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1 Outline

This paper is about how the fundamental logical notions of negation and quan-
tification interact. The subject is as old as logic itself, and appears in various
forms in all ancient traditions in logic, but perhaps most explicitly and system-
atically in the Western tradition starting with Aristotle, which is the one I will
refer to here. Many of the issues raised by Aristotle and his followers are still
subject of lively debate among linguists and philosophers today.

Negation is closely tied to opposition: a statement and its negation are in
some sense opposed to each other. There are different kinds of opposition (and
philosophers love displaying all kinds of opposing pairs), but Aristotle’s main
distinction is between contradictory and contrary opposition or negation. The
contradictory negation of Socrates is wise is simply Socrates is not wise, which is
true if and only if the positive statement is false. But there are several contrary
negations: Socrates is non-wise/unwise/foolish/ . . . ; the hallmark of contrariety
is that a statement and its contrary cannot both be true.

The contrast between contrariety and contradictoriness becomes clearer, and
simpler, when applied to quantified statements. Aristotle’s syllogistics—the
beginning of modern logic—is a systematic study of relations between the four
quantifiers all, no, some, not all, and in particular of how they interact with
negation. The contrary of all is no, whose contradictory negation is some.
(Really it is the corresponding statements, all A are B, no A are B, etc. that
have these relations, but they are easily lifted to the quantifiers themselves.)
Aristotle’s claims about these matters were later summarized diagrammatically
and extended in the famous Square of Opposition (Fig. 1).

This square is not only an elegant way of displaying logical relations, but is
intended to provide important information about the meaning of negation and
quantification in natural languages. Among questions related to it that have
been, and still are, intensely debated are the following (see Horn (1989) for a
rich account of the history of negation):

(a) What (if anything) is less valuable/real/natural/informative about nega-
tive statements as compared to positive ones?

(b) What (if anything) makes a statement negative rather than positive?
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Figure 1: The Aristotelian Square

(c) What sort of thing or state of affairs makes a negative statement true?

(d) Why is the O corner never lexically realized (in any language)?

(e) Does the A corner have existential import, as in the Aristotelian square,
i.e. does All A are B entail (or presuppose) that there are As? What
about the other corners?

For example, Aristotle (presumably), most (but not all) medieval logicians, and
most (but not all) modern linguists claim that All A are B indeed entails (or
presupposes) that there are As. By contrast, universal quantification for most
modern logicians since Frege does not have existential import.

This paper only indirectly addresses the above questions (though I will be
glad to talk about them in discussion). Instead, I focus on another issue, also
intimately related to the meaning of negation and quantification in natural
languages, namely, what exactly are the relations along the sides of the square?
My claim is that it is misleading to think of contrariety, subalternation, etc.
here; rather, the ‘horizontal’ relations are one and the same: inner negation or
post-complement ; and the ‘vertical’ ones are dual, as in Fig. 2.

The main argument is that this Modern Square—but not the Aristotelian
Square—applies to all kinds of natural language quantification, not just to the
Aristotelian quantifiers. Indeed, those four quantifiers instantiate a very general
pattern, with examples such as at least three, exactly six, all but five, most,
many, few, more than two-thirds of the, the seven, Mary’s, some students’, . . . ,
each one related to its negations and dual according to the modern square.
Nothing similar works for the classical square. Here is an outline of the paper.
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Figure 2: The modern version of Aristotle’s square

1.1 Generalized quantifiers

(Binary) generalized quantifiers are relations between subsets of the universe.
Thus all(A,B) says that A is a subset of B, no(A,B) that the intersection of
A and B is empty, some(A,B) that it is non-empty, at least three(A,B) that
it has at least three elements, most(A,B) that it contains more elements than
the difference A−B does, the seven(A,B) that there are (exactly) seven As
and that they are all B, some student’s(A,B) that some student ‘possesses’
As and all the As ‘possessed’ by her/him are B, etc. In English and many
other languages, binary quantifiers interpret determiners. In languages with
so-called A quantification, they interpret adverbs, auxiliaries, or other devices
for quantification.

For each such quantifier Q we can define its outer (contradictory) negation:
¬Q(A,B) iff not Q(A,B); its inner negation: Q¬(A,B) iff Q(A,A−B); and its
dual: Qd = ¬(Q¬). So each such Q spans a (modern) square:

square(Q) = {Q,Q¬,¬Q,Qd}

One verifies that square(Q) has either 4 elements (the normal case) or 2 (it can
happen that Q = Q¬), and that each element in square(Q) spans the same
square. (For an overview of generalized quantifiers in language and logic, see
Peters and Westerst̊ahl (2006).)

1.2 Classical vs. modern squares

Aristotle’s square concerns just the four classical quantifiers. Trying to ex-
tend it to other quantifiers yields the following definition: A classical square is
an arrangement of four quantifiers as traditionally ordered and with the same
logical relations—contradictories, contraries, subcontraries, and subalternates—
between the respective positions. Here two statements are subcontraries if they
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cannot both be false, and a statement is subalternate to another statement if it
is implied by it.

However, the result is that, for example, the square

[A: at least five; E: no; I: some; O: at most four ]

is classical. This looks very unnatural. There is no interesting sense, it seems,
in which no is a negation of at least five or at most four. The classical Square
of Opposition simply doesn’t generalize in a natural way to other quantifiers.

1.3 Identifying the corners

Medieval logicians classified the corners of the square by means of the categories
quantity : universal (all, no) / particular (some, some not) and quality : affir-
mative (all, some) / negative (no, not all). These properties are often hard to
apply to other quantifiers. For example, no fewer than five may seem negative,
and more than four positive. But extensionally they are the same quantifier!

There are, however, clearcut—and Aristotelian—semantic properties that
can often be used to at least partly identify the corners. One is monotonicity ;
in fact, the syllogisms describe exactly the monotonicity behavior of the four
Aristotelian quantifiers, and these properties apply to other quantifiers as well.
Another is symmetry ; Aristotle noted that the quantifiers in the I and E corner
are symmetric (though he didn’t use these terms): Q(A,B) implies Q(B,A).
Using these properties, and the further criterion that, if possible, that the stan-
dard square(all) should be a special case of square(Q), one can in most common
cases classify the corners of square(Q).

1.4 Case studies

1.4.1 Numerical quantifiers

These are Boolean combinations of quantifiers of the form at least n, such as at
most six and exactly five. Their squares—i.e. their patterns of negation—are
interesting, in terms of how they are realized in English, and how little the
classical approach says about them.

1.4.2 Proportional quantifiers

Typical proportional quantifiers are most and at least two-thirds of the; the other
quantifiers in their squares also have natural renderings as English determiners.
It is notable that—except for most !—the definite article is required in English.
This reopens the issue of existential import (e.g. is it presupposed or entailed?),
but with more clearcut examples than those in the traditional square.

1.4.3 Exception quantifiers

In No student except Mary came to the opening, the phrase no except Mary
can be seen as a quantifier: no except Mary(A,B) iff A ∩ B = {Mary}, with
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a corresponding square of opposition.

1.4.4 Possessive quantifiers

Possessive quantifiers like Mary’s, two students’, several of most teachers’, have
interesting logical and semantic properties, also as regards their interaction with
negation. (See Peters and Westerst̊ahl (2013) for much more on the semantics
of possessives.) A main observation is that they involve two quantifiers, one
over possessors and one over possessions (relative to some ‘possessive’ relation,
that need not have anything to do with ownership). In No car’s tires were
slashed, Q1 = no quantifies over possessors (cars), but the quantier Q2 over
possessions (tires) is implicit; presumably in this case it is some. In At least one
of most teachers’ pupils failed the exam, both Q1 (most) and Q2 (at least one)
are explicit.

This allows for several ways in which negation can apply. In addition to
standard outer and inner negation, we also find what we call middle negation.
For the sentence All of Mary’s friends didn’t come to the party, the outer nega-
tion reading is implausible (but it applies in other cases), and the inner negation
reading says that none of Mary’s friends showed up. This is a possible reading,
but more likely is the reading that not all of them showed up (though some of
them may have): middle negation. The result is that there are two kinds of
squares for possessive quantifiers. For example, the ‘middle’ square of Mary’s
more accurately reflects how Mary’s behaves under negation than the ordinary
square(Mary’s). However, I show that the full (logically possible) behavior of
possessives under negation can be represented in a cube of opposition.

2 Main claims

• It may seem—and it is usually assumed—that the only difference between
the Aristotelian square of opposition and the modern square(all) is that
all has existential import in the former but not the latter square. This
impression is mistaken. The main difference concerns the relations along
the sides of the squares. That difference is hardly visible for square(all),
but it becomes evident for the squares spanned by other quantifiers.

• The issue of existential import for all is real, and alive especially among
linguists. However, it does not really concern the properties of the square,
i.e. the interaction between quantification and negation (except that if
all has existential import, its contradictory negation becomes a rather
unnatural quantifier). On the other hand, the square highlights other
issues about existential import, e.g. for the proportional quantifiers.

• The fact that ‘modern’ squares—but not traditional ones—are generated
by any binary quantifier, and hence by any English determiner denotation,
constitutes a main argument that they capture important facts about
negation and quantification in natural languages.
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• The traditional way of identifying the corners of the square in terms of
quantity and quality are not sufficiently precise to be applicable to other
quantifiers. In particular, ‘quality’ relies on identifying negative state-
ments (or quantifiers), but it is very doubtful that this can be done in a
coherent way. However, the criteria can be replaced by relying on precise
semantic—and still very much Aristotelian!—properties of the quantifiers
involved. In particular, the monotonicity behavior of quantified expres-
sion is an area where an exact study of semantics is both possible and
rewarding. As to the square, a question that remains after classification
is: What (if any) is the significance of the various corners of the square?

• Investigating the (modern) squares of various quantifiers is a fruitful way
to study the interaction between negation and quantification in natural
languages. Many questions arise that have no counterpart for the Aris-
totelian Square. In particular, possessives provide a rich field of applica-
tion for generalized quantifier theory to natural language. Among other
things, they exhibit a new form of negation, distinct from outer and inner
negation, and a full description of how possessives interact with negation
turns out to require a cube of opposition.
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