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0.1 Thirty years of Generalized Quantifiers

It is now more than 30 years since the first serious applications of Gener-

alized Quantifier (GQ) theory to natural language semantics were made:

Barwise and Cooper (1981), Keenan and Stavi (1986), Higginbotham

and May (1981). Richard Montague had in effect interpreted English

NPs as (type 〈1〉) generalized quantifiers (see Montague (1974)),1 but

without referring to GQs in logic, where they had been introduced by

Mostowski (1957) and, in final form, Lindström (1966). Logicians were

interested in the properties of logics obtained by piecemeal additions to

first-order logic (FO) by adding quantifiers like ‘there exist uncoutably

many’, but they made no connection to natural language.2 Montague

Grammar and related approaches had made clear the need for higher-

type objects in natural language semantics. What Barwise, Cooper, and

the others noticed was that generalized quantifiers are the natural inter-

pretations not only of noun phrases but in particular of determiners.3

This was no small insight, even if it may now seem obvious. Logi-

cians had, without intending to, made available model-theoretic ob-

jects suitable for interpreting English definite and indefinite articles,

the aristotelian all, no, some, proportional Dets like most, at least

half, 10 percent of the, less than two-thirds of the, numeri-

cal Dets such as at least five, no more than ten, between six

and nine, finitely many, an odd number of, definite Dets like the,

the twelve, possessives like Mary’s, few students’, two of every

professor’s, exception Dets like no...but John, every...except Mary,

and boolean combinations of all of the above. All of these can—if one

wants!—be interpreted extensionally as the same type of second-order

1 In this paper I use the classical terminology, but the reader is free to substitute
everywhere ‘DP’ for ‘NP’, and ‘NP’ for ‘N’.

2 Long before them, however, Frege had introduced quantifiers as second-order
relations, and he did consider these for interpreting Dets like all and some,
although his main interest was quantification in logic, where the unary ∀ was
enough. But it was Montague’s idea of interpreting NPs as type 〈1〉 generalized
quantifiers that marked the real starting-point for compositional model-theoretic
semantics for natural languages.

3 All languages appear to have rich means of expressing quantification. Some
languages make scarce or no use of Dets but rely instead on ‘A quantification’,
where ‘A’ stands for adverbs, auxiliaries, affixes, and argument structure
adjusters; see Bach et al. (1995) for this terminology and many examples. But
whatever words or morphemes are used, they can be interpreted, just like Dets,
as type 〈1, 1〉 quantifiers. It has been claimed that some languages lack NPs, or
in general phrases interpretable as type 〈1〉 quantifiers. But the point here is that
〈1, 1〉 is the basic type of quantification in all natural languages; see Peters and
Westerst̊ahl (2006), ch. 0, for discussion.
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objects, namely, (on each universe of discourse) binary relations between

sets. Given the richness of this productive but seemingly heterogeneous

class of expressions, a uniform interpretation scheme was a huge step.

Further, the tools of logical GQ theory could be brought to bear on

putative Det interpretations, which turned out to be a subclass of the

class of all type 〈1, 1〉 quantifiers with special traits. The three pioneer

papers mentioned above offered numerous cases of novel description, and

sometimes explanation, of characteristic features of language in terms of

model-theoretic properties of the quantifiers involved.

This development has continued, and still goes on. Many of the early

results have reached the status of established facts in (most of) the

linguistic community, and generalized quantifiers are by now standard

items in the semanticist’s toolbox. In the following sections I will, after

a few preliminaries, indicate some of the most important achievements

of GQ theory applied to natural language. Each will be presented in this

format: first, a feature of language will be identified, and then we will

see what GQ theory has to offer. In most cases I will only be able to

outline the main issues, and give references to more detailed accounts.

0.2 Definitions, examples, terminology

1 in ‘type 〈1, 1〉’ stands for 1-ary relation, i.e. set, so a type 〈1, 1〉 quan-

tifier (from now on I will often drop the word ‘generalized’) is (on each

universe) a relation between two sets, a type 〈1, 1, 1, 1〉 quantifier a re-

lation between four sets, a type 〈1, 2〉 quantifier a relation between a set

and a binary relation. In general, type 〈n1, . . . , nk〉 signifies a relation

between relations R1, . . . , Rk, where Ri is ni-ary.

In model theory, a relation is always over a universe, which can be

any non-empty set M . In a linguistic context we can think of M as a

universe of discourse. So by definition, a quantifier Q of type 〈n1, . . . , nk〉
is a function associating with eachM a quantifier QM on M of that type,

i.e. a k-ary relation between relations over M as above. For Ri ⊆Mni ,

(1) QM (R1, . . . , Rk)

means that the relation QM holds for the arguments R1, . . . , Rk.4

4 We may define instead, as in Lindström (1966), Q as a class of models of type
〈n1, . . . , nk〉. This is really just a notational variant; we have

(M,R1, . . . , Rk) ∈ Q ⇐⇒ QM (R1, . . . , Rk)
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QM is often called a local quantifier (and Q a global one). In some

applications, the universe can be held fixed, so a local perspective is

adequate. But in others, one needs to know how the same quantifier

behaves in different universes. It is important to keep in mind that

quantifiers are essentially global objects.5

As noted, the most important type in natural language contexts is

〈1, 1〉. Here are the interpretations of some of the Dets mentioned in the

previous section: For all M and all A,B ⊆M ,

(2) allM (A,B)⇔ A ⊆ B
someM (A,B)⇔ A ∩B 6= ∅
noM (A,B)⇔ A ∩B = ∅
mostM (A,B)⇔ |A ∩B| > |A−B| (|X| is the cardinality of X)

less than two-thirds of theM (A,B)⇔ |A ∩B| < 2/3 · |A|
at least fiveM (A,B)⇔ |A ∩B| ≥ 5

between six and nineM (A,B)⇔ 6 ≤ |A ∩B| ≤ 9

finitely manyM (A,B)⇔ A ∩B is finite

an odd number ofM (A,B)⇔ |A ∩B| is odd

the twelveM (A,B)⇔ |A| = 12 and A ⊆ B
some students’M (A,B)⇔ student∩{a :A∩{b :has(a, b)} ⊆ B} 6= ∅
every. . . except MaryM (A,B)⇔ A−B = {m}

The notation used in (1) and (2) is set-theoretic. Linguists often pre-

fer lambda notation, from the simply typed lambda calculus. This is a

functional framework, where everything, except primitive objects like

individuals (type e) and truth values (type t), is a function. Sets of in-

dividuals are (characteristic) functions from individuals to truth values;

thus of type 〈e, t〉. In general, 〈σ, τ〉 is the type of functions from objects

of type σ to objects of type τ . Binary relations are of type 〈e, 〈e, t〉〉, type

〈1〉 quantifiers now get the type 〈〈e.t〉, t〉, and type 〈1, 1〉 quantifiers are

of type 〈〈e, t〉〈〈e.t〉, t〉〉.
If function application is seen as the major operation that composes

meanings (as Frege perhaps thought and Montague showed that one

could assume in many, though not all, cases), then the functional nota-

tion serves a compositional account well. For example, while

5 Couldn’t we simply let a quantifier Q be a second-order relation over the class V
of all sets, and then define QM as the restriction of Q to relations over M? This
works for some quantifiers but not others (it works for Ext quantifiers; see
section 0.4). For example, the standard universal quantifier ∀ would then denote
{V }, but the restriction to a set M is ∅, rather than {M} as desired.
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(3) Mary likes Sue.

is simply rendered as

like(m, s)

in FO, giving likes the type 〈e, 〈e, t〉〉 allows it to combine with the

object first, as it should on a compositional analysis if likes Sue is a

constituent of (3), and then with the subject, yielding

like(s)(m)

Similarly,

(4) Some students smoke.

could be rendered as

some(student)(smoke)

(where some, student, smoke are constants of the appropriate types),

reflecting the fact that some students is a constituent of (4). So far

there are no lambdas. But suppose some is not a constant but rather

defined as λXλY ∃x(X(x) ∧ Y (x)). Then (4) would be rendered

(5) λXλY ∃x(X(x) ∧ Y (x))(student)(smoke)

which after two lambda conversions becomes

∃x(student(x) ∧ smoke(x))

This is the standard FO translation of (4), but now obtained com-

positionally. In this chapter I focus on succinct formulation of truth

conditions of quantified sentences (not so much on their compositional

derivation), and on model-theoretic properties of quantifiers, and then

the relational set-theoretic notation seems simplest.

There also a middle way: skip the lambdas but keep the functional

rendering of quantifiers, using ordinary set-theoretic notation (as in e.g.

Keenan and Stavi (1986)). This makes a type 〈1, 1〉 quantifier a function

mapping sets (N extensions) to type 〈1〉 quantifiers (NP extensions),

which is just how Dets work. In principle, one can choose the notation

one prefers; it is usually straightforward to translate between them.6

6 See, however, Keenan and Westerst̊ahl (2011), pp. 876–7, for some additional
advantages of the functional version.
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0.3 Noun phrases

We already saw that quantified NPs, consisting of a determiner and a

noun, are most naturally interpreted as type 〈1〉 quantifiers, i.e. on each

universe M , as sets of subsets of M . For example, the extension of three

cats is the set of subsets of M whose intersection with the set of cats has

exactly three elements, and the extension of no students but Mary is

the set of subsets of M whose intersection with the set of students is

the unit set {Mary}. What happens is just that the first argument (the

restriction argument) of the type 〈1, 1〉 quantifier Q that the Det denotes

is fixed to a given set A. The operation is called restriction or freezing :

Q and A yield a type 〈1〉 quantifier QA. Normally one has A ⊆M , but

in principle we should define the action of QA on any universe M . This

is done as follows: for all M and all B ⊆M ,7

(6) (QA)M (B) ⇐⇒ QA∪M (A,B)

Next, there is a class of quantified NPs that do not freeze to a noun

with fixed extension like cat, but instead to a variable noun like thing,

which can be taken to denote the universe. Some of these are lexicalized

as words in English. But the interpretation mechanism is just as in (6),

except that A = M . For example,

(7) everythingM (B)⇔ (everything)M (B)⇔ (everyM )M (B)

⇔ everyM (M,B)⇔M ⊆ B ⇔ B = M

Similarly, applying (6) we obtain

(8) somethingM (B)⇔ B 6= ∅
nothingM (B)⇔ B = ∅
at least three thingsM (B)⇔ |B| ≥ 3

most thingsM (B)⇔ |B| > |M −B|
etc.

Here we note that the first two are the standard universal and existential

quantifiers of FO: ∀ and ∃. GQ theory started as generalizations of these:

Mostowski (1957) considered type 〈1〉 quantifiers that place conditions

on the cardinalities of B and M−B, as all the quantifiers listed above do.

But the connection to the semantics of NPs was not then a motivation.

7 See Peters and Westerst̊ahl (2006), ch. 4.5.5, for arguments why this is the
correct definition, rather than, say, (QA)M (B)⇔ A ⊆M & QM (A,B).
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What about NPs that don’t have Dets? A typical case are those denot-

ing a single individual, in particular proper names. The most straight-

forward interpretation of a name is as an element of the universe: Mary

denotes m. However, Montague devised a treatment of names as type

〈1〉 quantifiers too, partly for the reason that they are easily conjoined

with quantified NPs, as in

(9) Mary and three students went to the party.

Thus, for each individual a, the type 〈1〉 quantifier Ia is defined as fol-

lows: for all M and all B ⊆M ,

(10) (Ia)M (B) ⇐⇒ a ∈ B

Here we have not required that a ∈ M ; if not, (Ia)M is simply empty.8

But if a ∈M , (Ia)M is the principal filter (over M) generated by a.

The quantifiers Ia are called Montagovian individuals. (9) also illus-

trates that boolean combinations of quantfiers (of the same type) works

smoothly and as expected: in the type 〈1〉 case:

(11) (Q ∧Q′)M (B) ⇐⇒ QM (B) and Q′M (B)

(Q ∨Q′)M (B) ⇐⇒ QM (B) or Q′M (B)

(¬Q)M (B) ⇐⇒ not QM (B)

So in (9), Mary and three students is conjoined from the NPs Mary

and three students, each interpretable as a type 〈1〉 quantifier, and

the interpretation of the conjoined NP is the conjunction of these two.

Similarly, we get the obvious interpretations of NPs like John and Mary,

Fred or Mary, but not Sue, etc. Summing up, interpreting names as

Montagovian individuals provides us with interpretations of conjoined

NPs that would otherwise not be easily available: boolean operations are

defined on quantifiers but not on elements of the universe.

This takes care of a vast majority of English NPs. A kind not men-

tioned so far are bare plurals, but these can be (roughly) treated as if

they had a null (universal or existential) Det:

Firemen wear helmets ≈ All firemen wear helmets

Firemen are available ≈ Some firemen are available

8 So on this analysis, if Mary is not in the universe of discourse, all positive claims
about her (that she has a certain property) are false. Note that requiring that
a ∈M changes nothing: for all a, all M , and all B ⊆M , a ∈ B ⇔ a ∈M & a ∈ B.
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But what about the following?

(12) Only firemen wear black helmets.

(13) Only John smokes.

If we allow that John denotes the singleton {j}, it might seem that these

two sentences have the same form, namely,

only A are B,

and that only is a Det whose interpretation is onlyM (A,B)⇔ ∅ 6= B ⊆
A. However, several things speak against idea. First, we can agree that

(12) and (13) have the same form, but that the form is rather

only Q are B,

where Q is an NP. After all, John is an NP, and firemen too, if taken

as a bare plural. And other NPs work as well:

(14) Only the three boys were rescued.

But then only modifies an NP and is not a Det, and the interpretation

of [only NP] is not obtained along the lines of (6).9 In the next section

we will see another reason why only cannot be a Det.

Let me also mention that there are NPs formed by Dets applying to

more than one N argument, as in

(15) More men than women smoke.

9 What do these NPs mean, i.e. which type 〈1〉 quantifiers interpret them? Try:

(i) (only QA)M (B) ⇐⇒ QM (A,B) & B ⊆ A

This actually gives correct truth conditions for (12)–(14), provided we (a) use

the decomposition of Ia as some{a}, i.e. we use the fact that Ia = some{a}; (b)
similarly decompose the existential reading of bare plurals. (If that reading is
given by the quantifier (Ce,pl)M (B)⇔ C ∩B 6= ∅, so C = firemen in our
example, then we have Ce,pl = someC .) But this is complicated by the fact that
such decomposition is not unique (see Westerst̊ahl (2008) for more about
decomposition), and also that only has other uses. For example,

(ii) Only ten boys were rescued.

has, besides the reading given by (i), the reading (with focus on boys) that
exactly ten boys were rescued, but that others (e.g. girls) might also have been
rescued. Then it is truth-conditionally equivalent to Ten boys were rescued,
and only is rather a pragmatic addition that this number is remarkable in some
way. Indeed, the complex semantics of only and even is crucially tied to focus
phenomena, which are partly pragmatic; see Rooth (1996) for a survey.
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This is quite naturally seen as a type 〈1, 1, 1〉 quantifier more than ap-

plied to two noun denotations, yielding—along lines generalizing (6)—a

type 〈1〉 quantifier interpreting the NP more men than women:

more thanM (A,B,C) ⇐⇒ |A ∩ C| > |B ∩ C|

I will not deal further with such Dets here; see Keenan and Westerst̊ahl

(2011), sect. 19.2.3, for more examples and discussion.

0.4 Domain restriction

Sentences like

(16) Most students smoke.

have a perfectly clear constituent structure, i.e.

(16)′ [S [NP [Det most] [N students]] [V P smoke]]

or, schematically,

(16)′′ [QA]B

So it is obvious that the restriction argument A of Q plays a very differ-

ent syntactic role than the nuclear scope argument B. Is there a semantic

counterpart to this?

Indeed there is, and this is the most characteristic trait of type 〈1, 1〉
quantifiers that interpret natural language Dets. Intuitively, the do-

main of quantification is restricted to A. Technically, this can be de-

scribed via the model-theoretic notion of relativization. For any Q of

type 〈n1, . . . , nk〉, the relativization of Q is the quantifier Qrel of type

〈1, n1, . . . , nk〉 defined by

(Qrel)M (A,R1, . . . , Rk) ⇐⇒ QA(R1 ∩An1 , . . . , Rk ∩Ank)

In particular, for Q of type 〈1〉, Qrel has type 〈1, 1〉 and

(17) (Qrel)M (A,B) ⇐⇒ QA(A ∩B)

What Qrel does is to take its first argument as a universe and describe

the action of Q on that universe. That is, Qrel(A, . . .) ‘simulates’ Q with

A as its domain of quantification. This means that the idea that the

first argument of a type 〈1, 1〉 Det interpretation Q provides the domain
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of quantification can be expressed as follows: Q is the relativization of

some type 〈1〉 quantifier.

Historically, this crucial property of Det interpretations was approached

in a different way. It was noticed early on (Barwise and Cooper, 1981;

Higginbotham and May, 1981; Keenan, 1981) that these quantifiers have

the property of conservativity : for all M and all A,B ⊆M ,

(Conserv) QM (A,B) ⇐⇒ QM (A,A ∩B)

This can be easily checked in each case, e.g. the following sentence

pairs are not only equivalent but trivially so, in that the second sentence

contains an obvious redundancy.

(18) a. Most students smoke.

b. Most students are students who smoke.

(19) a. All but five teams were disqualified.

b. All but five teams are teams that were disqualified.

(20) a. Q As are B

b. Q As are As that are B

Conserv rules out many type 〈1, 1〉 quantifiers that are quite natu-

ral from a logical or mathematical point of view, but cannot serve as

interpretations of English determiners, for example,

(21) moreM (A,B)⇔ |A| > |B|
IM (A,B)⇔ |A| = |B| (the equicardinality or Härtig quantifier)

It also rules out only as a Det: interpreted as suggested in the previous

section it would not be Conserv. Note that all these quantifiers are

easily expressed in English; for example, moreM (A,B) says There are

more As than Bs, and onlyM (A,B) would say There are Bs and all

Bs are As. But the point is that they do not interpret English deter-

miners.

Conserv contains part of the idea of domain restriction, since it says

in effect that the elements of B−A do not matter for the truth value of

QM (A,B). But it says nothing about elements of the universe that are

outside both A and B, i.e. in M − (A∪B). For example, it doesn’t rule

out a quantifier unex that behaves as every on universes with at most

100 elements, and as some on larger universes.

Although a quantifier Q may associate any local quantifier QM on

a universe M , it seems reasonable to say that unex, even though it is
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Conserv (and definable in first-order logic), is not the same on all

universes, or that it is not uniform. The following property, introduced

in van Benthem (1984) under the name of extension, goes a long way to

capture the idea of sameness or uniformity over universes. It applies to

quantifiers of all types; here is the type 〈1, 1〉 case:

(Ext) If A,B ⊆M ⊆M ′, then QM (A,B)⇔ QM ′(A,B).

In other words, what the universe is like outside the arguments A

and B doesn’t matter. This rules out quantifiers like unex. But all the

other type 〈1, 1〉 quantifiers shown so far are Ext. And it is easy to

see that relativized quantifiers are always Ext. Among the type 〈1〉
quantifiers looked at so far, all are Ext except ∀ (everything) and most

things. Significantly, the latter two involve a noun thing that refers to

the universe, and in these cases (as opposed to something or nothing),

whether QM (B) holds or not depends also on the complement M − B.

For example, ∀M (B) says that M −B is empty, and so Ext fails.

For Det interpretations, Ext should be part of the idea of domain

restriction, even if the rationale for Ext goes far beyond that. If the truth

value of QM (A,B) could change when the universe M is extended, we

could hardly say that A was the domain of quantification. Now it turns

out that Conserv and Ext together exactly capture domain restriction.

The following fact is essentially trivial but basic, so I will give the proof.

Fact 0.1 A type 〈1, 1〉 quantifier is Conserv and Ext if and only if

it is the relativization of a type 〈1〉 quantifier.

Proof If Q is of type 〈1〉 it is straightforward to check that Qrel is

Conserv and Ext. Conversely, suppose the type 〈1, 1〉 quantifier Q′ is

Conserv and Ext. Define Q of type 〈1〉 by

QM (B)⇔ Q′M (M,B)

Then we have, for all M and all A,B ⊆M ,

(Qrel)M (A,B)⇔ QA(A ∩B) (def. of Qrel)

⇔ Q′A(A,A ∩B) (def. of Q)

⇔ Q′M (A,A ∩B) (Ext)

⇔ Q′M (A,B) (Conserv)

That is, Q′ = Qrel.
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So we have a clear model-theoretic characterization of the special se-

mantic role of the restriction argument of Dets. A modelM = (M,A,B)

can be depicted as follows.

&%
'$

&%
'$
A∩BA−B

B−A

M−(A∪B)

M

Figure 0.1 A model of type 〈1, 1〉

Conserv says that B−A doesn’t matter for whether QM (A,B) holds

or not. Ext says that M−(A ∪ B) doesn’t matter. The only sets that

matter are A−B and A ∩ B, both subsets of A. That’s what it means

that Q restricts the domain of quantification to its first argument.

In addition, it seems that Ext is a kind of semantic universal: All

‘reasonable’ quantifiers, except some of those who involve a predicate like

thing, satisfy it. Ext also lets us simplify notation and write Q(A,B)

instead of QM (A,B); a practice I will follow whenever feasible.

0.5 Quantity

You would think quantifiers had something to do with quantities, and

indeed we see directly that most of the Det interpretations in (2) are

perfectly good answers to the question

(22) How many As are B?

So it is the number of elements in the concerned sets that matter, not

the elements themselves. Formally, if we have two models as in Fig. 0.2

the requirement is

(Isom) If the corresponding four sets in Figure 0.2 have the same car-

dinality, then QM (A,B)⇔ QM ′(A′, B′).

This property is called isomorphism closure in model theory, since the

antecedent amounts the existence of an isomorphism from M to M′.
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&%
'$

&%
'$
A∩BA−B

B−A

M−(A∪B)

M

&%
'$

&%
'$
A′∩B′A′−B′

B′−A′

M′−(A′∪B′)

M′

Figure 0.2 Two models of type 〈1, 1〉

The notion of isomorphism applies to models of any type, and hence so

does Isom.

In the case of a type 〈1, 1〉 quantifier satisfying Conserv and Ext,

Isom amounts to the following:

(23) If |A−B| = |A′−B′| and |A∩B = |A′∩B′| then Q(A,B)⇔ Q(A′,B′).

This is why Q(A,B), for Conserv, Ext, and Isom Q, answers question

(22). It means that these quantifiers can be seen as binary relations

between numbers; in the case of finite models between natural numbers.

This is a huge simplification; recall that by definition quantifiers are

operators that with each universe (non-empty set) associate a second-

order relation on that set. Now this is reduced to a (first-order) relation

between numbers, with no mention of universes. For example, with |A−
B| = m and |A ∩B| = n,

all (m,n)⇔ m = 0

some (m,n)⇔ n > 0

most (m,n)⇔ n > m

an odd number of (m,n)⇔ n is odd

This also simplifies the model-theoretic study of the expressive power of

quantifiers. It follows from Fact 0.1 that, under Isom, Q and Qrel define

the same binary relation between numbers (where Q has type 〈1〉), and

it is much easier to obtain results for type 〈1〉 quantifiers than for any

other types.

A weaker version of Isom, called Perm, has the same definition except

that M ′ = M . This is closure under automorphisms or, equivalently,

under permutations (since every permutation of the universe M induces

an automorphism on M). If one is working with a fixed universe of

discourse, Perm is the natural choice. One easily construes artificial
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examples of quantifiers that are Perm but not Isom. (For example, let

a be a fixed object, and let QM = someM if a ∈M and QM = everyM
otherwise.) In the presence of Ext, however, the difference disappears;

one can show that the following holds for Q of any type.

Fact 0.2 If Q is Ext and Perm, then Q is Isom.

But some of the Det interpretations in (2) are not Isom (not even

Perm): Henry’s, some students’, every except Mary, and likewise

the Montagovian individuals Ia. This makes perfect sense: all of these

depend on a fixed property like being a student, or a fixed individual like

Mary. Permuting the elements of the universe may map student to cat,

or Mary to Henry. Also, these quantifiers occur less naturally as answers

to (22); cf.

(24) a. How many dogs are in the pen?

b. At least three/no/more than half of the dogs are in the pen.

c. ? Henry’s dogs are in the pen.

From a logical point of view, one might then prefer to generalize these

second-order relations by taking the additional set or individual as ex-

tra arguments. Then, some students’ would be of type 〈1, 1, 1〉, and

every except Mary of type 〈1, 1, 0〉, where 0 now stands for an indiv-

dual. These quantifiers would all be Isom. Logicians usually look at

model-theoretic objects ‘up to isomorphism’, and indeed closure under

isomorphism was part of Mostowski’s and Lindström’s original defini-

tion of a generalized quantifier. But from a linguistic perspective, the

type should correspond to the syntactic category of the relevant expres-

sion. As long as there are independent reasons to think of Henry’s,

some students’, every except Mary etc. as Dets, one would want to

to interpret them as type 〈1, 1〉 quantifiers.

0.6 Negation

The most common occurrence of negation in English is not the logician’s

sentential negation, ‘it is not the case that’, but VP negation. (25b) can

be true when (25a) is false.

(25) Two-thirds of the students smoke.

a. Two-thirds of the students don’t smoke.

b. It is not the case that two-thirds of the students smoke.
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VP negation corresponds to a natural boolean operation on type 〈1〉
quantifiers: In addition to (11), we have

(26) (Q¬)M (B) ⇐⇒ QM (M −B)

This operation is called inner negation or, in Keenan’s terminology, post-

complement. Like the other boolean operations, it applies also to Con-

serv and Ext type 〈1, 1〉 quantifiers, and combined with normal (outer)

negation it yields a natural notion of a dual quantifier; in the type 〈1, 1〉
case:

(27) (Q¬)(A,B) ⇐⇒ Q(A,A−B)

(28) Qd = ¬(Q¬) = (¬Q)¬

For example, no is the inner negation of all, some is the dual, and not all

is the outer negation. Medieval Aristotle scholars noticed early on that

these four quantifiers can be geometrically displayed in a square of op-

position. In fact, we can now see that every Conserv and Ext type 〈1, 1〉
quantifierQ spans a square of opposition square(Q) = {Q,Q¬, Qd,¬Q}:10

Q Q¬

Qd ¬Q

@
@
@
@

@
@
@
@�

�
�
�

�
�
�
�

outer
negation

inner negation

inner negation

dual dual

Figure 0.3 square(Q)

Outer and inner negation and dual are all idempotent : Q = ¬¬Q =

Q¬¬ = Qdd. They interact with ∧ and ∨ as follows:

10 This is not quite an aristotelian-type square, which instead of inner negation
along the top side has the relation of contrariety (Q and Q′ are contraries if
Q(A,B) and Q′(A,B) can never both be true), and in fact differs along all the
sides of the square; only the diagonals are the same. For a comparison between
the two kinds of square, and the properties of several examples of (modern)
squares of generalized quantifiers, see Westerst̊ahl (2012).
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(29) a. ¬(Q ∧Q′) = ¬Q ∨ ¬Q′ and ¬(Q ∨Q′) = ¬Q ∧ ¬Q′
(de Morgan laws)

b. (Q ∧Q′)¬ = Q¬ ∧Q′¬ and (Q ∨Q′)¬ = Q¬ ∨Q′¬
c. (Q ∧Q′)d = Qd ∨Q′ d and (Q ∨Q′)d = Qd ∧Q′ d

Using these facts, it is easy to verify that every quantifier in square(Q)

spans the same square (so two squares are either disjoint or identical),

which always has either 4 or 2 members.

Inner negations and duals of English Dets are often expressible as

other Dets, without using explicit boolean connectives. For example,

one checks that (all)d = some, (at most three)¬ = all but at most three,

(the ten)¬ = none of the ten, (at least two-thirds of the)d = more than

one-third of the, (all except Mary)¬ = no except Mary, (exactly half

the)¬ = exactly half the. In short, the square of opposition is a very

useful tool for understanding the relations between the various forms of

negation occurring in natural languages.

As the last example above shows, we can have Q = Q¬ for naturally

occurring quantifiers (and so square(Q) has 2 members). Keenan has

observed that there are also many less obvious examples; the equivalence

of the following pair requires a small calculation:

(30) a. Between 10 and 90 percent of the students left.

b. Between 10 and 90 percent of the students didn’t leave.

That is, (between 10 and 90 percent of the)¬ = between 10 and 90 percent

of the.

Can the vertical sides of the square also be collapsed, i.e. can we

have Q = Qd, or equivalently, ¬Q = Q¬? Such quantifiers are called

self-dual in Barwise and Cooper (1981). The answer to this question

reveals an interesting difference between global and local quantifiers.

For, in contrast with the collapse Q = Q¬, which as we saw does occur

for certain common global quantifiers, there are no interesting self-dual

global quantifiers. The next fact provides evidence for this (somewhat

vague) claim. I formulate it here for a type 〈1〉 quantifier Q.

Fact 0.3 If Q is either (i) Isom, or (ii) a Montagovian individual Ia,

or (iii) of the form (Q1)A for some Conserv type 〈1, 1〉 Q1, then Q is

not self-dual.11

11 Outline of proof : For (i), choose M and B ⊆M s.t. |B| = |M−B|. Then
QM (B)⇔ QM (M−B|) by Isom, which contradicts QM = (Qd)M . (As Keenan
(2005) observes, this argument works for any local Perm quantifier QM , as long
as |M | is either even or infinite.) For (ii), choose M s.t. a 6∈M . Then (Ia)M is
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Thus, most (all?) common NP interpretations are not globally self-

dual. This may seem surprising, since precisely in case (ii), self-duality

has been cited as a significant property of Montagovian individuals! The

explanation is that a local quantifier (Ia)M is self-dual if a ∈M , for then

we have: (¬Ia)M (B)⇔ a 6∈ B ⇔ a ∈ M−B ⇔ (Ia¬)M (B). As Barwise

and Cooper note, this corresponds to the fact that names lack scope wrt

negation: in contrast with (25), the following sentences are equivalent:

(31) a. Ruth doesn’t smoke.

b. It is not the case that Ruth smokes.

In fact, the interpretation of names as Montagovian individuals is also

easily seen to explain why they lack scope wrt all boolean operations;

cf. the equivalence of

(32) a. Bill or John smokes.

b. Bill smokes or John smokes.

Frans Zwarts has shown that lacking scope wrt boolean operators holds

for exactly the Montagovian individuals.12

So here we have another case of a linguistically significant phenomenon

with a clear model-theoretic counterpart. But this time the property is

local, not global.

0.7 Polarity and monotonicity

Natural languages have expressions—called negative polarity items (NPIs)—

that seem to occur only (with a particular sense) in negative contexts,

and as it were make the negative claim as strong as possible. Two prime

English examples are ever and yet:

(33) a. Susan hasn’t ever been to NYC.

b. *Susan has ever been to NYC.

(34) a. Henry hasn’t read the morning paper yet.

b. *Henry has read the morning paper yet.

the trivially false quantifier on M , but (Ia)dM is the trivially true quantifier on
M . For (iii), choose M s.t. A ∩M = ∅. Then an easy calculation, using the
conservativity of Q1, shows that QM = (Q¬)M , contradicting self-duality.

12 van Benthem (1989) and Zimmermann (1993) have further discussion and results
about scopelessness.
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Other examples include any, and various idioms such as give a damn

and budge an inch. An obvious linguistic concern is to identify (a) the

class of NPIs, and (b) the positions in which they occur. It is with (b)

that model-theoretic semantics, and in particular GQ theory, turns out

to be useful.13

It is well-known that NPIs also occur in certain positions not in the

scope of an explicit negation:

(35) a. Less than half of my friends have ever been to NYC.

b. *At least half of my friends have ever been to NYC.

(36) a. No one here has read the morning paper yet.

b. *Someone here has read the morning paper yet.

So what is ‘negative’ about less than half? The proper generalization

appears to turn on the concept of monotonicity.14

A function f from an ordered set (X,≤1) to an ordered set (Y,≤2) is

increasing if x ≤1 y implies f(x) ≤2 f(y);

decreasing if x ≤1 y implies f(y) ≤2 f(x).

Sometimes monotone is used synonymously with ‘(monotone) increas-

ing’; here it will mean ‘either increasing or decreasing’. Now negation

is a prime example of a decreasing function; then X = Y is a class of

propositions and ≤1 =≤2 is implication. (Alternatively, X = Y is the set

of truth values {0, 1} and ≤1 =≤2 is the usual non-strict order among

them.) And most quantifiers interpreting NPs or Dets are monotone in

some respect. More precisely, an Ext type 〈1, 1〉 quantifier Q is

right increasing if for allA,B,B′,Q(A,B) & B ⊆ B′ impliesQ(A,B′),

and similarly for right decreasing, left increasing, left decreasing, and

correspondingly for type 〈1〉 quantifiers (without the ‘right’ and ‘left’).15

13 There are also positive polarity items, with a behavior partly symmetric to NPIs,
such as already:

(i) a. Bill has already heard the news.
b. *Bill hasn’t already heard the news.

I can only scratch the surface of the complex issues surrounding NPIs and PPIs
here; see Ladusaw (1996) and Peters and Westerst̊ahl (2006), ch. 5.9, for surveys
and relevant references.

14 NPIs also occur in questions, comparatives, antecedents of conditionals,
complements of phrases like it is surprising that. Here I focus on their
occurrence in quantified contexts.

15 So here ≤1 is ⊆, but ≤2 is still the implication order.
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For example, every is left decreasing and right increasing, at least

five is left and right increasing, most is right increasing but not left

monotone, and the same holds for the ten. Numerical quantifiers like

exactly five, between two and seven, either at least three or no are not

themselves monotone but boolean combinations of monotone (in fact

right and left increasing) quantifiers. To find thoroughly non-monotone

Det denotations we need to look at examples like an even number of.

The monotonicity behavior of an NP of the form [Det N] is determined

by that of the Det, not by that of the N. This fact has a straightforward

semantic explanation (cf. section 0.4): a type 〈1〉 quantifier Q is increas-

ing (decreasing) iff Qrel is right increasing (decreasing). Also note that

the behavior of Q determines exactly the behavior of the other quanti-

fiers in square(Q). For example, if Q (type 〈1, 1〉) is right decreasing and

left increasing, then Qd is right and left increasing; the reader can easily

figure out the other correspondences that hold.

Now, what is characteristic of NPIs seems to be that they occur in

decreasing contexts, and as we saw in (35a) this can happen without

there being any explicit negation: less than half of my friends is

decreasing but not at least half of my friends. So to the extent

this is correct we again have a model-theoretic property that explains

or at least systematizes a linguistic phenomenon.

In fact, much more can (and should) be said about polarity. For just

one example, there is a difference between ever and yet: the former is

fine in all decreasing contexts, but not the latter:

(37) a. None of my friends have seen Alien yet.

b. *At most three of my friends have seen Alien yet.

Zwarts argued that yet requires the stronger property of anti-additivity:

An Ext type 〈1〉 quantifier Q is

anti-additive if for all B,C, Q(B) & Q(C) iff Q(B ∪ C).

This is equivalent toQrel being right anti-additive:Qrel(A,B) & Qrel(A,C)

iff Qrel(A,B∪C). It is clear that being (right) anti-additive implies being

(right) decreasing, but the converse fails. In fact, Peters and Westerst̊ahl

(2006), ch. 5.9.4, show that over finite universes, very few Isom quanti-

fiers Qrel are right anti-additive: essentially only no, none of the k (or

more), and disjunctions of these. Model-theoretic results like this make

it feasible to empirically test various hypotheses about the distribution

of NPIs, but I shall leave the topic of NPIs here.
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Monotonicity is relevant to natural language semantics far beyond

establishing the distribution of NPIs. Most conspicuously, it pervades

much of everyday reasoning. Aristotle’s syllogisms express various kinds

of monotonicity. For example,

all BC no BC

all AB all AB

all AC no AC

say that all is right increasing and no is left decreasing, respectively.

If the syllogistics is seen as a logic calculus for monadic predicates, it

is poor in expressive power. But, as van Benthem (2008) points out, if

we instead see it as recipes for one-step monotonicity reasoning (allow-

ing A,B,C to be complex predicates), it takes on a new flavor. This

is a leading idea in the program of natural logic: making inferences di-

rectly on natural language forms, without first translating them into

some formal language.16 For monotonicity reasoning, one can systemat-

ically, during a syntactic analysis, mark certain predicate occurrences as

increasing (+) or decreasing (–), allowing the corresponding inferences

at those positions. For example, we would write (leaving out the simple

structural analysis)

(38) a. All students− jog+.

b. Most professors smoke+.

Here (38a) indicates that we may infer e.g. All graduate students

jog, or All students jog or swim. There is no marking on professors

in (38b), since most is not left monotone, but since it is right increasing,

there is a + on smoke.

Direct monotonicity inferences are simple, but combination with other

natural modes of reasoning can give quite intricate results. The following

example is adapted from Pratt-Hartmann and Moss (2009):

(39) a. All skunks are mammals

b. Hence: All people who fear all who respect all skunks fear

all biologists who respect all mammals

To see that the conclusion really follows, start with the logical truth:

(40) All biologists− who respect− all skunks+ respect+ all skunks−

16 For example, Sommers (1982) and Sanchez Valencia (1991). van Benthem (2008)
gives a good overview.
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Note that relation occurrences too can have signs. For example, chang-

ing the first occurrence of respect to respect and admire preserves

validity. But this is not used in (39). Instead we use the + on the first

occurrence of skunks to obtain

(41) a. All skunks are mammals

b. Hence: All biologists who respect all mammals respect all

skunks

(41) is valid, and validity is preserved under appropriate replacement of

predicates. So replace skunks by biologists who respect all mammals,

replace mammals by (individuals who) respect all skunks, replace

biologists by people, and replace respect by fear. The result is

(42) a. All biologists who respect all mammals respect all skunks

b. Hence: All people who fear all who respect all skunks fear

all biologists who respect all mammals

Thus, using, besides monotonicity, substitution and transitivity of con-

sequence, we obtain (39).

But isn’t this logic rather than semantics? Actually the dividing line

is not so clear, and many semanticists take the meaning of an expression

to be essentially tied to the valid inferences containing it. The point here

is just that these inferences can often be ‘read off’ more or less directly

from surface structure, without translation into a formal language like

first-order logic or intensional type theory.17

Finally, consider

(43) a. More than 90 percent of the students passed the exam

b. At least 10 percent of the students play tennis

c. Hence: Some student who plays tennis passed the exam

This doesn’t quite look like monotonicity reasoning of the previous kind.

Why does the conclusion follow from the premisses? The first pertinent

observation is that at least 10 percent of the is the dual of more than 90

percent of the. So the pattern is

17 But one can also make a logical study of syllogistic languages, extended with
names, transitive verbs, adjectives, etc. In a series of papers Larry Moss has
pursued this (see e.g. Pratt-Hartmann and Moss (2009); Moss (2010)), with
particular attention to formats for (complete) axiomatization, and how far these
fragments of first-order logic can remain decidable, unlike FO itself. (39) is a
variant of an example mentioned in Pratt-Hartmann and Moss (2009); this form
of reasoning is treated in detail in Moss (2010).
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(44) a. Q(A,B)

b. Qd(A,C)

c. Hence: some(A ∩ C,B)

Now, Barwise and Cooper (1981), Appendix C, noted that if Q is right

increasing, this pattern is always valid. And more than 90 percent of

the is indeed right increasing. Further, Peters and Westerst̊ahl (2006),

ch. 5.8, showed that the pattern actually characterizes that property: A

Conserv quantifier Q is right increasing iff it validates (44). So (43) too

turns out to essentially involve monotonicity, but in addition also inner

and outer negation.

For determiners, right monotonicity is much more common than the

left variant. Indeed, Westerst̊ahl (1989) showed that over finite universes,

each left monotone Conserv, Ext, and Isom quantifier is first-order

definable, which entails that there are countably many such quantifiers,

whereas there are uncountably many right monotone quantifiers with the

same properties. And van Benthem (1984) showed that under these con-

ditions plus a natural non-triviality requirement, the only doubly (both

left and right) monotone quantifiers are the four ones in square(all).

Moreover, Barwise and Cooper (1981) proposed as one of their mono-

tonicity universals that every Det denotation which is left monotone is

also right monotone, a generalization which seems to be borne out by

the facts.

There is another monotonicity observation worth mentioning. Almost

all right increasing Det denotations in fact have a stronger property,

called smoothness.18 It is actually a combination of two weaker left

monotonicity properties, one increasing and one decreasing. Recall that

Q is left decreasing when Q(A,B) is preserved if A is decreased. The

weaker property is: Q(A,B) is preserved if A is decreased outside B.

That is, if A′ ⊆ A but A∩B = A′ ∩B, then Q(A′, B). For lack of a bet-

ter name, I will say that Q is left outside decreasing. Likewise, while Q

being left increasing means that Q(A,B) is preserved if A is increased,

the weaker property of being left inside increasing is that Q(A,B) is

preserved if A is increased inside B, i.e. so that A − B = A′ − B. Q

is smooth iff it is left outside decreasing and left inside increasing. It

is fairly straightforward to show that if a Conserv Q is smooth, it is

right increasing, but the converse is far from true. However, most com-

mon right increasing Det denotations are in fact smooth; for example,

18 In Peters and Westerst̊ahl (2006). It was first identified under the name of
continuity in van Benthem (1996).
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right increasing numerical quantifiers (boolean combinations of at least

n), right increasing proportional quantifiers (such as at least m/nths of

the), and right increasing possessive quantifiers (see section 0.10).19

The following inference illustrates the property of being left outside

decreasing (given that only men can join the men’s soccer team), without

being left monotone:

(45) a. At least one-third of the students joined the men’s soccer

team

b. Hence: At least one-third of the male students joined the

men’s soccer team

From a logical point of view, the two right monotonicity proper-

ties, plus the two properties constituting smoothness, plus two obvi-

ous variants of these—left outside increasing, and left inside decreasing,

respectively—are the basic six monotonicity properties: all others, like

smoothness and left monotonicity, are combinations of these. Further-

more, properties that one would have thought have nothing to do with

monotonicity result from combining them. I end this section with the

following slightly surprising fact (the proof is not difficult; see Peters

and Westerst̊ahl (2006), ch. 5.5):

Fact 0.4 A Conserv quantifier Q is symmetric (i.e. QM (A,B) im-

plies QM (B,A) for all M and all A,B ⊆M) if and only if it is both left

outside decreasing and left outside increasing.

Already Aristotle noted that some and no are symmetric (‘convert-

ible’), in contrast with all and not all. But inferences illustrating this,

such as

(46) a. No fish are mammals

b. No mammals are fish

were not part of the syllogistic, which as we saw dealt with right and

left monotonicity.

19 Most but not all: quantifiers requiring that |A| is not decreased, like those of the
form at least k of the n (or more), are exceptions.
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0.8 Symmetry and existential there sentences

Many Dets besides some and no denote symmetric (Symm) quantifiers,

for example, at least five, no more than seven, between three

and nine, finitely many, an odd number of, no...but Mary. And

many others are co-symmetric, meaning that their inner negation is sym-

metric; every, all but five, all...except John. (Co-)symmetry is

preserved under conjunction and disjunction, and if Q is symmetric, so is

¬Q, whereas Q¬ and Qd are co-symmetric. Quantifiers that are neither

symmetric nor co-symmetric are, for example, proportionals like most,

fewer than one-third of the, definites like the ten, and possessives like

Mary’s and some student’s.

Another formulation of symmetry is the following (Keenan): Q is in-

tersective if the truth value of QM (A,B) depends only on the set A∩B,

that is (assuming Ext in what follows, for simplicity),

(Int) If A ∩B = A′ ∩B′, then Q(A,B)⇔ Q(A′, B′).

We have:

Fact 0.5 If Q is Conserv, the following are equivalent:

a. Q is symmetric.

b. Q is intersective.

c. Q(A,B)⇔ Q(A ∩B,A ∩B) 20

In fact, all the above examples of symmetric/intersective quantifiers,

except no. . . but Mary, have the stronger property of being what Keenan

calls cardinal : Q(A,B) depends only on the number of elements in A∩B,

i.e. only on |A ∩B|.
One reason to be interested in symmetry is that it seems to be tied

to the analysis of so-called existential there sentences. Compare the fol-

lowing.

(47) a. There is a cat here.

b. *There are most cats here

c. There are no signatures on these documents.

d. *There are the signatures on these documents.

e. There are over a hundred religions.

20 Proof : a⇒ c: Suppressing the universe M for simplicity, we have:
Q(A,B)⇔ Q(A,A ∩B) (Conserv) ⇔ Q(A ∩B,A) (Symm) ⇔
Q(A ∩B,A ∩B) (Conserv). c⇒ b: Immediate. b⇒ a: Since A ∩B = B ∩A it
follows by Int (with A′ = B and B′ = A) that Q(A,B)⇒ Q(B,A).
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f. *There are more than 75 percent of the religions.

g. There are ten people coming.

h. *There are the ten people coming.

The form is

(48) there be [pivot NP] ([coda]),

or, in more semantic terms,

(49) there be Q A (B)

In (47), the optional coda is present in (47a), (47b) and (47g), (47h).

But not all the sentences are well-formed. A classical issue in linguis-

tics is to characterize the ones that are. An early idea is that defi-

nite NPs (or Dets) are ruled out. The notion of definiteness is another

can of worms (see section 0.9), but one can see that it cannot provide

the whole explanation, since most cats and more than 75 percent

of the religions are in no sense definite. Milsark (1977) concluded

that the acceptable pivot NPs were not quantifiers but “cardinality

words”, and that putting genuinely quantified NPs there would result in

a “double quantification”, since there be already expresses quantifica-

tion, which would be uninterpretable.

This was an attempt at a semantic explanation of existential there

acceptability, though not in terms of precise truth conditions. Keenan

(1987) gave a precise compositional account, inspired by some of Mil-

sark’s insights, but rejecting both the idea that acceptable pivot NPs

are not quantified and that there be expresses quantification. Instead,

acceptability turns, according to Keenan, on a model-theoretic property

of quantifiers.

In fact, Keenan’s analysis was proposed as an alternative to another

celebrated semantic (and pragmatic) account of existential acceptabil-

ity: the one in Barwise and Cooper (1981) in terms of so-called weak

and strong quantifiers. (These terms were used by Milsark, but Bar-

wise and Cooper redefined them.) A detailed comparison of the two

approaches, in theoretical as well as empirical respects, is given in Pe-

ters and Westerst̊ahl (2006), ch. 6.3. Here I will only outline the main

points in Keenan’s proposal.

The natural meaning of a sentence of the form (48) or (49) without a

coda, like (47c) and (47e), is

QM (A,M)
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which can be read ‘QA exist’. So existence is not quantification but

the predicate exist, whose extension is the universe M . When a coda is

present, as in (47a) and (47g), it is equally clear that the reading is

(50) QM (A ∩B,M)

This is the intended existential reading of (acceptable) existential there

sentences. Now, prima facie it is not trivial to obtain this reading by a

compositional analysis of (48). Keenan’s idea is that the compositional

analysis always yields

(51) (QA)M (B), i.e. QM (A,B)

Then he stipulates that the acceptable quantifiers are exactly those for

which these two are equivalent:

(52) QM (A,B) ⇔ QM (A ∩B,M)

But now it readily follows from Fact 0.5 that under Conserv, Q satis-

fies (52) if and only if Q is symmetric (intersective). So it is symmetry,

according to this proposal, that characterizes the Dets of the quantified

pivot NPs that can appear in existential there sentences. And this is

not just a generalization from empirical data. It comes out of a natu-

ral compositional analysis, with the result that exactly for symmetric

quantifiers do we obtain the intended existential reading.

Note that Milsark’s “cardinality words” denote cardinal quantifiers,

which are all symmetric. But also a non-Isom symmetric quantifier like

no. . . except Mary is acceptable:

(53) There is no graduate student except Mary present.

On the other hand, proportional quantifiers like most, co-symmetric

quantifiers like every and all but seven, and definites like the ten, are

all ruled out, as they should be. In general, it is rather striking how

well this simple model-theoretic criterion fits our intuitions about the

meaning of existential there sentences.21

21 Which is not to say that the analysis is unproblematic. Peters and Westerst̊ahl
(2006) discuss the following problems with Keenan’s proposal: (i) It gives wrong
predictions for proportional readings of many and few, which seem to be fine in
existential there sentences; (ii) It assigns meanings to existential there sentences
with non-symmetric Dets that these sentences do not have; (iii) If not emended,
it gives wrong results for complex pivot NPs like at least two of the five
supervisors, several people’s ideas, which, although not symmetric,
actually do occur (with the existential reading) in existential there sentences.
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0.9 Definites

I have already used the common label definite for Dets like the ten

(and correspondingly NPs like the ten boys). So what is definiteness?

This is something linguists still debate, and overviews such as Abbott

(2004) will present proposals, counter-examples, new proposals, etc. but

no final definition. As Barbara Abbott concludes her survey paper: “As

so frequently seems to be the case, grammar is willfully resistant to

attempts at tidy categorization.” My aim in this brief section is not to

offer a new proposal, only to see to what extent GQ theory may help.

The above quote indicates that definiteness is a morphosyntactic cat-

egory. Even so there might be a semantic and even model-theoretic cor-

relate. But if there is no definition of morphosyntactic definiteness, it is

hard to even start looking for such a correlate. There are clear cases—

John, the ten boys are definite, a tall man is indefinite—but no def-

inition. The most common criterion used is, in fact, unacceptability in

existential there sentences. Could we use that as a definition? Then, as-

suming Keenan’s analysis of these sentences to be largely correct, we

would have a nice model-theoretic counterpart: non-symmetry.

But presumably no semanticist would accept that as a definition. For

example, it would make the Det most definite, which few think it is. The

criterion only works in some cases. Moreover, it is hardly syntactic. The

sentence

(54) There is the problem of cockroaches escaping.

is fine as a follow-up to “Housing cockroaches in captivity poses two main

problems,” only not in its existential reading. So to get the right result—

that the problem of cockroaches escaping is definite—we need to

appeal to meaning after all.

Even if there is a fairly robust concept of purely morphosyntactic def-

initeness—one syntacticians recognize when they see it—there are also

notions of definiteness that rely on the meanings of Dets and NPs. Most

commonly, these are expressed in terms of familiarity and uniqueness.

Familiarity is the idea that definite NPs refer back to something already

existing in the discourse, whereas indefinites introduce new referents.

Uniqueness is that there is a unique thing (in some sense) referred to by

definite NPs.

Familiarity is a problematic criterion. To identify the things that are

available, or salient, in the discourse universe is notoriously a pragmatic

affair. Consider
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(55) A woman came into the room and sat down. A cat jumped up

in her lap/?on her books/??on her car.

We can easily see which variants are more easily interpretable, even if

only the woman herself was explicitly introduced in the discourse, but

what are the precise conditions?

Uniqueness seems more promising—if we drop the restriction to sin-

gular NPs and allow reference to sets or groups as well. Suppose you ask

whether most cats is definite or not. We cannot even begin to apply

the familiarity criterion, since there is no reasonable sense in which this

NP introduces anything. But precisely for that reason, it fails to satisfy

uniqueness.

Even if we grant a notion of, say, pragmatic definiteness, it seems

clear that we also want a semantic notion. After all, none of the three

variants of (55) is ungrammatical or meaningless. There is no seman-

tic difference between her lap, her books, and her car, with respect

to definiteness; all differences come from the surrounding discourse. So

what is it about these three NPs that makes them (semantically) defi-

nite, in contrast with most cats? The answer seems simple: They are

referring expressions.

Recall that we interpret NPs, on a given universe, as sets of subsets

of that universe. In what way can we get reference out of such a set of

subsets? If we include plural reference, i.e. reference to a collection or

set of individuals, then GQ theory has a precise proposal, first made in

Barwise and Cooper (1981):

A type 〈1, 1〉 quantifier Q is (semantically) definite iff for each

M and each A ⊆M , either (QA)M is empty,22 or there is a non-

empty set X ⊆M such that (QA)M is the filter generated by X,

i.e. (QA)M = {B ⊆M : X ⊆ B}.

Accordingly, a Det is (semantically) definite if it denotes a definite quan-

tifier, in which case also NPs of the form [Det N], and their denotations,

are definite. And we can extend the definition in an obvious way to

non-quantified NP denotations, allowing us to call e.g. Montagovian in-

dividuals definite.

22 Barwise and Cooper instead treat (QA)M as undefined in this case, in order to
capture the idea that the existence of a generator is a presupposition. This plays
a role in their account of existential there sentences, but not for what I will have
to say here about definiteness. See Peters and Westerst̊ahl (2006), chs. 4.6 and
6.3, for discussion.
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Note first that the definition has a local character: in principle it would

allow different generator sets X on different universes. However, Peters

and Westerst̊ahl (2006) prove (Proposition 4.10) that if Q is Conserv,

Ext, and definite, then (QA)M is generated by the same set whenever

it is non-empty. And this is what allows us to regard QA as referring: if

it refers at all, it refers to that generator. Put differently, when (QA)M
refers, it refers to ∩(QA)M .

For example, the ten is definite. If |A| 6= 10, (the tenA)M is empty,

i.e. the tenM (A,B) is false for all B ⊆M . If there are just five boys (in

the discourse universe), then the ten boys doesn’t refer to anything.

But if |A| = 10, (the tenA)M is generated by A. And Mary’s books is

definite (on the universal interpretation; see the next section): it refers

whenever Mary ‘possesses’ at least one book, and then it refers to the set

of books she ‘possesses’. We get reference to single objects as reference

to singletons: Ia is definite, and if a ∈M , (Ia)M is generated by {a}.
But every, all are not definite, which seems according to intuition:

all students doesn’t refer to the set of students any more than three

students or most students does. The reason is that all (∅, B) is true

for every B, so for A = ∅, there is no non-empty set generating (QA)M =

P(M).23

If we distinguish different notions of definiteness, we should expect

them to overlap but not coincide. For example, some NPs are semanti-

cally indefinite but morphosyntactically definite:

(56) the inventor of a new drug, the manuscripts of some professors

(These are sometimes called weak definites; see Poesio (1994).) The

difference between pragmatic and semantic definiteness seems to run

deeper, in that it involves the very notion of meaning appealed to. If

one thinks that the meaning of the ten boys or Mary’s books in it-

self carries a familiarity condition, then that is not captured in the GQ

account of Dets and NPs. But the semantic notion is unique in that it

has (a) a clear intuitive content in terms of reference, and (b) a precise

model-theoretic counterpart.24

23 If we define all with existential import as the quantifier all ei(A,B) iff
∅ 6= A ⊆ B, then all ei is definite. Many linguists seem to think that all means
all ei in English; I prefer to regard the fact that it is often odd to say All A are
B, when (we know that) A is empty, as pragmatic rather than semantic. And the
conclusion that all A is definite, in the semantic sense of referring to A, seems
rather unwelcome.

24 So one would think that the semantic notion would be fairly undisputed, but in
fact it is often criticized by linguists; see e.g. Abbott (2004). Most of this
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0.10 Possessives

I end by considering how GQ theory can be applied to the semantics of

the rich and productive class of possessive NPs, exemplified by

(57) a. Mary’s books, my sisters

b. several students’ bicycles, each woman’s parents

c. most of Mary’s books, none of my sisters

d. two of most students’ term papers, exactly one of each

woman’s parents25

Here (57a) and (57b) consist of a possessor NP + ’s followed by a noun,

so we can take [NP ’s] to be a possessive determiner, interpretable as

a (Conserv and Ext, but not Isom) type 〈1, 1〉 quantifier. Possessive

NPs denote type 〈1〉 quantifiers, just as other NPs. In (57c) and (57d)

they are preceded by [Det of], and the whole phrase can be seen as a

possessive NP.26

However, there is no standard application of GQs to the semantics of

possessives. The vast linguistic literature on possessives mostly focuses

on a small portion of the full class of possessive NPs, like those in

(58) Mary’s brother, John’s portrait, my book, the table’s leg, *the

leg’s table, God’s love

criticism, however, in fact concerns Barwise and Cooper’s treatment of existential
there sentences in terms of their notions of strong and weak Dets. That treatment
can indeed be disputed, as Keenan (1987) did, but is an entirely different matter
(Keenan had no objections to their concept of definiteness). We already found
reasons to doubt that unacceptability in existential there sentences amounts to
definiteness. For example, most theorists regard all A as non-definite, in any of
the senses we have mentioned, but it is unacceptable in such sentences. Indeed,
all A is strong in Barwise and Cooper’s sense, but not semantically definite. A
more pertinent criticism concerns the fact (recognized by Barwise and Cooper)
that both and the two denote the same generalized quantifier, but only the two
can occur in partitives: one of the two/*both men. Ladusaw (1982) concludes
that both is not definite, arguing that it does not refer to a unique group. In any
case, this single example apart, Barwise and Cooper’s definition covers a vast
number of Dets (and NPs) that are indisputably semantically definite.

25 This section sketches parts of the account of the semantics of possessive in Peters
and Westerst̊ahl (2012).

26 Many theorists would not call the expressions in (57c) and (57d) possessive but
partitive. But given that the NP in a partitive of the form [Det of NP] is
supposed to be definite (cf. footnote 24), we see directly that the NPs in (57d)
are not partitive. Still, they are perfectly meaningful, and their meaning is given
by the semantics for possessive NPs sketched here.
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where the possessor NP is a proper name or a pronoun or a simple

singular definite, and where the noun is in the singular.27 For these,

one might think, GQ theory is of little relevance. But, (a) if possible, a

uniform semantics for the whole spectrum of possessive Dets and NPs

would surely be preferable, and (b) the study of the various quantified

cases turns out to shed light also on the simpler ones. GQ theory does

have good things to offer the analysis of possessives, only they are not

yet in the semanticist’s standard toolbox.

‘Possessiveness’ is here taken to consist in a certain syntactic form

with a certain kind of meaning. This may seem somewhat stipulative,

but in fact the class thus delineated is quite natural. It means, however,

that some things often called ‘possessive’ are not included. One example

is constructions with have, belong, own:

(59) a. Many paintings that John has are quite valuable.

b. Three books belonging to Mary are lying on the sideboard.

These are quite ordinary constructions with a transitive verb, that hap-

pens to indicate ownership or some similar relation. Apart from that,

they are not different from, say,

(60) a. Many paintings that John bought are quite valuable.

b. Three books written by Mary are lying on the sideboard.

Possessive NPs always involve a possessive relation, holding between

possessors and possessions. But not much hangs on which particular

relation it happens to be. In particular, it need not have anything to

do with ownership or possession. For example, Mary’s books can be

the books she owns, or bought, or read, or wrote, or designed, or is

standing on to reach the upper shelf, etc. Often the possessive relation

comes from a relational noun, as in Henry’s sisters, my students,

Susan’s enemies; again nothing to do with possession in the literal

sense. But in (59) the characteristic syntax of possessives is missing.

Note, by the way, that in this case there are logically equivalent sentences

which do involve possessive NPs:

(61) a. Many of John’s paintings are quite valuable.

b. Three of Mary’s books are lying on the sideboard.

27 The main exceptions are Keenan and Stavi (1986) and Barker (1995). Keenan
and Stavi were the first to emphasize the wide variety of possessive Dets. Barker
gave a systematic treatment of a subclass (those of the form exemplified in (57a)
and (57b)), related to but distinct from the semantics proposed here.
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But that doesn’t make (59) possessive.

Freedom of the possessive relation is one of the characteristic features

of possessives. The freedom involved in cases like Mary’s books is well-

known, but the possessive relation is free also with relational nouns.

That is, although it often comes from the relational noun (as the in-

verse of the relation expressed by the noun), it doesn’t have to. Henry’s

sisters can be the sisters (of someone else) that he was selected to es-

cort. Ruth’s mothers usually has to involve another relation than the

inverse of ‘mother-of’. The point is, however common a default selection

of the possessive relation might be, there are always circumstances un-

der which a different relation, coming from the context and unrelated to

the linguistic co-text, is chosen.28

Perhaps the most important characteristic of possessives is that they

always quantify over possessions. Often the quantification is universal,

but it can also be existential. Consider

(62) a. The teacher confiscated three children’s paint sprayers.

b. The teacher confiscated three children’s paint sprayers hid-

den around in bushed near the school.

(63) a. Mary’s dogs escaped.

b. When Mary’s dogs escape, her neighbors usually bring them

back.

The most natural reading of (62a) has the teacher confiscating every

paint sprayer of each of the three children. But in (62b) the most plausi-

ble reading is existential. There are three children who had paint sprayers

and for whom the teacher discovered at least some of the child’s paint

sprayers in the bushes. Similarly for the sentences in (63). Other sen-

tences are ambiguous:

(64) Most cars’ tires were slashed.

has a reading where there is a set with more than half of the (salient)

cars such that every car in this set has all its tires slashed, and another,

perhaps more natural, where each of these cars had some tire slashed.

Now, these readings can be made explicit as follows:

28 This criterion allows us to distinguish gerundive nominals, as in

(i) John’s not remembering her name annoyed Mary.

from possessives: here the relation is completely fixed.



34

(65) a. All of Mary’s dogs escaped.

b. When some of Mary’s dogs escape, her neighbors usually

bring them back.

Furthermore, when the quantification over possessions is explicit, it can

be (almost) any quantifier:

(66) a. Most of Mary’s dogs escaped.

b. When two of Mary’s dogs escape, her neighbors usually

bring them back.

These contain possessive NPs as in (57c) and (57d). Whether implicit

or explicit, quantification over possessions is always there.

Since possessor NPs can also be quantified, many possessive NPs (per-

haps all, if you treat e.g. proper names as quantifiers) are doubly quanti-

fied. This has several consequences that GQ theory helps illuminate. To

state some of them, it is convenient to spell out uniform truth conditions

for sentences involving possessive NPs. In the most general case such a

sentence has the form

(67) (Q2 of) Q1 C’s A are B

Here Q2 quantifies over possessions; it may be implicit but Q2 is always

part of the semantics. Q1 quantifies over possessors. We define an op-

eration Poss, taking two type 〈1, 1〉 quantifiers, a set C, and a binary

relation R (the possessive relation) as arguments, and returning a type

〈1, 1〉 quantifier as value. To state the definition, the following abbrevi-

ations are convenient. First, for any a,

Ra = {b : R(a, b)}

is the set of things ‘possessed’ by a. Second, for any set A,

domA(R) = {a : A ∩Ra 6= ∅}

is the set of a which ‘possess’ things in A. Now define:29

(68) Poss(Q1,C,Q2,R)(A,B)⇔ Q1(C∩domA(R), {a : Q2(A∩Ra,B)})

29 I suppress the universe M ; this is harmless, since one can show that if Q1 and
Q2 are Conserv and Ext, so is Poss(Q1, C,Q2, R).
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(68) expresses the truth conditions of (67).30 Indeed, in a composi-

tional analysis, one may take Poss to be the denotation of the possessive

morpheme ’s, and Poss(Q1,C,Q2,R)A as the denotation of the posses-

sive NP. When Q2 is implicit, it has to be provided by the context. And

the idea of freedom entails that for all sentences of the form (67), there

are situations where R has to be supplied by context, even if A comes

from a relational noun.31 For example, applying (68) to

(69) Some of at least three students’ library books are overdue.

this sentence says that at least three (Q1) students (C) who borrowed

(R, the most natural possessive relation here) library books (A) are such

that at least one (Q2) of the library books they had borrowed is overdue

(B). This seems correct.

Notice that the phrase who borrowed library books, which comes

from the restriction of C to domR(A) in (68), is unnecessary: the truth

conditions in this case are

|{a ∈ C : A ∩Ra ∩B 6= ∅}| ≥ 3

so whether (69) quantifies over students who borrowed library books or

students in general is irrelevant. But this is not always the case. Consider

(70) Most people’s grandchildren love them.

This is probably true, but note that most people in the world don’t have

any grandchildren (they are too young for that). But this fact has noth-

ing to do with the truth value of (70). The quantifier most (Q1) indeed

quantifies only over ‘possessors’, i.e. over people who have grandchildren,

saying that most of these are such that their grandchildren love them.

This is why (68) in general narrows C to domA(R).

30 We also have to account for the semantics of non-quantified possessive Dets such

as Mary’s. This can be done by decomposing the quantifier Im as all
{m}
ei and

then applying (68). This gives the right truth conditions (for the universal
reading), but one problem is that the decomposition is not unique: we also have

Im = all{m}, and this decomposition gives Mary’s friends are nice rather odd
truth conditions: either Mary has no friends or all of her friends are nice. It also
raises the question of whether all non-quantified possessive NPs are
decomposable. Both issues are dealt with at length in Peters and Westerst̊ahl
(2012).

31 If A comes from, say, parent, A is the set of parents, i.e. the set of individuals
standing in the parent-of relation to something, and R is the inverse of the
parent-of relation.
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The term narrowing is from Barker (1995), who argued that narrowing

is always in place. I tend to agree, though counter-examples have been

suggested. It can be shown that for symmetric Q1, as in (69), narrowing

has no effect, which explains why its presence is often not felt. But for

non-symmetric Dets like every and most, it has a clear semantic effect.

For example, without narrowing, (70), would be made trivially false

(with Q2 = all) by the fact that most people have no grandchildren.32

Here is an application of the uniform truth conditions. In the liter-

ature, possessiveness is usually tied to definiteness. As Abbott (2004)

says, “Possessive determiners . . . are almost universally held to be defi-

nite” (p. 123). A more nuanced view, originating with Jackendoff, is put

forth in Barker (2011): possessive NPs inherit definiteness from their

possessor NPs. Since we have precise truth conditions for possessives as

well as definites (section 0.9), we can find out what the facts are. Peters

and Westerst̊ahl (2006) (ch. 7.11) prove the following.

Fact 0.6 If Q1 is semantically definite and Q2 is universal, then,

for all C and R, Poss(Q1,C,Q2,R) is semantically definite. Also, in

practically all cases when Q1 is not definite, or Q2 is not universal,

Poss(Q1,C,Q2,R) is not definite.

So we see that in general, there is no reason to expect possessive Dets

or NPs to be semanticlly definite. Even a simple phrase like Mary’s dogs

is only definite under the universal reading. Further, Fact 0.6 shows what

is right about the Jackendoff/Barker inheritance claim, but also what

is wrong: the definiteness of the possessor NP is not inherited when

quantification over possessions is not universal. Consider again

(63b) When Mary’s dogs escape, her neighbors usually bring them

back.

Here Mary’s dogs is not semantically definite: the possessive NP doesn’t

refer to any particular set of dogs.

Another illustration of the potential of model-theoretic semantics to

clarify important issues concerning the semantics of possessives is af-

32 Peters and Westerst̊ahl (2006) show that the correct non-narrowed version of the
truth conditions are

(i) Possw(Q1,C,Q2,R)(A,B)⇔ Q1(C, {a : A∩Ra 6= ∅ & Q2(A∩Ra,B)})

So if most C are such that A ∩Ra is empty, (i) makes (70) false with Q1 = most
and Q2 = all. And it doesn’t help to let Q2 = allei (see footnote 23), for then
(70) will entail that most people have grandchildren, which is equally absurd.
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forded by the monotonicity behavior of possessive Dets and NPs. This

behavior is quite interesting, but to study it one needs precise truth con-

ditions like those in (68); see Peters and Westerst̊ahl (2006), ch. 7.12. I

will end, however, with a different illustration: the meaning of negated

sentences with possessive NPs.

To begin, inner and outer negation (section 0.6) applies to possessive

Dets just as to all other Dets, and it is easy to check that the following

holds:

Fact 0.7

(a) ¬Poss(Q1, C,Q2, R) = Poss(¬Q1, C,Q2, R)

(b) Poss(Q1, C,Q2, R)¬ = Poss(Q1, C,Q2¬, R)

(c) Poss(Q1¬, C,¬Q2, R) = Poss(Q1, C,Q2, R)

For example,

(71) Not everyone’s needs can be satisfied with standard products.

seems to be a case of outer negation: it says that at least someone’s

needs cannot be thus satisfied. On the other hand, consider

(72) Mary’s sisters didn’t show up at the reception.

Here Q2 is naturally taken as universal, and the sentence says that none

of the sisters showed up; this is inner negation (all¬ = no).

However, if we make Q2 explicit,

(73) All of Mary’s sisters didn’t show up at the reception.

there is another interpretation, which is neither outer nor inner negation,

namely, that not all the sisters showed up (but some of them may have).

This possibility is not covered in Fact 0.7. But given that we have two

quantifiers and two types of negation, the combination is natural enough.

Let us call it middle negation:

¬mPoss(Q1, C,Q2, R) =def Poss(Q1, C,¬Q2, R)

It follows from Fact 0.7 (c) that ¬mPoss(Q1, C,Q2, R) is also equal

to Poss(Q1¬, C,Q2, R). Westerst̊ahl (2012) shows that possessive Dets,

in view of these three types of negation, span a cube, rather than a

square, of opposition. There is much more to say on this subject, but I

leave it here, noting only that the study of how negation interacts with
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possessives would hardly have been possible without the GQ tools at

our disposal.

0.11 In conclusion

The purpose of this chapter has been to illustrate how tools from gener-

alized quantifiers in model theory can contribute to our understanding

of the semantics of quantification in natural languages, which in En-

glish is carried out mostly by means of determiners and noun phrases. I

have chosen, except perhaps in the preceding section, tools that are by

now more or less standard in formal semantics. There are many appli-

cations of GQ theory to natural language quantification I did not touch

upon, most notably the use of polyadic quantifiers, for example in recip-

rocal sentences, and questions concerning the logical expressive power

of various quantifiers. And I said nothing about processing quantified

expressions.

Note also that I have not been trying to convey the impression that GQ

theory can account for every feature of natural language quantification.

So far it has little to say, for example, about the inner composition of

determiners (treating, for example, more than two-thirds of the as

an unanalyzed Det), or about meaning distinctions ‘below’ the level of

generalized quantifiers.33 But I hope that the illustrations given here

provide some feeling for the amazing ease with which the tools of GQ

theory, invented for mathematical logic purposes, can be used for the

semantics of ordinary language.

33 Such as the distinction between both and the two (footnote 24), or between at
least two and more than one: cf. (Hackl, 2000)

(i) a. At least two men shook hands.
b. #More than one man shook hands.

Szabolcsi (2010) presents a number of such challenges for GQ theory, or for going
beyond (without abandoning) GQ theory in the linguistic analysis of
quantification.
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