change when it comes to the study of traditional
logical notions such as logical consequence? We propose a systematic comparison
between classical consequence, explicated in terms of truth preservation, and a dy-
namic notion of consequence, explicated in terms of information flow. After a brief
overview of logical consequence relations and the distinctive features of classical
consequence, we define classical and dynamic consequence over abstract informa-
tion frames. We study the properties of information under which the two notions
prove to be equivalent, both in the abstract setting of information frames and in the
concrete setting of Public Announcement Logic. The main lesson is that dynamic
consequence diverges from classical consequence when information is not persis-
tent, which is in particular the case of epistemic information about what we do not
yet know. We end by comparing our results with recent work by Rothschild and
Yalcin on the conditions under which the dynamics of information updates can be
classically represented. We show that classicality for consequence is strictly less
demanding than classicality for updates.
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Johan van Benthem’s recent book Logical Dynamics of Information and Interaction
[7] can be seen as a passionate plea for a radically new view of logic. To be sure,
the book is not a philosophical discussion of what logic is but rather an impressive
series of illustrations of what logic can be, with presentations of numerous logical
languages and a wealth of meta-logical results about them. The view is called simply
Logical Dynamics, and contrasted with more traditional views of logic, and also
with the earlier view from e.g. [4], now called Pluralism, in which logic was seen as
the study of consequence relations.

According to Logical Dynamics, logic is not only about reasoning, about what
follows from what, but about all aspects of information flow among rational agents.
Not just proof and inference, but observations, questions, announcements, commu-
nication, plans, strategies, etc. are first-class citizens in the land of Logic. And not
only the output of these activities belong to logic, but also the processes leading up
to it.

This is a fascinating and inspiring view of logic. But how different is it from a
more standard view? In particular, what does it change for the analysis of logical
consequence, which had been the focus of traditional logical enquiry? This paper
attempts some answers to the latter question, with a view to get clearer about the
former.

1 Introduction

. . . in line with the thrust of this book, I see a discipline as a dynamic activity, not as any
of its static products: proofs, formal systems, or languages. Logic is a stance, a modus
operandi, and perhaps a way of life. That is wonderful enough. [7, p. 302]

Logicians will surely recognize this: doing logic is approaching your subject from
a certain stance, a certain view of what the interesting questions are, what tools to
use, what kind of abstractions are called for. The stance itself may be hard to put
into words but is recognizable to the practitioners. Logical Dynamics is not really
recommending a new stance towards logic, it seems to us. The novelty lies in what
is taken to be its subject matter.

A rough object vs. meta level distinction is helpful: According to Logical Dy-
namics, many more object languages can and should be studied with logical meth-
ods than has traditionally been the case. But the form that this study takes is still
of the familiar kind: (a) you introduce a formal language in which a particular va-
riety of information flow can be expressed; (b) you provide a formal semantics and
a deductive apparatus and see what can be proved from a choice of axioms; (c)
you establish facts about these things: expressive power, definability, completeness,
decidability, the structure of proofs, computational complexity, relations to other
languages, etc. Indeed, this is precisely what a large part of Logical Dynamics of
Information and Interaction is devoted to.
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Reflection on logic from this perspective raises intriguing questions. What is it
about a certain form of information flow that makes it apt for investigation by logical
methods? What characterizes the syntactic constructs—the logical constants—used
in the various object languages? Here we focus on just one aspect: the variety of
consequence relations that emerge.

In fact, this variety is so great that it may in the end be just confusing to use the
label “consequence relation” for all of them. Some have rather little to do with ‘what
follows from what’ in any usual sense. But a distinction between two important
kinds can be made: dynamic and classical relations. Very roughly: In order to draw
the conclusion in the dynamic case, it may matter how the information from the
premisses was processed. For example, during that process some information may
get lost. For classical consequence, on the other hand, only the actual information
contained in the premisses matters.

In particular, we are interested in how this distinction applies at the meta level.
In contrast with the object level, where there seems to be no end to the variety of
information-related activities that can be explored, the goals of meta level logical
study seem rather fixed. One wants to know facts about the object level phenomena,
that is, one wants the truth about them. Moreover, these truths are mathematical in
a wide sense, and the only way you are allowed to assert a mathematical truth is
to prove it. So the consequence relations operating at this level concern reasoning
towards truth. This already separates them from a host of consequence relations
resulting from object level phenomena. Does it in fact narrow the options down to
just classical ones?1

To get a feeling for the issues involved here, and the variety of consequence
relations on the market, let us look at a few examples.

• Non-monotonicity 1
One way in which non-monotone consequence relations arise is when trying to
model various kinds of reasoning under uncertainty, default reasoning, abductive
reasoning, etc., where a conclusion is drawn tentatively, in awareness that it may
have to be abandoned in the light of further evidence. There is no claim that the
conclusion really follows from the premisses, and hence no real clash with clas-
sical consequence. Such reasoning is what everyone—even the logician—often
has to resort to in daily life. But obviously it is never accepted in mathematics
as conclusive grounds for a claim, and likewise not in metalogical reasoning. A
number theorist may perhaps say that Goldbach’s Conjecture is likely to be true,
with reference to the so far observed even numbers greater than 2, but never that
it is true (unless she has a proof).

• Non-monotonicity 2
A different motive for rejecting monotonicity is proposed by relevant (or rele-
vance) logicians. The idea is that adding an irrelevant premiss is not allowed.
One question here concerns whether relevant logic is thought to be, in the ter-
minology of John Burgess, descriptive (of the practice of mathematicians) or

1 That is, classical in the sense just introduced. An intuitionistic consequence relation may well be
classical in this sense.
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prescriptive (wanting to reform that practice; see [8] and [20]). In any case, rele-
vantists would seem to claim that relevance is or should be practiced at the meta
level too.
But relevantists do aim at reasoning towards truth. And no one could argue that
adding ‘unnecessary’ premisses, say in the form of a Weakening rule, threat-
ens to lead from true premisses to false conclusions. To understand a relevantist
stand on monotonicity, we need to be precise about which consequence relation
is under discussion. Say that some relevant logic Rel is presented as a natural
deduction system for deriving sequents of the form Γ � φ . Then, if we define

Γ `Rel φ iff there is a finite Γ0 ⊆ Γ s.t. Γ0 � φ is derivable in Rel,

monotonicity will hold.
Thus, for example, {p,q} `Rel p (since {p} � p and {p} is a finite subset of
{p,q}), even though {p,q} � p may not be derivable. So a natural classical con-
sequence relation extends the non-monotone relevantist one, in a way that can
never be harmful, by anybody’s lights, for reasoning towards truth.

• Substructural logic
Weakening is a structural rule, and much recent work in logic rejects or modifies
various such rules, e.g. in Linear Logic. But most of this work is not about truth at
all. For a clear example, consider the Lambek Calculus (see e.g. [3]). Here Weak-
ening, Contraction, and Permutation fail, for the obvious reason that the calculus
aims to describe natural language syntax. Adding words, permuting words, or
contracting two occurrences of the same word, may destroy well-formedness.
This has nothing to do with truth, and indeed nicely illustrates the difference be-
tween consequence relations that logicians study, and the ones they may use in
their own reasoning.

• Contraction-free reasoning about truth
Consider a language for talking about truth: it contains a truth predicate, all in-
stances of Tarski’s T-schema, and some means for self-reference. With classi-
cal logic this leads to inconsistency. It has long been noted that proof-theoretic
derivations of the Liar or Curry’s Paradox rely on the Contraction rule,2 and it has
been suggested that dropping Contraction is a natural way to avoid paradoxes; for
a recent proposal, see [22].
This is a case where the difference between dynamic and classical consequence
seems to matter. From a classical point of view, no one could seriously think
that Contraction (as described in note 2) is an invalid rule. That would be like
someone blaming your proof of a theorem B for using an assumption A twice
(say, an earlier proved lemma), without explicitly saying so. First, you could
retort that since A has been proved, you could easily repeat that proof twice in
your proof of B. But really, the right answer is that the complaint makes no sense.
When you claim that B follows from A (and possibly other assumptions), A and
B are not tokens, although you need to use tokens of them when writing up the

2 See e.g. [9]. We here intend a rule of the type “If Γ ,φ ,φ ` ψ then Γ ,φ ` ψ”. The validity of this
rule need not entail the validity of, say, φ → (φ → ψ) ` φ → ψ .
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proof. They are types, or propositions. And with these abstract objects it makes
no sense to ask how many copies of them you are using.
But these considerations do not apply to a dynamic notion of consequence. An
additional order is introduced: you process one thing before another thing, and
then of course there is no guarantee that the usual structural rules will hold. Even
if propositions are still types (not tokens), their processing happens in time, as it
were.3

• Public announcement
Our concern here, however, is not reasoning about truth, but reasoning with the
aim of arriving at true propositions. Is there a role for dynamics here? Dynamic
phenomena can themselves be expressed in richer logical languages. The clearest
example is perhaps Public Announcement Logic (PAL) (introduced in [16]; see
[7], ch. 3, for an overview). Here an announcement, when it can be made, changes
the information state: situations where the announcement is false are discarded
(‘hard update’). Of course you cannot go around announcing anything: the claim
has to be true in the current situation. What the announcement changes is agents’
knowledge. In other words, this kind of reasoning only makes a difference when
it is (also) about knowledge itself.

Although many non-classical consequence relations studied by logicians are ir-
relevant to our present concern with reasoning towards truth, the dynamic idea of
consequence seems very different from the classical one. But note that rendering
dynamic phenomena in a richer language like PAL is a reduction of dynamic con-
sequence to classical consequence. That is, various dynamic consequence relations
are expressible in PAL and similar logics, but PAL validity itself is classical. This
is in fact part of the program in Logical Dynamics of Information and Interaction.
The following quote is illustrative:

Non-monotonicity is like a fever: it does not tell you which disease causes it. [7, p. 297]

Explicitly accounting for update phenomena in a richer language reveals the causes
of non-monotonicity, but in a classical framework. The question is raised (but not
answered) in the book whether this sort of reduction is always possible. That would
be a very strong vindication of classical logic.

Our project in the rest of this paper is more modest. First, we specify precisely in
what sense classical consequence is related to truth preservation (section 2). Then
we compare classical and dynamic consequence in an update-friendly framework,
both abstractly (section 3) and in the concrete setting of PAL (section 4), and show

3 Zardini presents a formal system without Contraction containing a ‘naive theory of truth’ and
shows that his consequence relation satisfies truth preservation in the following form (simplified):
if Γ ,φ ` ψ , then Γ ` Tr(〈φ〉)→ Tr(〈ψ〉), where 〈φ〉 names φ in the theory. By contrast, Field in
[12] seems to agree with our point about Contraction and Permutation (ibid., pp. 10–11), but argues
for an approach that rejects Excluded Middle (is ‘paracomplete’) as well as truth preservation in
Zardini’s sense. But note that this is a special version of truth preservation, tied to the occurrence
of a truth predicate, and to the meaning of the conditional. As we will see in the next section, since
Field’s preferred consequence relation appears to be reflexive and transitive, there is a clear sense
in which it necessarily preserves truth.
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when the two notions of consequence coincide. Finally, we consider (section 5) a
recent result in [17] on the conditions under which updates themselves are clas-
sical, and show that classicality of updates is a strictly stronger requirement than
classicality of consequence.

2 Classical consequence and truth preservation

Following the remarks on Contraction and Permutation above, we take, in this sec-
tion, consequence relations to hold between sets of sentences (the premisses) and
sentences (the conclusion). The classical idea of logical consequence is as neces-
sary (in some sense) truth preservation. There is no question that such reasoning is
safe if your goal is arriving at the truth. But there are many different consequence
relations that enforce truth preservation, for example, intuitionist as well as classical
(in the sense of accepting excluded middle etc.) ones. So let us point out what they
all have in common.

To begin, there may seem to be two ways to think about truth and truth preserva-
tion. One is in terms of truth at a point (think: possible world). The other is truth in
an interpretation. But at the current abstract level, they are really equivalent.

To see this, fix a language L with its set SentL of sentences. For truth at a point,
suppose π : SentL→℘(X) maps sentences to subsets of a set X of points, i.e. π(φ) is
the set of points at which φ is true. Now consequence as necessary truth preservation
(relative to π) is defined by

(1) Γ `π φ iff
⋂

ψ∈Γ π(ψ)⊆ π(φ)

For the other approach to truth, let a valuation v assign truth values 1 or 0 to
sentences, so we can take v to be a subset of SentL. Say that a sequent (Γ ,φ) is true
in v iff whenever Γ ⊆ v, we have φ ∈ v. Note that sentence truth is a special case:
φ is true in v iff φ ∈ v iff ( /0,φ) is true in v. For any set K of valuations we have a
corresponding notion of truth-preserving consequence:

(2) Γ `K φ iff for all v ∈ K, (Γ ,φ) is true in v.

To see that these approaches are equivalent, let π be given as above, and for each
a ∈ X , let va = {φ : φ is true at a}= {φ : a ∈ π(φ)}, and K = {va : a ∈ X}. Then:

(3) `π = `K

Conversely, if K is any set of valuations, let π(φ) = {v ∈ K : φ ∈ v}. Then again we
obtain (3).

Since the two formats are equivalent, let us choose one: `K . Now stipulate that
an arbitrary relation ` between sets of sentences and sentences is classical iff it is
reflexive and transitive in the following sense:

(R) If φ ∈ Γ , then Γ ` φ .
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(T) If ∆ ` φ , and for all ψ ∈ ∆ , Γ ` ψ , then Γ ` φ .

Note that (R) and (T) entail monotonicity:4

(M) If Γ ` φ and Γ ⊆ ∆ , then ∆ ` φ .

Now our point is this: reflexivity plus transitivity is exactly what constitutes nec-
essary truth preservation in the above sense. This is a well-known fact, but let us
spell it out.

Proposition 1. ` is classical if and only if `= `K , for some K. In fact, we can take
K = Val(`), so ` is classical if and only if `= `Val(`).

Proof. It is obvious that each `K satisfies (R) and (T). In the other direction, suppose
` is classical. It is easy to verify from the definitions that ` ⊆ `Val(`). To prove
the converse inclusion, suppose Γ 6` φ . Define the valuation v as follows: for any
sentence ψ in L, v(ψ) = 1 iff Γ `ψ . By (R), v(Γ ) = 1, and by assumption, v(φ) = 0.
So it is enough to show that v∈ Val(`). Suppose ∆ `ψ and v(∆) = 1; we must show
that v(ψ) = 1. But it follows from (T) and the definition of v that Γ ` ψ , and we are
done.

To repeat, this is well-known. For example, in view of (3), Proposition 1 is a
reformulation of a representation theorem in [7, p. 297].5 But the result is relevant
to our discussion. Any instance of, say, non-monotonicity guarantees. with respect
to any class of interpretations, that you will deduce a false conclusion from true
premisses. That is just the trivial direction of Proposition 1. The slightly less triv-
ial direction says that if you have Reflexivity and Transitivity, there is always at
least one class of interpretations with respect to which you can construe your con-
sequence relation as necessary truth preservation.6

Finally, let us emphasize again that adhering to truth-preservational consequence
relations is perfectly compatible with intuitionistic or (most forms of) relevant con-
sequence. That choice depends on whether you regard particular rules, such as
¬¬φ ` φ or φ ,¬φ ` ψ , as valid.7

4 Another version of transitivity is Cut, in one of these two formulations:

(C1) If ∆ ` ψ and Γ ,ψ ` φ , then ∆ ,Γ ` φ .
(C2) If Γ ` ψ and Γ ,ψ ` φ , then Γ ` φ .

If all sets are finite, we have (cf. [19], p. 17–18): (R)+(T)⇔ (C1)+(R)+(M)⇔ (C2)+(R)+(M).
5 Also in [3], p. 247, and Prop. 7.4 in [4]. We are not sure who first made observation contained
in Proposition 1. It appears in [18], presented without proof as a familiar fact, but apparently it
goes back at least to [15]. The above proof (as well as a generalization of the result to multiple-
conclusion logics) is given in [19] and in [14]. Indeed, Proposition 1 is a cornerstone in the abstract
theory of consequence relations and propositional connectives expounded and elaborated in [14],
especially chs. 1.1 and 3.
6 We may note that the thesis of Logical Pluralism in [2] is in fact that logic studies classical
consequence relations defined as in (1) (they call the points cases). In particular, they observe
(though with some hesitation) that relevant consequence relations should be monotone.
7 That, for example, intuitionistic propositional logic consequence `IL is classical in our sense
means that Proposition 1 holds for it, i.e. `IL is determined by Val(`IL). Since `IL ⊆`CL, Val(`IL)
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3 Two views about consequence

Judging from the previous section, analyzing consequence in terms of truth preser-
vation for propositions does not seem to leave many options open. However, tak-
ing the intuitions of the dynamic perspective seriously, the picture becomes more
complex. When asking whether something follows from some piece of information,
one may ask whether it follows from information already secured and fully avail-
able, or whether it follows from information received along the way, which may not
have been preserved. The first question corresponds to the classical notion of con-
sequence: we look at where we are but not how we got there. In other words, we
are not interested in how information has been received, but only in what follows
from the information that we have. The second question corresponds to a thoroughly
dynamic approach to consequence: rather than looking at where we are, we look at
how we got there. In other words, we are interested in the information we received,
which may end up not being what we have kept. Indeed, these two notions are likely
to come apart because even hard information may not be preserved. Upon learning
something which I did not know, I cease not to know it; I did receive new informa-
tion, which allowed me to make some new inferences (e.g. that this something is
true), but not all that information is being preserved.

We will now try to capture these two intuitions by means of formal definitions in
an abstract dynamic setting.8 Given a set of formulas L, an abstract frame for L is a
structure

F = (Σ ,{[φ ]}φ∈L)

where Σ is a set and each [φ ] : Σ → Σ is a partial function. Elements of Σ are to be
construed as information states and each [φ ] represents the effect of updating a given
information state with the information that φ . Functionality expresses the fact that
information updates are deterministic: the future state of information is completely
determined by the past information state and the extra information that has been
received. Partiality expresses the fact that not every piece of information is compat-
ible with every information state: the (true) information that ¬p is not compatible
with the (truthful) announcement that p. Let the language L be fixed, together with
a class of abstract frames F representing the relevant possible informational scenar-

extends Val(`CL) by allowing valuations that are not Boolean. More precisely, if M is any Kripke
model for IL and w ∈ |M |, the corresponding valuation vM

w (φ), consisting of the true sentences in
M ,w, is equal to Val(`IL) (by completeness), and vM

w is Boolean for ∧ and ∨, but not necessarily
for ¬ or→, since one may have e.g. φ 6∈ vM

w and ¬φ 6∈ vM
w .

8 Technically speaking, in such a setting, there would be more possible definitions of dynamic
consequence than the two we are going to discuss—see [4] for more on this abstract stage setting,
and an investigation into some more possibilities. But we take these two to be representative of the
alternative between an essentially classical approach to consequence and an essentially dynamic
one.
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ios.9 The thoroughly dynamic notion of consequence may be captured by what is
known as Update to Test consequence:

Definition 1 (Update to Test consequence).
φ1, ...,φn �

F
UT ψ iff for every F ∈ F, range([φn]◦ ...◦ [φ1])⊆ fix([ψ]).

(Here range assigns to every function in F its range and fix its set of fixed points.)
This captures the dynamic notion because we ask whether we are in a fixed point
for [ψ] after shifting our information state along [φ1], ..., [φn]. By contrast, the clas-
sical notion will be stated by considering an information state in which [φ1], ..., [φn]
steadily hold; this is known in the dynamic literature as Test to Test consequence:

Definition 2 (Test to Test consequence). φ1, ...,φn �F
T T ψ iff for every F ∈ F,

fix([φ1])∩ ...∩fix([φn])} ⊆ fix([ψ]).

Indeed, this notion of consequence is classical in the sense of section 2: it satisfies
(R) and (T).

Comparing these two notions, �F
UT ⊆ �F

T T but the converse inclusion does not
hold in general. As suggested earlier, it is bound to fail whenever information is
not preserved. So when do classical and dynamic consequence come together? The
intuitive answer is that they do so when the information represented behaves classi-
cally: received information is persistent, it gets into the current informational state
and stays there.

To express this formally, a few definitions are needed. An abstract frame F =
(Σ ,{[φ ]}φ∈L) is idempotent iff for all σ ∈ Σ , for all φ ∈ L, σ [φ ] = σ [φ ][φ ].10

It is commutative iff for all σ ∈ Σ and all φ ,ψ ∈ L, σ [φ ][ψ] = σ [ψ][φ ]. It is f-
commutative iff for all σ ∈ Σ and all φ ,ψ ∈ L, if σ [φ ] = σ , then σ [φ ][ψ] = σ [ψ][φ ].
So f -commutativity is a restricted version of commutativity, which only works for
f ixed points and in the f orward direction.11

Idempotence and f-commutativity are conveniently made into a package deal:

Proposition 2. An abstract frame F =(Σ ,{[φ ]}φ∈L) is idempotent and f-commutative
iff for all φ ∈ L, for any (possibly empty) sequence φ1,...,φn of formulas in L,

[φ ][φ1]...[φn] = [φ ][φ1]...[φn][φ ]

9 Our definitions are relativized to a class F. Alternatively, we could have defined absolute no-
tions by considering the greatest frame encompassing all possible informational scenarios. The
relativized notions will help us make precise the role played by some technical assumptions.
10 Here and below we use the arrow-like notation σ [φ ] =σ ′, rather than the functional [φ ](σ) =σ ′,
to indicate that σ ′ is the result of updating σ with (the information that) φ :

σ
φ−→ σ ′

Note that [φ ][ψ] is the same as [ψ]◦ [φ ]. Note also that [φ ] may be undefined for some σ . Through-
out the paper, we take equalities σ [φ ] = σ ′[ψ] to mean that σ [φ ] is defined iff σ ′[ψ] is, and that,
when they are defined, they are equal.
11 As pointed out to us by Seth Yalcin, f -commutativity can also be understood as a property of
persistence of truth at a state.
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Proof. From Left to Right: The proof is by induction on the length of the sequence
of formulas. For the empty sequence, this is idempotence. Consider a sequence
φ1, . . . ,φn,φn+1 and let σ ∈ Σ be such that σ [φ ][φ1]...[φn][φn+1] exists. By induction
hypothesis, [φ ][φ1]...[φn] = [φ ][φ1]...[φn][φ ]. Hence we may apply f-commutativity
at σ [φ ][φ1]...[φn] = σ ′ for φ and φn+1:

σ
′[φ ][φn+1] = σ

′[φn+1][φ ]

Replacing σ ′[φ ] by σ ′ in the left-hand side yields

σ [φ ][φ1]...[φn][φn+1] = σ [φ ][φ1]...[φn][φn+1][φ ]

as required.

From Right to Left: Idempotence is the case when the sequence is empty. As to
f-commutativity, let σ ∈ Σ be such that σ [φ ] = σ and suppose σ [φ ][ψ] exists.
(Note that if we instead suppose σ [ψ][φ ] exists, so does σ [ψ], and hence, since
σ [φ ] = σ , σ [φ ][ψ] exists.) By hypothesis, σ [φ ][ψ] = σ [φ ][ψ][φ ]. Since σ [φ ] = σ ,
σ [φ ][ψ][φ ] = σ [ψ][φ ], hence σ [φ ][ψ] = σ [ψ][φ ] as required. ut

The equality
[φ ][φ1]...[φn] = [φ ][φ1]...[φn][φ ]

intuitively means that the information that φ is persistent, in the sense that, once re-
ceived, it still holds after updating in turn with φ1,...,φn. Proposition 2 then says that,
taken together, idempotence and f-commutativity precisely amount to information
always being persistent. It will come as no surprise that our two notions of conse-
quence coincide on the class of idempotent and f-commutative abstract frames:12

Proposition 3. An abstract frame F is such that �{F}UT = �{F}T T iff F is idempotent
and f-commutative.

Proof. If a frame F is such that �UT = �T T (suppressing F in the notation), then
it is idempotent and f-commutative: Since �T T satisfies (R), so does �UT . Take
φ ,φ1, . . . ,φn ∈ L, σ ∈ Σ and consider σ [φ ][φ1]...[φn], assuming it is defined. By
(R), φ ,φ1, ...,φn �UT φ . By definition of �UT , this means that range([φn]◦ ...◦ [φ1]◦
[φ ]) ⊆ fix([φ ]). Hence σ [φ ][φ1]...[φn] = σ [φ ][φ1]...[φn][φ ], and the result follows
from Proposition 2.

If a frame is idempotent and f-commutative, then �UT = �T T : First, it is always the
case that �UT ⊆ �T T , so all we need to prove is �UT ⊇ �T T . Assume φ1, ...,φn �T T
ψ , and let σ ′ ∈ range([φn] ◦ ... ◦ [φ1]. There is σ ∈ Σ such that σ [φ1]...[φn] = σ ′.
Using idempotence and f-commutativity we see that σ [φ1]...[φn][φi] = σ [φ1]...[φn],
i.e. σ [φ1]...[φn]∈ fix([φi]), for every i∈{1, ...,n}. Since φ1, ...,φn �T T ψ , this implies
that σ [φ1]...[φn] ∈ fix([ψ]). Thus φ1, ...,φn �UT ψ as required. ut

12 This result generalizes Proposition 2.3 in [21] by providing necessary as well as sufficient con-
ditions for the equivalence to hold.
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4 Classic and dynamic consequence in PAL

Proposition 3 provides an abstract characterization of the properties of information
that make classical and dynamic consequence coincide. This abstract perspective
can be made concrete by looking at specific forms of information update expressed
in specific logical languages. This is the representation step advocated by [7]. We
take such a step in the present section, and instantiate the two consequence rela-
tions within the logic of public announcements, PAL, where information updates
are truthful public announcements.13

Technically, PAL expresses updates by means of an announcement operator [! ],
which goes together with epistemic modalities Ki and a common knowledge modal-
ity C. Sets of models for PAL provide us with concrete versions of the abstract
frames we were considering. More precisely, a concrete frame K is a set of multi-
modal pointed S5-models M ,w, which is closed under submodels and change of
designated world. (Putting the two conditions together, if M ,w∈K and M ′ ⊆M ,
then M ′,w′ ∈K , for w∈ |M | and w′ ∈ |M ′|.) Closure under submodels guarantees
that updates can be performed. The necessity to allow for changes in the designated
world will become clear later.

Any concrete frame K generates an abstract frame

FK = (K , [φ ]}φ∈L)

where [φ ] records the effect of updating with φ . Thus, [φ ](M ,w) is M |φ ,w if
M ,w � φ and undefined otherwise, where M |φ is M restricted to the worlds in
|M | in which φ is true. Given a class of concrete frames K, we write FK for the
class of abstract frames generated by frames in K. A PAL formula φ is valid on a
concrete frame K iff it is true in every pointed model in K , and it is valid on a
class K of concrete frames (notation: �K) iff it is valid on every frame in K. Also,
observe that, for each M ,w ∈K ,

M ,w ∈ fix([ψ])⇔ for all w′ ∈ |M |, M ,w′ � ψ

⇔M � ψ

We can now see the interplay between consequence relations and their concrete
representations through the following two equivalences. First, as the label has it,
Update to Test consequence is the abstract version of testing after updating:

Proposition 4. �K [!φ1] . . . [!φn]Cψ iff φ1, . . . ,φn �
FK

UT ψ .

This correspondence is known,14 but we give a detailed proof here so as to make
fully explicit what the assumptions are.

13 Not all information updates are of this kind, e.g. because what we often get is ‘soft’ information
that might be overridden. We leave a systematic investigation of the behavior of classical and
dynamic consequence in these wider contexts to future research.
14 [6], states that “modulo a few details, dynamic validity amounts to PAL validity” (p. 192). We
spell out these details here.
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Proof. From Left to Right: Assume that �K [!φ1] . . . [!φn]Cψ . Let FK ∈ FK and
M ,w ∈ K be such that M ,w ∈ range([φn] ◦ . . . ◦ [φ1]). We need to show that
M ,w ∈ fix([ψ]), that is, M � ψ . Let w′ ∈ |M |. Since K is closed under change
of designated world, M ,w′ ∈K . Moreover, because the effect of an update does
not depend upon which world is designated, M ,w′ ∈ range([φn]◦ . . .◦ [φ1]). By hy-
pothesis, this guarantees that M ,w′ � Cψ , hence in particular that M ,w′ � ψ , as
required.
From Right to Left: Assume that φ1, . . . ,φn �FK

UT ψ . Let K ∈ K and M ,w ∈
K ; we need to show that M ,w � [!φ1] . . . [!φn]Cψ . That is, if the updates can
be performed, ψ is common knowledge once they have been performed. So let
M ′ = (. . .(M |φ1) . . .)|φn. Thus, M ′,w ∈ K , and by definition of FK, M ′,w ∈
range([φn] ◦ . . . ◦ [φ1]). Therefore, by our initial assumption, M ′,w ∈ fix([ψ]), so
M ′ � ψ , which implies in turn that M ′,w �Cψ . ut

Note that the left to right direction of the proof requires that frames are closed
under change of designated world. If that were not the case, there could be a ¬ψ

world in the model which is not reachable from the designated world so that Cψ

holds even though the model is not a fixed point for updating with ψ . Since that part
of the proof only uses the facticity of C, this also shows that �K [!φ1] . . . [!φn]Cψ

implies �K [!φ1] . . . [!φn]ψ , which is a valid rule in PAL.
Second, Test to Test consequence is the abstract version of a classical notion of

consequence:

Proposition 5. �K (Cφ1∧ . . .∧Cφn)→Cψ iff φ1, . . . ,φn �
FK

T T ψ .

Proof. The left to right direction is similar to the previous proof. Assume that
�K (Cφ1 ∧ . . .∧Cφn)→Cψ . Let FK ∈ FK and M ,w ∈K be such that M ,w ∈
fix([φi]), 1≤ i≤ n. We need to show that M ,w∈ fix([ψ]), i.e. M �ψ . Let w′ ∈ |M |.
Since K is closed under change of designated world, M ,w′ ∈ K . And since
M � φi, we have M ,w′ � Cφi for 1 ≤ i ≤ n. Sy by hypothesis, M ,w′ � Cψ , from
which it follows that M ,w′ � ψ .
Right to Left: Assume φ1, . . . ,φn �

FK

T T ψ . Let K ∈ K and M ,w ∈K be such that
M ,w�Cφ1∧ . . .∧Cφn. We need to show that M ,w�Cψ . Let M ∗ be the submodel
of M consisting of all those worlds that are connected to w. It is sufficient to show
that M ∗,w �Cψ . (Recall that the accessibility relations are equivalence relations.)
Since K is closed under submodels, M ∗,w ∈K . Because M ∗ � Cφ1 ∧ . . .∧Cφn
and all worlds in M ∗ are connected to w, M ∗,w ∈ fix([φi]), 1 ≤ i ≤ n. Hence, by
our initial assumption, M ∗,w ∈ fix([ψ]), which means that ψ is true everywhere in
M ∗, so M ∗,w �Cψ . ut

Let Prop be the set of purely propositional formulas. It is well known that for
such formulas classical consequence and its dynamic version coincide.

Proposition 6. If φ1, . . . ,φn,ψ ∈ Prop, then �K [!φ1] . . . [!φn]Cψ iff �K (Cφ1∧ . . .∧
Cφn)→Cψ .



Dynamic vs. Classical Consequence 13

Viewed from our perspective, Proposition 6 holds because of the special properties
of propositional formulas with respect to updates. Propositional formulas generate
idempotent and f-commutative frames. In the light of Proposition 3, together with
Propositions 4 and 5, this readily implies Proposition 6. But this also suggests a
more general question. Proposition 6 describes sufficient conditions for the con-
crete version of Proposition 3, which gives sufficient and necessary conditions. So,
more generally, for which sublanguages of full modal logic do we have for every
K that �K [!φ1] . . . [!φn]Cψ iff �K (Cφ1 ∧ . . .∧Cφn)→Cψ? Proposition 3 says that
we need to characterize the class of modal formulas that generate idempotent and
f-commutative frames.

We shall consider this question for formulas of modal logic without common
knowledge. This covers PAL without common knowledge by virtue of the reduc-
tion axioms. Let us say that a formula φ is persistent iff, for all concrete frames
K , FK restricted to Prop∪{φ} (i.e. (K ,{[ψ]}ψ∈Prop∪{φ})) is idempotent and f-
commutative. On the face of it, generating idempotent and f-commutative frames is
a property of sets of formulas. But giving a definition for formulas rather than sets
thereof is adequate, because a set Γ ⊇ Prop of formulas generates idempotent and
f-commutative frames iff every formula in Γ is persistent in the sense just defined.
(Testing persistence against propositional formulas is sufficient because the effect of
updating with a non-propositional formula can always be mimicked using a suitably
interpreted propositional formula.) Our question about formulas for which classical
and dynamic consequence coincide may then be thus phrased:

Question 1. What is the class of persistent modal formulas?

Persistence can be analyzed into two more familiar features, corresponding re-
spectively to f-commutativity and idempotence. A formula φ is globally preserved
under submodels iff for any M and M ′ with M ′ ⊆M , if M � φ , then M ′ � φ .
A formula φ is successful if for any M ,w, if M ,w � φ , then M |φ ,w � φ . Global
preservation under submodels is indeed equivalent to the fact that, for any ψ , if
M ,w ∈ fix([φ ]) and M ′,w = [ψ](M ,w) then M ′,w ∈ fix([φ ]). Successfulness is
equivalent in turn to the fact that range([φ ]) ⊆ fix([φ ]). (By the reasoning used in
the proof of Proposition 4, success at a world makes for success at every world.)

Thus, Question 1 actually asks for a characterization of the class of modal for-
mulas that are both successful and globally preserved under submodels. By Corol-
lary 6.4 in [11], a formula is globally preserved under submodels iff it is globally
equivalent to a universal modal formula.15 The long sought-after characterization of
successful formulas was provided in [13] where it is shown that, in S5, all unsuc-
cessful formulas are look-alikes of the infamous Moore formula p∧¬K p. Note that
if we were talking about local, instead of global, preservation under submodels,16

15 A formula φ is globally equivalent to a universal modal formula if there is a formula ψ con-
structed using only (negations of) atoms, conjunction, disjunction and K such that for all M ,
M � φ iff M � ψ .
16 φ is locally preserved under submodels iff M ′ ⊆M , w ∈ |M ′|, and M ,w � φ implies M ′,w �
φ .
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we would be done. As shown in [1], a formula is locally preserved under submod-
els iff it is locally equivalent to a universal formula (we will take the liberty to say
‘locally universal’), and universal formulas are always successful. However, mat-
ters are more complicated when global preservation is concerned: in S5, the Moore
formula is trivially globally preserved under submodels, since it is not globally sat-
isfiable, but it is not successful.

Limiting ourselves from now on to a modal language with only one epistemic
modality (as we in effect did in the previous paragraph), we provide a partial answer
to Question 1. In order to do so, Carnapian disjunctive normal forms for modal
formulas prove useful. (This strategy is inspired by [13].)

Definition 3. A formula δ is in normal form iff it is a disjunction of conjunctions
of the form δ = α ∧2β1 ∧ . . .∧2βn ∧3γ1 ∧ . . .∧3γm, where α and each γi are
conjunctions of literals and each β j is a disjunction of literals.

For the limited class of modal formulas such that their disjunctive normal form
consists of only one disjunct, Question 1 gets a rather satisfactory answer.

Proposition 7. Let δ be a conjunction in normal form. In S5, δ is persistent iff δ is
locally universal.

Proof. From Left to Right: We prove the contrapositive. Assume δ is not locally
universal. Either δ is globally satisfiable (meaning that there is a M such that M �
δ ) or it is not. If δ is not globally satisfiable, note first that it still is locally satisfiable
(meaning that there is a M ,w such that M ,w � δ ), or δ would be locally equivalent
to p∧¬p, which is universal. Being locally but not globally satisfiable, it readily
follows that δ is not successful, hence not persistent, and we are done. So we assume
that δ is globally satisfiable. There has to be a γi such that α ∧2β1∧ . . .∧2βn 6� γi,
since otherwise δ would be equivalent to α ∧2β1 ∧ . . .∧2βn, which is locally
universal. It follows that

(*) α ∧β1∧ ...∧βn∧¬γi is satisfiable.

Take a model M such that M � δ . By (*), it is possible to extend M to a model
M ∪{w} such that M ∪{w},w � α ∧ β1 ∧ . . .∧ βn ∧¬γi and M ∪{w} � δ . But
then M ∪{w}|(α ∧ β1 ∧ ...∧ βn ∧¬γi) 6� δ , so δ is not globally preserved under
submodels.

From Right to Left: It is known that locally universal formulas are successful, see
e.g. [5]. Moreover, by the result in [1], universal formulas are locally preserved
under submodels, and a fortiori globally so. ut

Thus, for conjunctions in normal form, classical and dynamic notions of conse-
quence are equivalent exactly when the information which comes into play is stable,
in the sense of being locally preserved under submodels. We leave it as an open
question whether this result carries over: is it the case that, in S5, for any formula φ ,
φ is persistent iff φ is locally universal?
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5 Classical consequence vs. classical update

In the last two sections we studied the conditions under which abstract and con-
crete frames behave classically with respect to dynamic consequence. Rothschild
and Yalcin in [17] recently asked similar questions, concerning the conditions under
which abstract frames behave classically with respect to updates themselves. Com-
paring results will prove instructive. The main lesson of Proposition 7 is that some
non-propositional formulas pass the classicality test for consequence. Could it be so
for updates as well? The answer is not immediate. Intuitively, being classical with
respect to updates is more demanding than being classical only with respect to the
visible effects of these updates on the consequence relation.

Following Rothschild and Yalcin, being classical with respect to updates means
that informational states and propositional contents can be represented by sets of
worlds, in such a way that updating with φ is taking the intersection of the current
informational state with the set of φ -worlds. When this is so, the abstract frame is
said to be static:17

Definition 4 (Rothschild & Yalcin). An abstract frame (Σ ,{[φ ]}φ∈L) is static iff
there are functions f : L →℘(Σ) and g : Σ →℘(Σ) such that for any σ ∈ Σ ,
g(σ [φ ]) = g(σ)∩ f (φ).

A result similar to Proposition 3 ensues.

Proposition 8 (Rothschild & Yalcin). An abstract frame is static iff it is idempotent
and commutative.

Clearly, commutativity implies f-commutativity, but the converse is not true, even
assuming idempotence. Actually, idempotence and f-commutativity correspond to a
weaker notion of being static where g(σ [φ ]) = g(σ)∩ f (φ) is replaced by g(σ [φ ])⊆
g(σ)∩ f (φ) in Definition 4.

Going concrete, we shall say that a modal formula φ is strongly persistent iff, for
all concrete frames K , FK restricted to Prop∪{φ} is idempotent and commu-
tative. (Just as with ‘persistent’, the definition of ‘strongly persistent’ can be given
for formulas rather than sets of formulas, and for similar reasons.) Here is a full
characterization of the strongly persistent formulas.

Proposition 9. Let φ be any modal formula. In S5, φ is strongly persistent iff φ is
equivalent to a propositional formula.

Proof. The direction from right to left is immediate. We prove the other direction.18

Consider an arbitrary strongly persistent formula φ . First, we note that it is sufficient
to prove the following:

17 This exact definition was to be found in an early version of [17]. The definition in the final
version is slighly more complex, but the extra complexity is irrelevant to our present purpose.
18 Our proof of Proposition 9 is inspired by a simplified proof of Proposition 8 by Johan van
Benthem (private correspondence). Whether there is deeper connection still remains to be seen. Is
there a sense in which the possibility of a classical representation forces the equivalence to purely
propositional formulas?
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(*) If M ,w � φ and M ,w≡Prop M ′,w′, then M ′,w′ � φ ,

where ≡Prop is elementary equivalence restricted to propositional formulas. To see
this, let φ Prop be the set of propositional consequences of φ . We claim that

(**) φ Prop � φ

By compactness, φ is then equivalent to a propositional formula. To prove (**),
assume M ′,w′ � φ Prop and show M ′,w′ � φ . Let Propw′ be the set of propositional
formulas that are true in M ′,w′. Propw′ ∪{φ} is consistent, since otherwise there
would be propositional formulas ψ1, . . . ,ψn in Propw′ such that φ �¬(ψ1∧ . . .∧ψn),
i.e. φ �¬ψ1∨ . . .∨¬ψn, contradicting the fact that M ′,w′ � φ Prop. So there is M ,w
with M ,w � Propw′ and M ,w � φ . M ,w � Propw′ means that M ,w≡Prop M ′,w′

so (*) applies and we have M ′,w′ � φ , as required.19

We now prove (*), assuming that φ is strongly persistent. Consider two struc-
tures M ,w and M ′,w′ in a concrete frame K with M ,w � φ and such that
M ,w≡Prop M ′,w′. Since they are S5-models, we may also assume without loss of
generality that there are no two different worlds satisfying exactly the same propo-
sitional formulas in M or M ′.

Since M ,w � φ , [φ ] is defined on M ,w in FK . Let Propw be the conjunction
of propositional atoms and negations thereof that are true in M ,w. (The proof does
not go through if there is an infinite number of atoms.) [Propw] is also defined on
(M ,w)[φ ]. By commutativity, (M ,w)[φ ][Propw] = (M ,w)[Propw][φ ]. Hence, by
idempotence,

(***) (M ,w)[φ ][Propw] = (M ,w)[φ ][Propw][φ ]

Since M ,w ≡Prop M ′,w′, [Propw] is defined on M ′,w′ too. Moreover, we have
(M ′,w′)[Propw] = (M ,w)[φ ][Propw], since the result of a successful announce-
ment of Propw is always the same one-world structure. Also, it follows from
(***) that (M ′,w′)[Propw] = (M ′,w′)[Propw][φ ]. But then, by commutativity,
(M ′,w′)[φ ][Propw] is defined, which implies that M ′,w′ � φ . This completes the
proof. ut

In the context of PAL, classicality with respect to consequence only and clas-
sicality with respect to updates in general end up being two very different things.
In the second case, only propositional formulas pass the test. Requiring classicality
with respect to updates in general really means dealing with announcements that are
deprived of epistemic content. By contrast, in the first case, universal formulas do
pass the test. Requiring classicality with respect to consequence is compatible with
information that has epistemic content, as long as this epistemic content is about
knowledge rather than doubts.

19 The first part of the proof is well-known from model theory, relying only on compactness and
the fact that φ Prop is closed under disjunction; see [10], Lemma 3.2.1.
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6 Conclusion

What does logical dynamics tell us about logical consequence? Our focus has been
properties of content and how they should be represented. Such questions are famil-
iar in formal semantics, regarding whether certain phenomena (anaphora, presuppo-
sitions, etc.) should be given a classical account in terms of propositions interpreted
as sets of possible worlds or dynamically represented in terms of context change
potentials. Debates regarding logical consequence typically take a different form.
The focus is on the validity of inference rules, and the model-theoretic definition
of logical consequence most often remains classical. But, in principle, there is no
telling apart the question of content and the question of validity: some rules may be
valid only with respect to some particular types of contents. From the dynamic per-
spective, this becomes clear with the splitting of logical consequence into a classical
and a dynamic notion. The broadest notion is the dynamic one, which is about what
follows from the information received. In this context, classicality for logical con-
sequence emerges as a property of content: when information is persistent, dynamic
consequence boils down to the standard semantic definition in terms of preservation
of truth and satisfies the classical structural rules.

This new take on logical consequence is also a new take on the dynamic versus
classical dispute in semantics. The dispute has several faces: dynamic or classi-
cal what? Asking the question about updates is not the same as asking the ques-
tion about logical consequence. Rothschild and Yalcin conclude their paper [17] by
asking about classes of semantic systems which would lie between the static sys-
tems and the information-sensitive systems. Our static systems (the idempotent and
f-commutative frames) constitute such a class: they may be information-sensitive
for updates, but they are information-insensitive for logical consequence. This sug-
gests a fully parametric approach: given a certain kind of manifestation of content
(through logical consequence, updates of common ground, but also possibly other
manifestations, such as, say, presupposition accommodation), what are the proper-
ties of content that make a classical analysis possible or force a dynamic account?
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