
Consequence Mining ∗

Constants versus Consequence Relations

Denis Bonnay
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Abstract. The standard semantic definition of consequence with respect to a se-
lected set X of symbols, in terms of truth preservation under replacement (Bolzano)
or reinterpretation (Tarski) of symbols outside X, yields a function mapping X to
a consequence relation ⇒X . We investigate a function going in the other direction,
thus extracting the constants of a given consequence relation, and we show that this
function (a) retrieves the usual logical constants from the usual logical consequence
relations, and (b) is an inverse to — more precisely, forms a Galois connection with
— the Bolzano-Tarski function.
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1. Introduction

The close connection between logical constants and logical consequence
is known to every logic student. After selecting a suitable set of logical
constants, a relation of logical consequence is defined, either seman-
tically via truth-preservation or syntactically via rules of derivation.
Probably less noticed is the fact that the semantic definition of con-
sequence allows any set of symbols or words in the language to be
chosen as constants. In fact, Bolzano — the first to systematically study
consequence — insisted on this generality, and it holds equally for the
Tarskian model-theoretic version. The selected symbols are constants
precisely in the sense that their meaning is held fixed. Whether they are
logical or not is a further issue. The semantic definition simply provides
a function from arbitrary sets of symbols to consequence relations.

The aim of this paper is to study a function in the opposite direction
— extracting or mining constants from consequence relations — which
is an inverse, in a suitable sense, to the Bolzano-Tarski function. It
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2 Bonnay and Westerst̊ahl

seems rather natural to inquire whether such a function exists, and the
answer turns out to be not quite trivial. But there is another moti-
vation. Speakers in many cases have rather strong intuitive opinions
about ‘what follows from what’. Such judgments, which can be taken
to partially express a consequence relation, make it clear that certain
words, but not others, are constant in the sense that replacing them
by other symbols (of the same category) can destroy the validity of an
inference. These judgments appear quite basic; they do not require a
logic education or theoretical reflection on grammar. Our extraction
method relies only on facts of validity or non-validity of particular
inferences. It applies to any consequence relation, logical or not. Thus,
it provides a new method of isolating the constants of a language.

1.1. Kinds of constants

The recognition that different words play different roles for the conse-
quence relation is an old one. There is the medieval distinction between
categorematic and syncategorematic terms, the dominant idea being
that the latter had no independent meaning (did not correspond to
anything ‘definite’ in the mind).1 The linguistic distinction between
functional and descriptive terms is (partly) a modern analogue. When
Tarski (1936) gave the first version of the model-theoretic definition of
logical consequence, he recognized that one needs grounds for selecting
the logical constants — and that he had none. So did Bolzano, one
hundred years earlier.2 Such grounds have subsequently been given,
notably in terms of invariance under (a group of) transformations.3

In the present paper, however, we avoid these difficult and con-
troversial demarcation problems by starting at the other end: taking

1 This particular idea may be hard to defend in present day semantics, where
familiar logical constants like every and or do receive seemingly independent
interpretations of their own.

2 It is only in one short paragraph in §148 of Bolzano (1837) that he mentions
the problem and connects it to defining what he calls logical analyticity. According
to Bar-Hillel (1950), this was “surely one of the most important and ingenious
single logical achievements of all times.” (p. 101) Bar-Hillel notes that this notion
of logical truth or analyticity is not used in the rest of the book, and hypothesizes
that it was a late insight, inserted just before publication. Be that as it may, an
equally important achievement in Wissenschaftslehre, which pervades the book, is
the analysis of consequence in terms of an arbitrary selection of constants.

3 Starting with Tarski (1986), the aim is to characterize logical notions as the
ones invariant under the most general kind of transformation. This field has been
rather active recently; see, for example, Bonnay (2008) and Feferman (2010). For a
non-technical overview of various approaches to logical constants, see MacFarlane
(2009).
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consequence relations as primitive we extract their constants.4 The set
of thus extracted constants is relative to a consequence relation. For
familiar such relations, one expects it to include the familiar logical con-
stants, but it may contain more, for example, if analytic consequences
are admitted. It depends on the consequence relation.

1.2. Bolzano reversed

We already indicated the almost embarrassingly simple idea on which
the extraction method is based. In a given valid inference, it may be
perfectly clear which words or symbols are constant and which are
not: Just replace them by others of the same category and see what
happens. If validity (according to the given consequence relation) is
always preserved, we are not dealing with a constant. But if validity
can be destroyed in this way, we are. In this straightforward way, the
constants of that inference are the words or symbols essential to its
validity. Here is an example.

(1) a. Most French movies encourage introspection
b. All movies which encourage introspection are commercial

failures
c. Hence: Most French movies are commercial failures

(1) is presumably valid according to most natural notions of conse-
quence: the conclusion follows from the premises. Now replace words
like French, movies, etc. with others of the same category (in some
suitable sense):

(2) a. Most red sports cars are convertibles
b. All cars which are convertibles are unsuitable for cold cli-

mates
c. Hence: Most red sports cars are unsuitable for cold climates

Nothing happens. The inference is still valid. In a sense it is the same
inference. But try instead to replace words like most or all :

(3) a. No French movies encourage introspection
b. All movies which encourage introspection are commercial

failures
c. Hence: No French movies are commercial failures

4 The only precursor to the idea of defining constants in terms of validity that we
know of is Carnap (1937). Carnap suggested that the set of logical and mathematical
constants is the maximal set of expressions such that every sentence built out of these
expressions is either valid or invalid. Our proposal is essentially different, and closer
in spirit to standard accounts of validity.
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4 Bonnay and Westerst̊ahl

This is not only invalid: whether it is valid or not seems to have nothing
to do with the validity of (1)! Hence, most is a constant in (1), French
is not.

These observations are so obvious that they are easy to overlook.
But that doesn’t make them trivial. The method of replacing words by
others of the same category, and seeing what happens, was precisely
Bolzano’s approach to consequence. In his case, the criterion was that
truth should be preserved (for consequence to hold). In the reverse
direction, we ask instead if validity is preserved.

1.3. Extraction

So far, however, we have only given a way to detect constanthood
relative to a particular valid inference. Now we need to extract the
constants from the consequence relation itself. A first proposal was
made in Peters and Westerst̊ahl (2006), Ch. 9, where it was suggested
that a symbol u is constant if every valid inferences in which it occurs
essentially can be destroyed by some replacement. The problem with
this idea is that the qualification “in which it occurs essentially” is
crucial, and must be explained independently, as the following examples
from first-order logic illustrate:

(4) a. Pa |= Pa ∨ ∃xRx
b. ∃xPx,∀x(Px↔ Rx) |= ∃xRx

In both of these inferences, the quantifier ∃ can be replaced by any
type 〈1〉 quantifierQ, i.e. with any symbol of the same category, without
destroying validity. Cases like (4-a) are easy to set aside: the occurrence
of ∃ there is spurious, in that (4-a) is an instance of a more general
inference (i.e. ϕ |= ϕ∨ψ) in which ∃ does not occur. But (4-b) is more
tricky: it expresses a principle of extensionality, and it is not clear how
all such principles can be set aside on syntactic or other grounds. In
particular, the suggested notion of constanthood makes it a non-trivial
task to verify that the usual logical symbols in familiar consequence re-
lations, such as first-order consequence, are indeed constants according
to the criterion.

Here we shall rely on a weaker idea: It suffices, for a word or symbol
to be constant relative to the given consequence relation, that there be
at least one valid inference which can be destroyed by a replacement.
We will see that this definition satisfies the following two adequacy
criteria:

− It yields the expected constants when applied to familiar notions
of logical consequence.
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− It can provide an inverse, in a precise sense, to Bolzano’s function
from sets of symbols to consequence relations.

The second criterion turns out to be quite fruitful. We will see what
kind of inverse relationship can be expected, and get to know in some
detail under what conditions on the language and on the notion of
consequence it holds. In fact, most of the technical work to follow was
driven by the goal of understanding the relationship between the two
functions.

1.4. Plan

We will draw an abstract mathematical picture of the situation just
indicated for a given language, with the two functions, one forming
consequence relations from constants, and the other extracting con-
stants from consequence relations. While making as few assumptions
as possible about the language, we shall start from Bolzano’s substi-
tutional perspective rather than the model-theoretic one: there is a
given interpreted language, in which meaningful expressions can be
replaced, rather than reinterpreted. Our reason for doing so is not his-
torical however. First, we want to start with a language for which a
consequence relation exists: such a language is an interpreted language
and the consequence relation corresponds to intuitions speakers have
about the validity of inferences. Second, our test for extraction is substi-
tutional: it has to be, if it is meant to rely only on speakers’ judgments
about validities. A substitutional, rather than semantic, definition of
consequence is the natural match for such a test. We will eventually
show in Section 8 how to cover the semantic definition of consequence
as well.

As a bonus, starting from Bolzano we get a firmer grip on the ways in
which lack of expressivity in the language may affect consequence rela-
tions, for example, by inability to express an existing counter-example
to an inference. It turns out that this well-known problem for substi-
tutional accounts of consequence is not what prevents our extraction
function from being an inverse in the sense we want. Rather, it is
another, less noticed feature, namely that when you add new symbols
to the language, valid inferences in the original language may cease to
be valid. In other words, the language need not be conservative over ex-
pansions, in contrast with the situation for model-theoretically defined
consequence. We will see that under suitably strong assumptions about
the richness of the language or, alternatively, about the possibility of
expanding it, the required inverse relationship does hold.

Thus we begin, after precise definitions of the notions of language, re-
placement, and consequence relation (Section 2), with a precise account
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6 Bonnay and Westerst̊ahl

of Bolzano’s function from sets of symbols to consequence relations,
and some of its properties (Sections 3 and 4). Section 5 introduces the
extraction function in the other direction, and looks at its behavior
on certain examples, compared to how we would like it to behave,
in view of our two adequacy criteria. It is the second criterion that
requires additional assumptions, and the rest of the paper investigates
the effects of these. The form of inverse relationship that we find is that
of a Galois connection (Sections 6 and 7). As just indicated, it holds
under certain richness requirements, and our most general version of
the substitutional framework actually subsumes the model-theoretic
one (Section 8). Section 9 contains concluding remarks and directions
for further study.

2. Preliminaries

2.1. Languages

In the Bolzano setting with an interpreted language, we shall take every
sentence to be either true or false. We need very few assumptions about
what sentences look like or how they are structured. Most of what we
need is captured in the following definition.

DEFINITION 1. An (interpreted) language is a triple

L = 〈SymbL,SentL,TrL〉,

where

(i) SymbL is a countable set of atomic symbols;
(ii) SentL is a set of sentences, which are finite strings of signs,

some of which belong to SymbL;5

(iii) TrL, the set of true sentences, is a subset of SentL.

As long as we only consider replacement of symbols by other sym-
bols, we may disregard finer aspects of the structure of sentences, such
as tree structure. But since we cannot realistically expect a symbol to
be meaningfully replaceable by any other symbol, we shall presuppose
a partition of symbols into categories. More precisely, let a set Cat of
categories be given. Given a language L and a category C in Cat, we
write CL for the set of symbols of L that are of category C. We assume

5 Think of the other signs as grammatical morphemes, parentheses, commas,
variables, etc. We assume there are at most countably many of those too, and then
SentL is also countable.
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that for each language L,

CatL = {CL : C ∈ Cat}

is a partition of SymbL. Note that symbols in distinct languages can be
of the same category.

Whenever convenient, we drop the subscript L. We let u, v, u′, . . .
vary over Symb, ϕ,ψ, . . . over Sent, and Γ,∆, . . . over subsets sets of
Sent. Also, Vϕ is the set of symbols occurring in ϕ. Likewise, VΓ =
∪{Vϕ : ϕ ∈ Γ}.

2.2. Replacement

A replacement is a partial function ρ from Symb to Symb that respects
categories: if u ∈ dom(ρ) is of category C ∈ CatL, then so is ρ(u).
We write ϕ[ρ] for the result of replacing each occurrence of u in ϕ by
ρ(u).6 It is convenient to assume that Vϕ ⊆ dom(ρ) — in words, ρ is
a replacement for ϕ — so that ρ is the identity on symbols that don’t
get replaced.

We make the extra assumption that Sent is closed under replace-
ment. Then the following conditions hold:7

(5) a. If ρ is a replacement for ϕ, ϕ[ρ] ∈ Sent and Vϕ[ρ] = range(ρ �
Vϕ)

b. ϕ[idVϕ ] = ϕ
c. If ρ, σ agree on Vϕ, then ϕ[ρ] = ϕ[σ].
d. ϕ[ρ][σ] = ϕ[σρ], when σ is a replacement for ϕ[ρ]

2.3. Consequence relations

We take consequence relations to hold between sets of sentences and
sentences. This agrees with Bolzano, and with much of the approach
to consequence taken in the early 20th century by Hertz (1923), Lewis
and Langford (1932), Tarski (1930a; 1930b), and Gentzen (1932).8 The
same holds for the following definition.

6 We often write ϕ[u1/u
′
1, . . . , un/u

′
n] instead ϕ[ρ], when ρ(ui) = u′i and ρ is

the identity on all other symbols in ϕ. Also, we only replace symbols by symbols,
whereas it would seem more natural to replace symbols by other expressions of the
same category. For the points we wish to make in this paper, however, this extra
generality is not necessary.

7 These are essentially the conditions in Peter Aczel’s notion of a replacement
system from (Aczel, 1990).

8 Other notions take the conclusion to be a set of sentences as well, or use
sequences or multisets instead of sets. For a comparison of early notions of
consequence, see Shoesmith and Smiley (1978), especially Section 1.1.
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DEFINITION 2.

(a) A relation R ⊆ ℘(SentL)×SentL is a consequence relation in L iff
it satisfies

(R’) If ϕ ∈ Γ, then ΓRϕ.

(T) If ∆Rϕ and ΓRψ for all ψ ∈ ∆, then ΓRϕ.

(b) CONSL is the set of consequence relations in L which are truth-
preserving: whenever ΓRϕ and (every sentence in) Γ is true, ϕ is
also true.

We let ⇒,⇒′, . . . vary over consequence relations. (T) for transitivity
and (R’) stands for a generalized version of reflexivity,

(R) ϕ⇒ ϕ for all ϕ ∈ SentL

It easily follows that consequence relations are also monotone:

(M) If Γ⇒ ϕ and Γ ⊆ ∆, then ∆⇒ ϕ.9

If only finite sets of premises are considered, we say that ⇒ is fini-
tary. Results using the finiteness restriction will be marked (Fin). A
weaker constraint is to consider compact consequence relations, in the
sense that

If Γ⇒ ϕ, then Γ′ ⇒ ϕ for some finite subset Γ′ of Γ.

Define:

(6) a. Γ⇒max ϕ iff it is not the case that Γ is true and ϕ is false.

b. Γ⇒min ϕ iff ϕ ∈ Γ.

⇒max is essentially material implication. ⇒max and ⇒min are the
smallest and the largest elements of the partial order (CONSL,⊆). Note

9 Indeed, (R’)+(T) is equivalent to the often used combination (R)+(M)+(CS),
where (CS) is cut for sets:

(CS) If Γ ∪∆⇒ ϕ and Γ⇒ ψ for all ψ ∈ ∆, then Γ⇒ ϕ.

As to truth preservation, let a valuation be a function v from Sent to {T,F}. Truth
preservation for v is defined in the obvious way, and to each set K of valuations cor-
responds the consequence relation `K = {(Γ, ϕ) : (Γ, ϕ) preserves truth for each v ∈
K}. Then one can show that each consequence relation is of the form `K for some
K (see (Shoesmith and Smiley, 1978), Section 1.1, for a proof), which gives some
motivation for the chosen defining conditions of consequence relations. In our setting
here with an interpreted language L, we have chosen a fixed valuation (the ‘intended’
one).
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also that for every truth-preserving relation R on ℘(SentL) × SentL,
there is a smallest consequence relation clL(R) ∈ CONSL extending
R. clL(R) is the intersection of all consequence relations in which R is
included.

3. Consequence from constants

Of particular interest are the consequence relations generated from a
set of constants. The idea is familiar to every logician: ϕ follows from
Γ, relative to a set X of constants, iff any reinterpretation of symbols
outside X that makes the premises true also makes the conclusion true.
In the Bolzano setting with an interpreted language, however, we do
not reinterpret symbols but replace them.

3.1. Bolzano consequence

Bolzano stressed the fact that we are in principle free to regard any set
of symbols as constants. As pointed out in van Benthem (2003), one
may thus think of Bolzano consequence as a ternary relation, between
a set of premises, a conclusion, and a set X of symbols treated as
constants. Equivalently, we shall define a function ⇒ from sets of
symbols to consequence relations, as follows:10

DEFINITION 3. For any X ⊆ SymbL, define the relation ⇒X by

Γ⇒X ϕ iff for every replacement ρ that is the identity on X, if
Γ[ρ] is true, so is ϕ[ρ].

A relation of the form ⇒X is called a Bolzano consequence (relation),
and we let BCONSL be the set of Bolzano consequences in L. It is
straightforward to verify the following claims.

FACT 4.

(a) BCONSL ⊆ CONSL

(b) In addition, Bolzano consequences are base monotone, in that

10 We do not follow Bolzano to the letter; for example, we do not require, as he did,
that the set of premises should be consistent in order to have any consequences. For
a discussion of this and several other aspects of Bolzano’s notion of consequence, see
van Benthem (2003). Another departure from Bolzano’s original approach is that
ours is syntactic, replacing symbols, whereas he replaced concepts (‘Vorstellungen
an sich’). Incidentally, this might make his account less vulnerable to detrimental
effects due to lack of symbols in the language.
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X ⊆ Y implies ⇒X ⊆ ⇒Y

(c) (BCONSL,⊆) is a partial order which has ⇒∅ as its smallest and
⇒Symb as its largest element.

So (BCONSL,⊆) is a sub-order of (CONSL,⊆), and we see that

(7) ⇒max = ⇒Symb

It often happens,11 however, that

(8) ⇒min ( ⇒∅

so BCONSL can be a proper subset of CONSL. The following is trivial
but fundamental:

LEMMA 5. (Replacement Lemma) If Γ ⇒X ϕ and ρ is the identity
on X, then Γ[ρ]⇒X ϕ[ρ].

Proof. Use the composition property (5-d) in Section 2.2 of replace-
ment, noting that if both ρ and σ are the identity on X, so does σρ. 2

Furthermore, from base monotonicity and (5-c) we see that only
symbols occurring in premises and conclusion matter for Bolzano con-
sequence:

LEMMA 6. (Occurrence Lemma) Γ⇒X ϕ iff Γ⇒X∩VΓ∪{ϕ} ϕ.

3.2. Example: propositional logic

Let PL be a standard language of propositional logic, whose sym-
bols consist of a suitable set of connectives and an infinite supply of
propositional letters — say, SymbPL = {¬,∨,∧} ∪ {p0, p1, . . .} with
the (non-empty) categories ‘unary truth function’, ‘binary truth func-
tion’, and ‘propositional letter’ — and let |=PL be the corresponding
(classical) consequence relation. The usual definition of consequence in
this language is model-theoretic, but we can ‘simulate’ |=PL also in our
substitutional setting, where p0, p1, . . . are sentences with fixed truth

11 For example, in propositional logic, ∗ ∗ ∗ p ⇒∅ ∗ p, where p is a propositional
letter and ∗ a unary truth function. Likewise, in all of the particular examples to
follow, ⇒∅ is distinct from ⇒min.
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values, and the truth values of complex sentences are computed from
these by the usual truth tables. Replacing proposition letters by others
amounts to ‘assigning’ arbitrary truth values to them, under a simple
assumption: let us say that PL, viewed as an interpreted language, is
non-trivial iff the sequence of truth values of p0, p1, . . . is not eventually
constant. Clearly,

(9) If PL is non-trivial, then for every (countable) sequence α1, α2, . . .
of truth values there are propositional letters pi1 , pi2 , . . . such
that the truth value of pij is αj , for all j.

Using (9), one easily verifies:

FACT 7. If PL is non-trivial, then Γ |=PL ϕ iff Γ⇒{¬,∨,∧} ϕ.

3.3. Example: first-order logic

Now let FO be a standard language of first-order logic. Setting paren-
theses and variables aside,12 we take

SymbFO = {¬,∨,∧, ∀, ∃,=} ∪ {P0, P1, . . . , c0.c1, . . .}

with obvious categories such as ‘type 〈1〉 quantifier’, ‘binary predicate
symbol’, ‘individual constant’, etc.

Let |=FO be the standard consequence relation for FO. Once an
interpretation is fixed for all symbols (including the non-logical ones),
all sentences in FO get a truth-value and Bolzano’s definition of con-
sequence applies. The following inclusion is straightforward:

(10) |=FO ⊆ ⇒{¬,∧,∨,∀,∃,=}

However, the converse inclusion is not true for all languages FO – this
was precisely the motivation in Tarski (1936) for giving a semantic and
not a substitutional definition of logical consequence. For example, if
every name a in the language is such that for all predicates P , either
Pa is false or ∀xPx is true, then we get Pa⇒{∀} ∀xPx for an arbitrary
predicate P . As we shall see in section 8, one way to simulate |=FO is
to consider expansions of the base language, in order to alleviate the
limitations of the substitutional account.13

At first blush, one might think the Bolzano approach simply amounts
to FO with substitutional interpretation of the quantifiers, but this is

12 This in keeping with Definition 1, since it was not required that SymbL contains
all symbols occurring in sentences of the language (see also footnote 5).

13 The semantic definition to be used in section 8 will not exactly be the classical
|=FO since we will not consider domain variations.
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not so. The reason is that in standard definitions of logical consequence
with substitutional quantification, as in Dunn and Belnap (1968), only
the quantifiers are interpreted substitutionally, but not the rest of the
language. In more detail, in their substitutional account of FO, call
it FO-subst, truth is defined relative to an arbitrary assignment ν of
truth values to the atomic sentences, extended in the usual way to
negations and conjunctions, and to universally quantified sentences by

(11) ∀xϕ(x) is true relative to ν iff ϕ(c) is true relative to ν for all
individual constants c.

Logical consequence is defined as follows:

(12) Γ |=FO-subst ϕ iff every assignment ν relative to which Γ is true
is also one relative to which ϕ is true.

If there are infinitely many names, Dunn and Belnap show that |=FO-subst

and |=FO agree when only finitely many premises are considered. As a
consequence, the previous counterexample to the inclusion of⇒{¬,∧,∨,∀,∃,=}
in |=FO carries over to |=FO-subst.

When infinite sets of premises are considered, |=FO-subst and |=FO

cease to agree, as witnessed by the following:

{Pc : c is a name} |=FO-subst ∀xPx

Now there will be interpreted languages FO such that this is not valid
according to ⇒{¬,∧,∨,∀,∃,=}, because, for example, all names can be
replaced by a given name d such that Pd is true, even though ∀xPx is
false. Therefore, |=FO-subst and ⇒{¬,∧,∨,∀,∃,=} are incomparable, in the
sense that it is possible to find interpreted languages FO such that the
former is not included in the latter, or the other way around.14

3.4. Two toy languages

We now describe in some detail two very simple languages and their
consequence relations. These examples, and variants of them, will serve
later on to illustrate various features of Bolzano consequence.

3.4.1. The language L1

Let the language L1 be specified as follows:

SymbL1
= {R, a, b} (with a, b of the same category)

14 Thanks to an anonymous referee for pointing this out, and correcting an earlier
mistake of ours.
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SentL1 = {Raa,Rab,Rba,Rbb}
TrL1 = {Raa,Rab,Rbb}

Here R is the only symbol of its category. It can only be replaced by
itself, which means that it can in effect be disregarded. So in this and
similar examples to follow, when writing things like X ⊆ SymbL1

, we
really mean X ⊆ SymbL1

− {R}.
L1 has the feature that no replacement of a single symbol can turn

a true sentence into a false one; only a permutation of a and b can do
that. We have, for example,

(13) ∅ ⇒∅ Raa, ∅ ⇒∅ Rbb, ∅ 6⇒∅ Rab, but if a ∈ X or b ∈ X, then
∅ ⇒X Rab

Note that the first claim already shows that ⇒∅ 6= ⇒min. As to the
last claim of (13), since we are only allowed to replace symbols outside
X, in this case at most one of a and b can be replaced, so the conclu-
sion cannot be falsified. The following is a complete description of the
Bolzano consequence relations in L1:

FACT 8. In the language L1:

(i) ⇒∅ = clL1({〈∅, Raa〉, 〈∅, Rbb〉})
(ii) If a or b belong to X ⊆ SymbL1

, then
⇒X = clL1({〈∅, Raa〉, 〈∅, Rbb〉, 〈∅, Rab〉})

Proof. (i) By (13) and monotonicity, we need only consider infer-
ences with the conclusion Rab. (I.e. for all Γ ⊆ SentL1 , Γ ⇒∅ Raa
follows from ∅ ⇒∅ Raa by monotonicity.) Suppose Γ ⇒∅ Rab. We can
assume Raa,Rbb 6∈ Γ, by (13) and transitivity: if e.g. Raa ∈ Γ then
Γ−{Raa} ⇒∅ Rab. By reflexivity and monotonicity, we can also assume
that Rab 6∈ Γ. But Rba 6⇒∅ Rab (permuting a and b makes the premise
true and the conclusion false). So all valid inferences Γ ⇒∅ ϕ in L1

belong to the closure of the two listed in (i). The proof of (ii) is similar,
using base monotonicity (⇒∅ ⊆ ⇒X), and the last claim of (13). 2

As a consequence, note that

(14) ⇒∅ (⇒{b} =⇒{a} =⇒{a,b}

3.4.2. The language L2

L2 just adds one symbol (of the same category) to L1, but no new false
sentences:
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14 Bonnay and Westerst̊ahl

SymbL2
= {R, a, b, c}

SentL2 = {Rxy : x, y ∈ {a, b, c}}
TrL2 = {Raa,Rbb,Rcc,Rab,Rac,Rbc,Rca,Rcb}

First, clearly,

(15) ∅ ⇒∅ Raa, ∅ ⇒∅ Rbb, ∅ ⇒∅ Rcc, but if x 6= y, then ∅ 6⇒∅ Rxy

Next,

(16) If x 6= y and Rxy 6∈ Γ, then Γ 6⇒∅ Rxy.

For if ρ maps x to b, y to a, and the remaining symbol to c, it is a
permutation of SymbL2

, and then no sentence except Rxy is mapped
to Rba, so all premises in Γ are true.

With respect to ⇒{a}, we have, in addition to the valid inferences
with ⇒∅,

(17) a. ∅ ⇒{a} Rab and ∅ ⇒{a} Rac
b. Rca⇒{a} Rcb and Rba⇒{a} Rbc

Next, if Rba 6∈ Γ, then Γ is true, and so cannot imply Rba. Also

(18) {Rba,Rbc,Rcb} 6⇒{a} Rca [map a to itself, permute b and c]

For ⇒{a,c}, the situation is quite simple, since the empty set now
implies each sentence except Rba, and no set of premises not containing
Rba implies Rba. Our findings can be summarized as follows:

FACT 9. Let Φ0 = {〈∅, Rxx〉 : x ∈ SymbL2
}, and Φ1 = Φ0∪{〈∅, Rab〉, 〈∅, Rac〉}.

In the language L2:

(i) ⇒∅ = clL2(Φ0)

(ii) ⇒{a} = clL2(Φ1 ∪ {〈{Rba}, Rbc〉, 〈{Rca}, Rcb〉})
(iii) ⇒{a,c} = clL2({〈∅, Rxy〉 : (x, y) 6= (b, a)}) = ⇒{a,b,c}

4. Minimality

L1 and L2 provide examples where different sets X,Y generate the
same Bolzano consequence. One would expect sets that are minimal in
this respect to be particularly well behaved. Perhaps the most obvious
idea about minimality is the following.

DEFINITION 10. X is minimal iff for all u ∈ X, ⇒X−{u} ( ⇒X .
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So X is minimal in the sense that if any one of its symbols is left
out, a smaller consequence relation results. The other natural sense of
‘minimal’, as we noted, is minimality with respect to the sets generating
the same consequence relation. In fact, it is easy to see that these two
notions of minimality are equivalent.
∅ is minimal in any language. In the languages L1 and L2 of Section

3.4, all singleton sets are minimal, since in each case, ⇒{x} is distinct
from ⇒∅. Also, it is easy to see that {a, c} is minimal in L2, but {a, b}
in L1, and {a, b, c} in L2, are not minimal.

Being minimal doesn’t entail being the smallest set generating the
same consequence relation; e.g. in L1 there is a set of symbols X with
distinct minimal subsets in {Y : ⇒Y = ⇒X}. However, in Westersthl
(2011) it was shown that there always exists at least one subset which
is minimal among these when only compact consequence relations are
considered:15

THEOREM 11. For every X ⊆ SymbL, if ⇒X is compact, then X has
a subset which is minimal among those generating ⇒X .

Thus, if we restrict attention to minimal subsets of Symb, no compact
consequence relation of the form ⇒X will be left out.

In this paper, we shall prove related and in a sense stronger results.
First, we show that under some additional assumptions about the lan-
guage L, there actually is a smallest subset generating ⇒X ; moreover,
this subset has a simple independent description (Corollary 26). Then
we prove that the same result holds if we lift those restrictions (but not
compactness), but use a slightly more general framework for Bolzano
consequence (Corollary 39).

The requirement of compactness in Theorem 11, however, cannot be
removed, as we now show.

FACT 12. There is a language L and a set X ⊆ SymbL such that ⇒X

is not compact, and there is no minimal X ′ with ⇒X =⇒X′.

Proof. We use a language LN for arithmetic with numerals and
predicates for any finite or co-finite set of natural numbers, plus a
quantifier for “there are infinitely many”. The symbols in SymbLN are

15 Actually, the proof in Westersthl (2011) was given for finitary Bolzano con-
sequence relations, but it is easily adapted to compact relations. That paper also
identified a stricter notion of minimality, called strong minimality, and proved some
results about it. These results are subsumed under the treatment in the present
paper. In particular, in the more general Bolzano style framework introduced in
Section 7, minimality and strong minimality coincide.
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16 Bonnay and Westerst̊ahl

thus constants cn for every n ∈ N, predicates PA and ¬PA for every
finite set A of numbers, and a predicate functor Inf, taking predicates
to sentences. (So the non-empty categories here are ‘numeral’, ‘1-place
predicate’ and ‘predicate functor’.) The sentences in SentLN are of one
of the forms PAcn, ¬PAcn, InfPA, and Inf¬PA. A sentence ϕ is in TrLN
iff ϕ is PAcn and n ∈ A, or ϕ is ¬PAcn and n 6∈ A, or ϕ is Inf¬PA.
Note that LN is countable.

Let X = {cn}n∈N. In what follows, (¬)PA stands for an arbitrary
predicate PA or ¬PA. First:

(19) If there are infinitely many sentences of the form (¬)PAci in Γ,
then Γ⇒X Inf (¬)PA.

This is because a replacement that makes all the sentences in Γ true
then has to replace (¬)PA by a predicate with an infinite extension (that
is, a predicate of the form ¬PB), since the ci must not be replaced. But
then, after such a replacement, the conclusion is also true. On the other
hand,

(20) If Inf (¬)PA 6∈ Γ, and only finitely many sentences of the form
(¬)PAci are in Γ, then Γ 6⇒X Inf (¬)PA.

To see this, let A′ be the finite set of numbers i such that (¬)PAci ∈ Γ.
Consider the replacement ρ which replaces (¬)PA by PA′ and all other
predicates by ¬P∅. Since Inf (¬)PA 6∈ Γ, it follows that all sentences in
Γ[ρ] are true (note that Inf¬P∅ and all sentences ¬P∅cj are true), but
ϕ[ρ], i.e. Inf PA′ , is false. And since ρ does not act on X, this shows
that Γ 6⇒X ϕ. Next, we observe

(21) If (¬)PAci 6∈ Γ, then Γ 6⇒X (¬)PAci.

For consider the replacement ρ which replaces (¬)PA by ¬P{i} and all
other predicates by ¬P∅. ρ doesn’t act on X, all sentences in Γ[ρ] are
true (even if Inf (¬)PA ∈ Γ, since Inf¬P{i} is true), but (¬)PAci[ρ], i.e.
¬P{i}ci, is false.

This allows us to conclude:

(22) ⇒X is not compact.

Take Γ = {P{0}cn}n∈N and ϕ = Inf P{0}. Then Γ ⇒X ϕ by (19), but,
by (20), there is no finite subset Γ′ of Γ such that Γ′ ⇒X ϕ.

Now let X− ⊆ X be any set of symbols such that the number of
constants ci which are in X but not in X− is finite, and let X−− ⊆ X
be any set of symbols such that the number of constants ci in X but
not in X−− is infinite. Then we have:
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(23) ⇒X− =⇒X

For suppose Γ⇒X ϕ. We must show Γ⇒X− ϕ. This is clear if ϕ ∈ Γ,
so suppose ϕ 6∈ Γ. It then follows from (21) that ϕ cannot be of the form
(¬)PAci. So we have ϕ = Inf (¬)PA for some A, and then it follows from
(20) that there must be infinitely many sentences of the form (¬)PAci
in Γ. Thus, there are infinitely many sentences (¬)PAci in Γ such that
ci is in X−. So it is still the case that for a replacement ρ to make all
the sentences in Γ true, ρ has to replace (¬)PA by a predicate ¬PB
with an infinite extension. Finally,

(24) ⇒X−− 6=⇒X

Take for Γ all sentences of the form P{0}ci for ci not in X−−, and
InfP{0} for ϕ. By (19), Γ ⇒X ϕ, but now Γ 6⇒X−− ϕ. Consider a

replacement ρ such that ρ(ci) = c0 for all ci not in X−−, but nothing
else is moved. All sentences in Γ[ρ] are true, since Γ[ρ] is the singleton
{P{0}c0}, but ϕ[ρ], i.e. InfP{0}, is false.

Now the desired claim follows: there is no minimal subset X ′ of X
such that⇒X =⇒X′ . Subsets of X are either of the form X− or X−−.
But subsets of the form X− are clearly not minimal, and subsets of the
form X−− do not generate a consequence relation identical to ⇒X . 2

5. Extracting constants from consequence relations

5.1. Defining extraction

We now introduce an operation corresponding to the extraction of
logical constants from a consequence relation. When a particular conse-
quence relation is given, certain symbols are to be considered as logical
constants because the consequence relation makes them play a special
role with respect to validity. As explained in the Introduction, our
guiding intuition is that a symbol is constant if replacing it can destroy
at least one inference.

DEFINITION 13. The function C : CONSL → ℘(SymbL) is defined
for ⇒ ∈ CONSL by u ∈ C⇒ iff there are Γ, ϕ, and u′ such that Γ⇒ ϕ
but Γ[u/u′] 6⇒ ϕ[u/u′].

We first observe, as a direct consequence of the Replacement Lemma,
that when C is applied to a Bolzano consequence relation, it will never
pick out a non-logical constant:
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Figure 1. Logical consequence and constant extraction

FACT 14. For all X ⊆ Symb, C⇒X ⊆ X.

Proof. Suppose u ∈ C⇒X , and Γ, ϕ, and u′ are as above. If u 6∈ X
we would have Γ[u/u′]⇒X ϕ[u/u′] by Replacement. So u ∈ X. 2

As discussed in Section 1, logical consequence can be construed as
a function from sets of symbols to consequence relations. Extraction
goes in the opposite direction. Moreover, the domains of both func-
tions are naturally ordered by inclusion, so the situation is as shown in
Figure 1. Fact 4(b) said that ⇒ is an order-preserving mapping from
(℘(SymbL),⊆) to (CONSL,⊆). We would like C to provide some sort
of inverse order-preserving mapping. Before looking into this and other
properties of C , let us see some examples of how C works.

5.2. Examples

There is one case when the function C trivially fails to yield the
intended result because of its substitutional character, namely, when
a symbol u is unique in its category. Then there is no other symbol
to replace u with, so it will not count as a logical constant, no matter
what inferential role it plays. This situation arises with negation, which
is usually the only unary connective in logical languages. To sidestep
this difficulty, we shall assume, when considering propositional logic or
first-order logic, that they come equipped with another unary connec-
tive, say †, interpreted by the constant unary truth-function ‘equal to
false’.16 With this assumption, we can verify that C satisfies the first
criterion mentioned in the Introduction for a reasonable ‘extraction
function’: it gives the correct set of logical constants in familiar logical
languages.

16 As Lloyd Humberstone pointed out to us, we could have avoided this somewhat
artificial manoeuvre if a more permissive notion of replacement had been used (cf.
note 6).
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5.2.1. Familiar logical languages
Indeed, things go smoothly for propositional and first-order logic.

FACT 15. C|=PL
is the standard set of logical constants of propositional

logic.

Proof. p |=PL p∨q but p 6|=PL p∧q. That is, replacing ∨ by ∧ destroys
the validity of the first inference, so ∨ ∈ C|=PL

. Likewise, p |=PL ¬¬p
but p 6|=PL † † p, and thus ¬ ∈ C|=PL

. Similarly for other familiar con-
stants. On the other hand, (uniformly) replacing propositional letters
can never destroy a valid |=PL-inference. 2

Recall from Section 3.2 that if the interpreted propositional language
is non-trivial (the sequence of truth values of p0, p1, . . . is not eventually
constant), then |=PL is a Bolzano consequence, say, |=PL =⇒{¬,†,∨,∧}.
But the fact that C recovers the right constants doesn’t depend on this.
We get, with the same kind of argument as above, the correct result
also for first-order logic, even though |=FO is not usually a Bolzano
consequence relation (see Section 3.3):

FACT 16. C|=FO
is the standard set of logical constants of first-order

logic.

It should be clear why all standard logical constants will be extracted.
Any occurrence of a name or a predicate symbol in a first-order validity
is schematic, so no such symbol will be extracted. This is all there is to
prove, since, following the convention adopted in Section 3.3, neither
variables nor parentheses are considered as symbols that are to be
tested for constancy. Such a convention is justified in so far as variables
are viewed as syntactic markers encoding quantifier scope rather than
as interpreted symbols, for which the question of constancy would make
sense. This view gets some support by the fact that a variable-free
notation for first-order logic may be used, as in Quine (1976).

More generally, most familiar consequence relations are such that
suitably replacing a logical symbol can destroy an inference, while this
is not possible for non-logical symbols. For example, consider an intu-
itionistic propositional logic whose consequence relation is defined not
model-theoretically but axiomatically (with suitable extra axioms for
†). Again, virtually the same kind of arguments show that C extracts
precisely the logical symbols from this relation.
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5.2.2. Application to L1 and L2

C behaves rather badly for L1, since C⇒X = ∅ for all X ⊆ SymbL1
.

This is because replacing just one symbol can never destroy a ⇒X -
inference in L1; you need to replace two symbols simultaneously. Can
we revise the extraction method so that it handles such cases better?
There is actually a way (see Section 9.3), but in in this paper we
shall stick to the function C and make it behave better by placing
requirements on the language. For now, we observe that already in
L2, which contains just one extra symbol (of the same category), the
situation is significantly different.

First, note that replacing a by c destroys the inference ⇒{a}Rab.17

Thus, a ∈ C⇒{a} , so by Fact 14,

(25) C⇒{a} = {a}

Next, since ⇒{a,c} Rbc but 6⇒{a,c} Rba, c ∈ C⇒{a,c} in L2. But a 6∈
C⇒{a,c} ; this follows by checking that replacing a by b or c does not

destroy any of the basic inferences listed in Fact 9 (iii). Thus, in L2,

(26) C⇒{a,c} = {c}

So the situation for L2 is better than for L1, but it is still not good,
at least if we want C to be an order-preserving inverse on CONSL.
The failure of order preservation is no surprise given that there are
both a positive and a negative condition in the definition of C . The
witness to a non-valid inference might disappear by shifting to a bigger
consequence relation. Perhaps more surprisingly, the situation is no
better for Bolzano consequences.

FACT 17. There are languages L and sets X,Y ⊆ SymbL such that:

(a) ⇒X ⊆ ⇒Y but C⇒X 6⊆ C⇒Y

(b) ⇒X 6⊆ ⇒C⇒X

Proof. An example is provided by (25) and (26) for L2. There we have
⇒{a} ⊆ ⇒{a,c} by base monotonicity, but {a} = C⇒{a} 6⊆ C⇒{a,c} =

{c}. Also, ⇒{a,c} 6⊆ ⇒C⇒{a,c}
=⇒{c}, since, for example, ∅ ⇒{a,c} Rab

but ∅ 6⇒{c} Rab. 2

17 Here and in what follows we write ⇒X ϕ rather than ∅ ⇒X ϕ; meaning that ϕ
is valid (relative to ⇒X).
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6. A Galois connection under special assumptions

Fact 17 shows that C does not yet behave in the way we would like.
On the other hand, C passes the first part of the test: it gives the right
results when applied to familiar logical systems. Our diagnosis will be
that the problems are due to particular features of the languages used
in the counter-examples, rather than to shortcomings of the definition
itself. The present section isolates a subclass of languages, sets of con-
stants, and consequence relations for which C behaves well, within the
classical Bolzano framework introduced in Section 2. In the next section
we will see that with a slight extension of that framework, many (but
not all) of those restrictions can be lifted.

6.1. A factorization property for replacements

Let us take a closer look at the failure of monotonicity with respect to
Bolzano consequence relations. In L2, as we saw, ⇒{a} ⊆ ⇒{a,c} but
C⇒{a} 6⊆ C⇒{a,c} , the reason being that a ∈ C⇒{a} but a 6∈ C⇒{a,c} .

Relative to ⇒{a} (and to ⇒{a,c} as well), a should clearly be identi-
fied as a constant. After all, holding a fixed does make a difference, e.g.
⇒{a}Rab but 6⇒∅Rab (recall that Rba is false). But this is not sufficient
for C to spot a as a constant.⇒{a}Rab and 6⇒{a}Rba, but Rab cannot
be turned into Rba by replacing only a, as the definition of C requires.
For ⇒{a}, this is not a problem, because the non-constant symbol c
can be used as a stop-over on the journey. Instead of jumping from the
validity of Rab to the falsity of Rba, one can stop by the invalidity of
Rcb. Then a ∈ C⇒{a} , because ⇒{a}Rab and 6⇒{a}Rab[a/c].

Shifting to ⇒{a,c}, things are different: ⇒{a,c} Rab[a/c]. As it hap-
pens, there is no alternative way in L2 to witness the constancy of
a, and a ends up being outside C⇒{a,c} . But consider a language L3

which is just as L2 except that it contains another symbol d of the
same category as c. So TrL2 = TrL3 ∩ SentL2 , and let us also assume
that Rad is true. In L3, the situation improves because d can be used
as a substitute stop-over: now a ∈ C⇒{a,c} , because ⇒{a,c} Rab and

6⇒{a,c}Rab[a/d].
The lesson we would like to draw is that monotonicity holds when the

language is rich enough (so that a d is available) and fails when it is not.
We shall now consider a general factorization property for replacements
which makes precise what is needed of such rich languages and which
will enable us to prove monotonicity and more. The underlying idea
is that, given two sets of symbols X and Y , performing a replacement
outside X should be analyzable as first performing a replacement on
the symbols outside X that are in Y and then performing a replacement
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on the remaining symbols outside Y . The fact that this can be done
means that stop-overs are available.18

DEFINITION 18 (Factorization Property).
Let X,Y ⊆ SymbL and ∆ ⊆ SentL. We say that X-replacements in

∆ factor through Y iff for any replacement ρ which is defined on V∆

and acts outside X, there are replacements σ and τ such that:

(i) σ acts only on Y −X
(ii) σ(Y −X) ∩ V∆ = ∅
(iii) τ acts outside Y
(iv) ρ = τ ◦ σ

Sentences ∆ to be considered will typically be the sentences in an
inference Γ ⇒X ϕ. σ(Y − X) ∩ V∆ = ∅ then means that σ replaces
symbols in Y −X by ‘new’ symbols not occurring in the inference. In
our earlier example, with X = {a} and Y = {a, c}, σ corresponds to
replacing c with d, so that everything that a replacement ρ which moves
c could do can now be done by a replacement τ moving d instead of c.

When is this factorization possible, i.e. when are helpful symbols
like d available? First, d qualified as a substitute for c because it was of
the same category as c and did not belong to the old set of constants.
In order to secure availability of such ds, a simple requirement would
be that there are infinitely many symbols in each non-empty category.
In Bonnay and Westerst̊ahl (2010) we called such languages rich. But
we also need that these rich resources cannot be all consumed by the
chosen constants. For each non-empty category, there should always
be infinitely many symbols in that category not taken as constants.
The simplest requirement would be to restrict attention to finite sets
of symbols. But we can replace these two by the single weaker require-
ment that we only consider co-infinite sets of symbols, i.e. in each
non-empty category, there are infinitely many symbols in SymbL −X.
Let ℘coinf(SymbL) be the set of such sets of symbols. As long as (in
each non-empty category) ℘coinf(SymbL) is not empty, assuming that
the sets of symbols discussed are co-infinite entails assuming that L is
rich.

In addition we need an assumption on the consequence relations.
For simplicity, we shall assume that they are finitary, i.e. that only
finite sets of premises are considered — marked by writing (Fin) —

18 We say that a replacement acts outside a set if it is the identity on every element
in that set for which it is defined, and acts only on a set if every element for which
it is not the identity is in that set.
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but in fact our proofs work under the weaker hypothesis that they are
compact (we shall indicate the required changes in the proofs).19

Co-infiniteness of the set of constants and finiteness of the set of
sentences guarantee that new symbols are available, so the factorization
property holds:

LEMMA 19. If Y ∈ ℘coinf(SymbL) and ∆ is a finite set of L-sentences,
then for all X ⊆ SymbL, X-replacements in ∆ factor through Y .

Proof. Since Y is co-infinite in each non-empty category, so is Y −X.
Since moreover ∆ is finite, for every symbol ai in (Y −X) ∩ V∆, there
is a different symbol bi which is of the same category as ai but does
not belong to V∆ or to Y . Define σ by

σ(x) =

{
bi if x = ai
x otherwise

Then define τ on the range of σ by

τ(x) =

{
ρ(ai) if x = bi
ρ(x) otherwise

It is easy to check that ρ = τ ◦ σ and all other conditions in Definition
18 are satisfied. 2

6.2. Monotonicity and preservation

The factorization property ensures monotonicity of C with respect to
Bolzano consequence relations. The proof hinges on the same kind of
reasoning we went through in the example.

THEOREM 20. (Fin) If Y is co-infinite, then ⇒X ⊆ ⇒Y implies
C⇒X ⊆ C⇒Y .

Proof. Assume⇒X ⊆ ⇒Y , where Y is co-infinite, and u ∈ C⇒X . We
want to show that u ∈ C⇒Y . By definition of C , there are Γ, ϕ and u′

19 Rather than (Fin), we could instead use the actually weaker requirement that
the set of symbols occuring in an inference Γ⇒ ϕ is finite. Interestingly, our proofs
do not go through if the set of symbols occurring in Γ ∪ {ϕ} is assumed to be co-
infinite (in each non-empty category). This asymmetry suggests that the finiteness
requirement does not play the same role for sets of symbols as it does for sets of
premises. This is one reason we choose to work with the more precise if less simple
assumption of co-infinity, rather than with richness and finite sets of symbols.
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in L such that Γ⇒X ϕ and Γ[u/u′] 6⇒X ϕ[u/u′]. By definition of ⇒X ,
there is a replacement ρ acting outside of X such that the sentences in
Γ[u/u′][ρ] are true but ϕ[u/u′][ρ] is false.

The hypotheses of Lemma 19 apply with respect to X, Y , and ∆ =
Γ ∪ {φ} ∪ Γ[u/u′] ∪ {φ[u/u′]}, because of (Fin).20 So X-replacements
in ∆ factor through Y , i.e. there are σ and τ such that σ acts only on
Y −X, σ(Y −X) ∩ (V∆) = ∅, τ acts outside Y , and ρ = τ ◦ σ.

Since σ acts outside X we get, by Replacement,

Γ[σ]⇒X ϕ[σ]

Hence, by assumption,

Γ[σ]⇒Y ϕ[σ]

It is now sufficient to prove

(27) Γ[σ][u/σ(u′)] 6⇒Y ϕ[σ][u/σ(u′)]

Since σ(Y − X) ∩ V∆ = ∅, it follows that [σ][u/σ(u′)] = [u/u′][σ].
Hence, since ρ = τ ◦ σ, Γ[σ][u/σ(u′)][τ ] is Γ[ρ], a set of true sentences,
and ϕ[σ][u/σ(u′)][τ ] is ϕ[ρ], a false sentence. Since τ acts outside Y ,
this proves (27). 2

In a similar manner, we can establish a more satisfactory inverse
relationship between the mappings ⇒ and C restricted to Bolzano
consequences. The consequence relation generated by any co-infinite
set X of symbols is the same as what you get by first extracting the
constants from⇒X and then generating the Bolzano consequence from
those constants, even if they form a proper subset of X.

THEOREM 21. (Fin) If X is co-infinite, ⇒X =⇒C⇒X
.

Proof. C⇒X ⊆ X already implies ⇒C⇒X
⊆ ⇒X , so all we need to

prove is ⇒X ⊆ ⇒C⇒X
. Assume Γ ⇒X ϕ. We must show Γ ⇒C⇒X

ϕ.
Let ρ be a replacement acting outside of C⇒X . It is sufficient to show

(28) Γ[ρ]⇒X φ[ρ]

The hypotheses in Lemma 19 apply, since X is co-infinite and ∆ =
Γ ∪ {ϕ} is finite. So C⇒X -replacements in Γ ∪ {φ} factor through X.

20 If Γ were infinite but⇒X compact, the remainder of the proof would go through
working with a finite subset Γ′ of Γ such that Γ′ ⇒X ϕ and Γ′[u/u′] 6⇒X ϕ[u/u′].
Similarly for the proof of Theorem 21 below.
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Hence we have σ and τ such that σ acts only on X − C⇒X , σ(X −
C⇒X ) ∩ V∆ = ∅, τ acts outside X, and ρ = τ ◦ σ.

First, we show that

(29) Γ[σ]⇒X ϕ[σ]

Since σ can be taken to be defined on the finite vocabulary of Γ∪{ϕ},
σ acts on X −C⇒X , and no symbol in that set is replaced by a symbol
occurring in Γ ∪ {ϕ}, we have σ = σn for some n, where, for i ≤ n,

σi = id ∪ {(a1, σ(a1)), . . . , (ai, σ(ai))}

for some a1, . . . , an ∈ X − C⇒X , and id is the identity function on the
rest of VΓ∪{ϕ}. Moreover, by the choice of the σ(ai), replacing a1, . . . , an
simultaneously according to σ and successively replacing them one by
one gives the same result: for ψ ∈ Γ ∪ {ϕ},

ψ[σi+1] = ψ[σi][ai+1/σ(ai+1)]

Assume for contradiction that ai+1 is the first symbol in the sequence
for which consequence is not preserved, that is Γ[σi+1] 6⇒X ϕ[σi+1],
but Γ[σi] ⇒X ϕ[σi]. So Γ[σi][ai+1/σ(ai+1)] 6⇒X ϕ[σi][ai+1/σ(ai+1)],
but then ai+1 ∈ C⇒X , a contradiction. This proves (29).

Second, by Replacement, since τ acts outside X,

Γ[σ][τ ]⇒X ϕ[σ][τ ]

Since ρ = τ ◦ σ, this proves (28). 2

Theorem 21 relies on two assumptions: that X is co-infinite and that
we consider only finitary (or compact) consequence relations. That none
of these assumptions can be dropped follows from the next two facts.

FACT 22. (Fin) There is a language L and an infinite set X ⊆ SymbL
with finite complement such that ⇒X 6⊆ ⇒C⇒X

.

Proof. Consider the language L′2, which is a rich variant of L2:
SymbL′2 = {R, a, b, c0, c1, . . .}, SentL′2 = {Rxy : x, y ∈ SymbL′2}, and

TrL′2 = SentL′2 − {Rba}. Now let

X = {a, c0, c1, ...}

Then we claim

a 6∈ C⇒X
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Otherwise, there would be a finite set Γ, and ϕ, u′ such that Γ ⇒X

ϕ but Γ[a/u′] 6⇒X ϕ[a/u′]. The latter means that there would be a
replacement of b only — since b is the only symbol outside X — such
that Γ[a/u′][b/b′] is true and ϕ[a/u′][b/b′] is false. Now observe that
ϕ[a/u′] does not contain a; otherwise u′ = a which contradicts the
assumptions. If b′ = b, then ϕ[a/u′][b/b′] does not contain a either.
If b′ 6= b, then ϕ[a/u′][b/b′] does not contain b. So ϕ[a/u′][b/b′] is a
sentence of the form Rxy which does not contain both a and b. But all
those sentences are true: contradiction.

Next, note that ⇒X Rcia but 6⇒X Rba. This shows that each ci
belongs to C⇒X , and so

(30) C⇒X = X − {a} = {c0, c1, . . .}

But now observe that ⇒X Rab but 6⇒X−{a} Rab. Together with (30)
this proves ⇒X 6⊆ ⇒C⇒X

. 2

FACT 23. There is a language L and a co-infinite set X ⊆ SymbL
such that ⇒X is not compact and ⇒X 6⊆ ⇒C⇒X

.

Proof. We use a variant L′N of the arithmetical toy language LN
from the proof of Lemma 12 in Section 4. To the symbols of LN we add
predicate functors Infn for n ≥ 1, letting Inf0 = Inf. We also add new
numerals zn for n ≥ 0. The predicate symbols are the same, and the
intuitive idea is that each Infn means the same as Inf (i.e. ‘is infinite’),
ci denotes the number i as before, and zn may denote any number. The
sentences have the same forms as in LN, using also the new predicate
functors and numerals. Thus, for each finite A ⊆ N, Infn¬PA is true,
InfnPA is false, and if d is a numeral denoting i, then PAd is true iff
i ∈ A, and ¬PAd is true iff i 6∈ A.

As before, let X = {c0, c1, . . .}. Note that in L′N, X is co-infinite (in
its category). Now claims corresponding to (19) – (24) in the proof of
Lemma 12 go through in L′N as well. First, with the same proof, we
have

(31) If there are infinitely many sentences of the form (¬)PAci in Γ,
then Γ⇒X Infn(¬)PA.

Likewise, with very small changes, we obtain

(32) If Γ contains no sentence of the form Infm(¬)PA, and only
finitely many sentences of the form (¬)PAci, then Γ 6⇒X Infn(¬)PA.

Also, for any numeral d and finite set A,
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(33) If (¬)PAd 6∈ Γ, then Γ 6⇒X (¬)PAd.

For suppose d denotes the number i, and consider a replacement ρ
mapping (¬)PA to ¬P{i} and all other predicate symbols to ¬P∅, while
Infn is mapped to Inf, d is mapped to ci (so if d is ci, it is not moved), all
the other zk are mapped to some cj with j 6= i, and no ck is moved. Since
(¬)PAd 6∈ Γ, one readily checks that Γ[ρ] is true but ϕ[ρ] = ¬P{i}ci is
false.

Now, we claim:

(34) C⇒X = ∅

It suffices to show that ci 6∈ C⇒X , for all i. Otherwise, there are i, Γ,
ϕ, and d such that Γ ⇒X ϕ but Γ[ci/d] 6⇒X ϕ[ci/d]. It follows that
ϕ 6∈ Γ, and thus by (33), that ϕ is not of the form (¬)PAd

′. So ϕ has
to be Infn(¬)PA for some A and n. Since Infn(¬)PA is not in Γ, hence
not in Γ[ci/d] either, no sentence of the form Infm(¬)PA is in Γ[ci/d];
this follows since obviously, for all m,n,

Infm(¬)PA ⇒X Infn(¬)PA

So no sentence of the form Infm(¬)PA is in Γ, and then (32) implies
that there are infinitely many sentences of the form (¬)PAcj in Γ,
since Γ ⇒X ϕ. However, from (31) it follows that only finitely many
sentences of this form belong to Γ[ci/d], since Γ[ci/d] 6⇒X ϕ. But this
is impossible, since Γ[ci/d] results from Γ by replacing ci in at most
one such sentence. This proves (34).

The example Γ = {P{0}cn : n ∈ N} and ϕ = InfP{0} shows as before
that ⇒X is not compact. It also shows that ⇒X 6⊆ ⇒C⇒X

=⇒∅, since
Γ⇒X ϕ, but, clearly, Γ 6⇒∅ ϕ. 2

6.3. A Galois connection

Let us take stock. What kind of correspondence do we get between C
and⇒ ? We wanted something as close as possible to an isomorphism,
with as few assumptions as possible. A relevant notion of correspon-
dence in that context is the notion of a Galois connection. A Galois
connection is a quadruple 〈A,B, f, g〉 with A and B two ordered struc-
tures, f : A→ B and g : B → A two functions, such that the following
conditions hold:21

21 A more compact characterization is that for all a ∈ A and b ∈ B,

a ≤ g(b) iff f(a) ≤ b

BW_consequence_mining.tex; 6/09/2011; 20:32; p.27



28 Bonnay and Westerst̊ahl

(I) f is monotone

(II) g is monotone

(III) g ◦ f is increasing

(IV) f ◦ g is decreasing

Even though Galois connections do not constitute full-blown isomor-
phisms, they ‘contain’ one: from (I)–(IV) one can prove that f is an
isomorphism with inverse g between the well-behaved subsets g(B) and
f(A) of A and B.

For an arbitrary language L, let A = (CONSL,⊆), the set of all
truth-preserving consequence relations in L ordered by inclusion, and
B = (℘(SymbL),⊆), the set of all possible sets of constants ordered by
inclusion. C and ⇒ are candidates for providing a Galois connection
betweenA and B. Base monotonicity (Fact 4) says that⇒ is monotone
— this is condition (II). The fact that the set of constants extracted
from a Bolzano consequence relation⇒X is included in the original set
X of constants (Fact 14) says that C⇒ is decreasing — this is condition
(IV). Conditions (I) and (III) do not hold in general, not even (Fact
17) when attention is restricted from CONSL to the proper subset
BCONSL of Bolzano consequence relations. However, for BCONSL,
suitable assumptions give us what we need: Theorem 20 is condition
(I), and Theorem 21 implies that ⇒C is increasing, this is condition
(III). Thus:

THEOREM 24. (Fin) C and ⇒ constitute a Galois connection be-
tween BCONS coinf

L ,⊆) and (℘coinf(SymbL),⊆).

Here BCONS coinf
L is the set of consequence relations of the form⇒X

for some X ∈ ℘coinf(SymbL).
Our Galois connection is rather special in that the image of ℘coinf(SymbL)

under ⇒ is the whole of BCONS coinf
L .22 This reflects the fact that all

of CONS or BCONS could not be part of the connection: restriction
to the image of ℘coinf(SymbL) under ⇒ is needed not only to get an
isomorphism but already to satisfy conditions (I) and (III). Indeed,
we do not have a characterization of the action of C on consequence
relations which are not of the form⇒X for someX (but see the informal
discussion in Section 9.2).

This is equivalent to the combination of (I)–(IV).
22 This also corresponds to the fact that not only is g ◦ f increasing, but actually

g ◦ f = IdA as stated in Theorem 21.

BW_consequence_mining.tex; 6/09/2011; 20:32; p.28



Consequence Mining 29

Of special interest is now the image of BCONS coinf
L under C . Which

well-behaved subset of ℘coinf(SymbL) gets selected by the Galois con-
nection to be the codomain of the isomorphism? The answer is given
by the next result.

COROLLARY 25. (Fin) The image under C of BCONS coinf
L is the

set of minimal sets in ℘coinf(SymbL).

Proof. First, to prove that every minimal co-infinite set X is the
image of some ⇒Y under C , we prove that it is the image of the
consequence relation generated by itself, that is: If X is minimal and co-
infinite, X = C⇒X . Because of Fact 14, we need only show X ⊆ C⇒X .
This follows from⇒X =⇒C⇒X

(Theorem 21), since X is minimal and
co-infinite.

Second, we prove: For every co-infinite X, C⇒X is minimal. Take
u ∈ C⇒X . We must show that ⇒C⇒X

6⊆ ⇒C⇒X
−{u}. By definition,

there are Γ, ϕ, and u′ such that Γ ⇒X ϕ but Γ[u/u′] 6⇒X ϕ[u/u′]. So,
by Theorem 21, Γ⇒C⇒X

ϕ. Also, by Replacement, Γ 6⇒X−{u} ϕ. Since
C⇒X − {u} ⊆ X − {u} we get, by base monotonicity, Γ 6⇒C⇒X

−{u} ϕ.
2

Thus, by general facts about Galois connections:

COROLLARY 26. (Fin) C is an isomorphism, with inverse⇒ , from
(BCONS coinf

L ,⊆) onto (℘coinf(SymbL),⊆) restricted to minimal sets.

Assuming (Fin) but without the restriction to co-infinite sets of
symbols, there is for every X at least one minimal set generating the
same consequence relation as X (Theorem 11), but uniqueness is not
guaranteed. With the supplementary assumption that only co-infinite
sets are considered, Corollary 26 says that C⇒X is the unique minimal
set generating the same consequence relation as X.

All the results in this section are made possible by considering only
special languages (the rich ones), special consequence relations (the
finite or compact ones) and special sets of constants (the co-infinite
ones). Rather than making specific assumptions such as these, another
way to get results would be to work with a more general definition of
⇒ that would encapsulate what is necessary to get Lemma 19. This
alternative route is explored in the next section.
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7. Languages permitting expansions

Richness, or co-infinity, is all about having available symbols in the
language L. But these symbols are just, as we said, ‘stop-over’ symbols
enabling us to spot logical constants; they play no other role in L. It
may seem ad hoc, or even unreasonable, to require of an interpreted
language that it contain such an unlimited supply of extra symbols.
It would be much more reasonable to have a mechanism for adding
them whenever needed. Instead of ‘staying in L’, one would work with
suitable expansions of L. We shall slightly revise our Bolzano set-up to
make this possible.

This is also a further step towards a Tarskian model-theoretic frame-
work. In such a framework, merely expanding the language is always
conservative in the sense that the consequence relation for the old
language is not affected. As is clear from the previous sections, this
may fail drastically in a substitutional setting.23 We now eliminate this
obvious limitation of the classical substitutional framework, while still
remaining in a Bolzano style setting.24

There might be the following worry: If we start with an interpreted
language, and then expand this language in various ways, how do we
know what the new symbols (and sentences) mean? In principle, the
answer is: we are free to stipulate what they mean, as long as this
doesn’t ‘disturb’ the meanings of symbols (and sentences) in L. In fact,
we shall see that for the applications in this section, each new symbol we
introduce can be taken to be synonymous with some L-symbol, in the
precise sense that interchanging occurrences of these two symbols never
changes the truth values of sentences containing them. Such expansions
will be called expansions with copies. Then, the extra feature added
to the Bolzano framework is merely to allow free introduction of new
names for old things.

7.1. Expansions

Recall that, for each language L, CatL = {CL : C ∈ Cat} partitions
SymbL.

23 For example, expand the language L1 by adding a new symbol c such that Rac
is false. Then, although ⇒{a}Rab holds in L1, it fails in the expanded language.

24 The idea is not new; it was proposed, for example, in Bonevac (1985), in the
context of first-order logic. There the motivation was to be able to talk about un-
countable domains in a countable language with substitutional interpretation of the
quantifiers. Most of Bonevac’s paper is about arguing that it is natural to consider
expansions in a substitutional setting; we can only agree.
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DEFINITION 27. We say that L′ is an expansion of L, in symbols
L ≤ L′, iff

SymbL ⊆ SymbL′

For each category C ∈ Cat, CL ⊆ CL′
SentL = {ϕ ∈ SentL′ : Vϕ ⊆ SymbL}
TrL = TrL′ ∩ SentL

One easily verifies that

(35) ≤ is a partial order (reflexive, antisymmetric, and transitive).

A partially ordered set Z is directed iff it is upward closed: if a, b ∈ Z
there is c ∈ Z such that a ≤ c and b ≤ c. Now, our idea is to start as
before with a fixed language L, but also consider a directed family L
of expansions of L. We must then reformulate what have done so far
accordingly. First, here is the new notion of Bolzano consequence:

DEFINITION 28. For Γ∪{ϕ} ⊆ SentL and X ⊆ SymbL: ΓVX,L ϕ iff
for every L′ ∈ L and every replacement ρ in L′ (for Γ and ϕ) which is
the identity on X, if Γ[ρ] ⊆ TrL′ , then ϕ[ρ] ∈ TrL′ .

The family L is suppressed in this notation, and has to be made
clear in context. If L = {L}, we have our previous notion of Bolzano
consequence: VX,L =⇒X . But in general, VX,L (⇒X .

Normally, the sentences we talk about will belong to several lan-
guages in L. But since consequence is defined in terms of all expansions
(in L) of a given language, this is not a problem. That is, we now have
the conservativity property for expansions that fails in the old setting
(cf. note 23):

LEMMA 29. (Conservativity Lemma) If Γ∪{ϕ} ⊆ SentL, X ⊆ SymbL,
and L′ ∈ L, then

ΓVX,L ϕ iff ΓVX,L′ ϕ

or, equivalently,

VX,L = VX,L′� SentL

where the right-hand side is relative to the subfamily L′ = {L′′ ∈ L :
L′ ≤ L′′}.

Proof. If there is a counter-example, via a replacement in some L′′ ≥
L′, to ΓVX,L′ ϕ, then there is one to ΓVX,L ϕ as well, since L ≤ L′′.
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Conversely, if there is a counter-example, via a replacement in some
L′′′ ≥ L, to ΓVX,L ϕ, choose, by directedness, L′′′′ such that L′′′ ≤ L′′′′
and L′ ≤ L′′′′. Then we have a counter-example in L′′′′ (with the same
replacement) to ΓVX,L′ ϕ. 2

In what follows, when L is given and L′ ∈ L, we always under-
stand VX,L′ to be relative to the corresponding subfamily generated
by L′. Note that each VX,L′ belongs to CONSL′ , but also, by the
Conservativity Lemma, to CONSL′′ for each expansion L′′ of L′. More-
over, relations of this form are base monotone, and (straightforwardly
adjusted versions of) the Replacement and Occurrence lemmas hold.

7.2. Useful classes of expansions

Our revised notions of consequence, extraction, etc. (see below) work
for any directed class L of expansions of L. In particular, let

exp(L)

be the class of all expansions of L, and let

copies(L)

be the class of expansions with copies of L, i.e. expansions such that
each new symbol is synonymous, in the sense indicated above, to some
L-symbol. It is straightforward to verify that (copies(L),≤) is also a
directed partial order.

Our toy language L2 is an expansion of L1, but not an expansion
with copies. To make c a copy of b, both of Rba and Rca must be false,
not just Rba as in L2.

We say that a class L of expansions of L is full, if for all sets {ai :
i ∈ I} ⊆ SymbL there is an expansion L′ ∈ L and distinct symbols
bi ∈ SymbL′ − SymbL of the same category as ai, for i ∈ I. Clearly,
copies(L) (and hence exp(L)) is full.

Suppose Γ VX,L ϕ, L′ is an expansion with copies of L, and Γ′,ϕ′

result from Γ,ϕ by replacing some occurrences of L-symbols with copies
in L′. We cannot conclude that Γ′ VX,L′ ϕ

′, for it may be the case that
some but not all occurrences of an L-symbol u have been replaced by a
copy u (or distinct occurrences by distinct copies), and a replacement
of u and u by distinct symbols may then yield a counter-example that
was not available before. One easily verifies, however, that the following
converse holds:

(36) With L,L′,Γ,Γ′, ϕ, ϕ′ as above: if Γ′ VX,L′ ϕ
′, then ΓVX,L ϕ.
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7.3. General consequence relations

Definition 28 associates with each X ⊆ SymbL not just one consequence
relation, but a conservative family of consequence relations, one for
each L′ ∈ L. Such families can be seen as instances of a new notion of
consequence. As before, L is a directed family of expansions of a base
language L.

DEFINITION 30. A general consequence relation (for L) is a family
of consequence relations (in the old sense) V = {⇒L′}L′∈L such that
for all L′, L′′ ∈ L with L′ ≤ L′′, ⇒L′ = ⇒L′′� SentL′ .

General consequence relations are partially ordered under a gener-
alized notion of inclusion: define

(37) VvV′ iff for all L′ ∈ L, ⇒L′ ⊆ ⇒′L′

Furthermore, we write, when Γ ∪ {ϕ} ⊆ SentL, Γ V ϕ instead of
Γ ⇒L ϕ. By conservativity, this is equivalent to Γ ⇒L′ ϕ holding for
all L′ ∈ L (or for some L′ ∈ L).25

General Bolzano consequence relations are of course prime examples
of general consequence relations, and we shall write VX for the family
{VX,L′}L′∈L of consequence relations generated from X ⊆ SymbL and
L according to Definition 28. General consequence relations of this
form satisfy base monotonicity, and the Replacement and Occurrence
Lemmas hold.

Next, the notion of minimality is as before: X ⊆ SymbL is minimal
iff for each u ∈ X,VX 6vVX−{u}. Again it is clear that minimality co-
incides with being minimal among the sets generating the same general
consequence relation.

25 The notation is handy, but strictly speaking it means that we are using ‘V’
in two senses: as a family of consequence relations and as a consequence relation.
Thus, we employ v for the partial order among such families, but

V⊆V′

is used as before for the inclusion relation between (ordinary) consequence relations,
meaning that if ΓV ϕ then ΓV′ ϕ; a weaker claim than VvV′. Likewise, let us
agree to use

V=V′

for equality between the consequence relations (i.e. ⇒L =⇒′L), and instead

V≡V′

for equality between the families (i.e. for all L′ ∈ L, ⇒L′
=⇒′L

′
).
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We say that a general consequence relation V = {⇒L′}L′∈L is com-
pact if each ⇒L′ is compact. The proof of Theorem 11 in (Westersthl,
2011) is easily modified to give:

THEOREM 31. For every X ⊆ SymbL, if the general consequence
relation VX is compact, then X has a subset which is minimal among
those generating VX .

We shall, however, obtain another proof of this theorem in the next
subsection.

Finally, we generalize the definition of C to general consequence
relations of the form V = {⇒L′}L′∈L. Let u ∈ SymbL.

DEFINITION 32. u ∈ CV iff for some L′ ∈ L, u ∈ C⇒L′ .

Thus, CV may properly include C⇒L , since the inference that gets
destroyed by replacing u may belong to a proper expansion of L.

We now have the two ‘easy’ Galois conditions:

(38) a. If X ⊆ Y , then VX v VY [base monotonicity]

b. CVX ⊆ X [by Replacement as before]

7.4. The Galois connection liberated

With expansions available, we don’t have to worry about sufficiently
many symbols being in the base language L. More precisely, Lemma
19 now holds without the restriction to co-infinite sets of symbols or
finite sets of sentences.

In the remainder of this section, let L be any full directed class of
expansions of L (Section 7.2).

LEMMA 33. If ∆ is any set of L-sentences, then for all X,Y ⊆
SymbL, there is an expansion L′ ∈ L such that in L′, X-replacements
in ∆ factor through Y .

Proof. Let (Y −X)∩V∆ = {ai : i ∈ I}. Since L is full, some expansion
L′ ∈ L contains for each ai a distinct symbol bi outside L of the same
category. The rest of the proof is exactly as the proof of Lemma 19. 2

As a result, we obtain monotonicity of C (Theorem 20) without the
previous restrictions.
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THEOREM 34. VX vVY implies CVX ⊆ CVY .

Proof. The proof is essentially the same, but we repeat it to indicate
the use of expansions. Thus, assume VX v VY and u ∈ CVX . We
must show that u ∈ CVY . By definition, there is an expansion L′ of
L in L, and Γ ∪ {ϕ} ⊆ SentL′ and u′ ∈ SymbL′ such that Γ VX,L′

ϕ but Γ[u/u′] 6VX,L′ ϕ[u/u′]. Thus, there are L′′ ≥ L′ in L and a
replacement ρ in L′′ acting outside of X, such that Γ[u/u′][ρ] ⊆ TrL′′
but ϕ[u/u′][ρ] 6∈ TrL′′ .

By Lemma 33 with respect to X,Y and ∆ = Γ ∪ {φ} ∪ Γ[u/u′] ∪
{φ[u/u′]}, there is L′′′ ≥ L′′ in L such that in L′′′, X-replacements in ∆
factor through Y . So there are σ and τ such that σ acts only on Y −X,
σ(Y −X)∩ (V∆) = ∅, τ acts outside Y , and ρ = τ ◦σ. By Replacement
and conservativity,

Γ[σ]VX,L′′′ ϕ[σ]

and thus, by hypothesis,

(39) Γ[σ]VY,L′′′ ϕ[σ]

Then we can show exactly as before that

(40) Γ[σ][u/σ(u′)] 6VY,L′′′ ϕ[σ][u/σ(u′)]

(39) and (40) entail that u ∈ CVY . 2

Similarly, by following the earlier proof, inserting expansions at suit-
able points, we get a new version of Theorem 21. However, at one crucial
step in that proof (the proof of (29)), it is required that VΓ∪{ϕ} is finite
(not just that it is co-infinite). Therefore, we still need the assumption
(Fin), or at least compactness, for this result:

THEOREM 35. (Fin) For every X ⊆ SymbL, VX ≡VCVX
.

Interestingly, although compactness plays no role for the monotonic-
ity of C in the expansions framework, it cannot be dropped in Theorem
35:

FACT 36. There is a language L and a full directed class of expansions
of L with respect to which, for some X ⊆ SymbL, VX is not compact,
and VX 6vVCVX

.

Proof. Consider again the language LN defined in the proof of Fact
12, and let L = copies(LN). As before, take X = {c0.c1, . . .}. Now
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suitable versions of (19) – (21) will hold, in fact with proofs very similar
to those for (31) – (33) in the proof of Fact 23; note that the language
L′N considered there was an expansion with copies of LN. We give some
indications. First,

(41) If L is an expansion with copies of LN, Γ ⊆ SentL, and infinitely
many sentences of the form Qci belong to Γ (where Q is a
1-place predicate symbol in L), then ΓVX,L InfQ.

The proof is as before, except that a replacement ρ such that all sen-
tences in Γ[ρ] are true may now replace Q by a new predicate symbol
ρ(Q). But since ρ(Q) must be a copy some (¬)PA, and since ρ(Inf)
must be a copy of Inf, it follows in the same way that ρ(Inf)ρ(Q) is
true. Next,

(42) If L is an expansion with copies of LN, Inf Q 6∈ Γ, and if
only finitely many sentences of the form Qci belong to Γ, then
Γ 6VX,L InfQ.

(43) If L is an expansion with copies of LN andQd 6∈ Γ, then Γ 6VX,L

Qd.

The proof of (43) uses essentially the replacement used for (33) in the
proof of Fact 23. Now we can follow the argument for (34) in that proof
to establish

(44) CVX = ∅

Then we have (from (41) with L = LN) that {P{0}cn : n ∈ N} VX

Inf P{0}. This inference gives a counter-example to compactness as be-
fore. But non-compactness also follows from Theorem 35, together with
the obvious fact that {P{0}cn : n ∈ N} 6V∅ Inf P{0}, which establishes
that VX 6vVCVX

. 2

The corollaries of Theorems 34 and 35 follow just as in Section 6.3.
Let GBCONSL be the set of general consequence relations of the form
VX for some X ⊆ SymbL.

THEOREM 37. (Fin) C and V constitute a Galois connection be-
tween (GBCONSL,v) and (℘(SymbL),⊆).

COROLLARY 38. (Fin) The image under C of GBCONSL is the set
of minimal sets in ℘(SymbL).

COROLLARY 39. (Fin) C is an isomorphism with inverse V from
(GBCONSL,v) onto (℘(SymbL),⊆) restricted to minimal sets.
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Thus, as before, under (Fin) (or compactness) we have shown that
CVX is the unique minimal set generating the same consequence rela-
tion as X. In particular, we have a (new) proof of Theorem 31.

8. From Bolzano to Tarski

Finally, we extend our results in the previous section to cover the
more familiar Tarskian semantic notion of logical consequence, as given
in (Tarski, 1936). This hinges on the fact that substitutional conse-
quence is equivalent to semantic consequence when quantification over
expansions is allowed.

8.1. Tarskian interpreted languages

Up to now, our interpreted languages L came equipped only with a
set of true sentences. No more was needed to define a substitutional
notion of consequence ‘à la Bolzano’. For a Tarski style notion of con-
sequence we also need a notion of interpretation for a language and a
notion of truth with respect to interpretations. Accordingly, we now
introduce Tarskian interpreted languages, which come equipped with
interpretations, and we assume that a general definition of truth with
respect to an interpretation is available for the family of languages
under consideration. We shall assume as little as possible regarding the
nature of interpretations and the truth relation.

For each (syntactic) category C, let SC be a corresponding seman-
tic category, intended to be the class of possible semantic values for
symbols of category C.

DEFINITION 40. A Tarskian interpreted language is a triple L =
〈SymbL,SentL, IL〉, where SymbL and SentL are as before, and IL is
an L-interpretation, i.e. a function mapping each symbol u ∈ SymbL
of category C to a semantic value I(u) in SC . IL is called the standard
interpretation of L.

Let IL be the class of L-interpretations. We assume that the general
truth definition yields, for each Tarskian interpreted language L, a truth
relation |=L ⊆ IL × SentL. Defining

TrL = {ϕ ∈ SentL : IL |=L ϕ}

we see that Tarskian interpreted languages are special cases of inter-
preted languages: the case when every symbol has its standard in-
terpretation. Note, however, that in contrast with the more familiar
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situation in model-theoretic semantics, an interpretation here interprets
all symbols of the language, not just the ‘non-logical’ ones.

When I and I ′ are two interpretations and X is a set of symbols,26

I =X I ′

means that I and I ′ agree on symbols in X, that is for all u ∈ X,
I(u) = I ′(u). Our only requirement on the truth definition is that
truth should be local in the following sense:

(45) If ρ is a replacement such that for all u ∈ Vϕ, I(u) = I ′(ρ(u)),
then I |= ϕ iff I ′ |= ϕ[ρ].

Locality means that the question whether a sentence is true or not
depends only on the semantic values of its symbols. In particular, if
I =Vϕ I ′, then I |= ϕ iff I ′ |= ϕ. Arguably, any reasonable truth
definition makes truth local — if semantic values do not determine
truth values, they are not semantic values. Thus, we do not consider
any other component in interpretations over and above semantic val-
ues. For example, there is in the present set-up no varying domain of
interpretation which could make the truth value of sentences vary even
when the semantic values of their symbols remain the same.27

8.2. The semantic notion of logical consequence

Tarski’s semantic definition of logical consequence as preservation of
truth under all possible reinterpretations of non-logical constants can
be stated for a Tarskian interpreted language L in the usual way:

DEFINITION 41.
ϕ is a logical consequence of Γ with respect to a set of symbols X,

Γ |=X,L ϕ ,

iff for all interpretations J such that J =X IL, if J |= Γ, then J |= ϕ.

Given a Tarskian interpreted language L, substitutional consequence
⇒X and semantic consequence |=X,L may be compared. As we already

26 We drop L as a prefix or subscript when no ambiguity arises.
27 We take this to be consonant with the original definition of logical consequence

in Tarski (1936), which, in contrast to the modern model-theoretic one, was also
given for an interpreted language and did not mention varying domains. Actually,
the question whether changes in a domain’s size were considered by Tarski at the
time is a matter of dispute among Tarski scholars; see, for example, Gómez-Torrente
(1996). Independently of historical issues, and for the sake of generality, one could
think of ways to encode domain variations in the changes of semantic values, but
we shall not pursue that here.
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recalled, the substitutional definition makes logical consequence depend
on the availability of symbols in L. An inference might be valid just
because some semantic values needed to provide a counter-example are
not the interpretations of any L-symbols. By contrast, the semantic
definition makes all semantic values available by allowing for arbitrary
reinterpretation. Thus, Γ |=X,L ϕ implies Γ ⇒X ϕ, but the converse
is not true in general. However, the substitutional definition acquires
a semantic flavor when expansions come into play as they did in the
previous section.

The Tarskian consequence relation |=X,L relative to a set X of con-
stants was defined as usual: there is no need to mention expansions of
the interpreted language L since its symbols can be reinterpreted. But
just like other interpreted languages, Tarskian interpreted languages
can be expanded. The definition is the same as before, except that we
require IL = IL′ � SymbL instead of TrL = TrL′ ∩SentL. Locality guar-
antees that the former implies the latter. As a consequence, Tarskian
expansions are a special kind of expansions. Given a Tarskian language
L, we can consider the family

expT (L)

of all its Tarskian expansions. One can easily check that it is a full
and directed family. Now substitutional consequence with respect to
expT (L) becomes equivalent to semantic consequence:

LEMMA 42. With respect to L = expT (L), Γ |=X,L ϕ iff ΓVX,L ϕ.

Proof. From left to right: assume Γ |=X,L ϕ. Let L′ be a Tarskian
expansion of L and ρ a replacement in L′ acting outside X. We need
to show that if IL′ |= Γ[ρ], then IL′ |= ϕ[ρ]. Define an L′-interpretation
J by

J(u) =

{
IL′(ρ(u)) if u ∈ dom(ρ)
IL(u) otherwise

By definition of J and locality, for any ψ ∈ SentL, J |= ψ iff IL′ |= ψ[ρ].
But IL =X J , therefore Γ |=L,X ϕ implies that if J |= Γ, then J |= ϕ.
Hence if IL′ |= Γ[ρ], then IL′ |= ϕ[ρ], as required.

From right to left: assume Γ VX,L ϕ. Let J be an interpretation
such that IL =X J . We need to show that if J |= Γ then J |= ϕ. We
define a Tarskian expansion L′ by adding a copy u′ of each symbol u
for which J(u) 6= IL(u). Copies have the same interpretation as the
symbols they are copies of, that is, we set IL′(u

′) = J(u). Now consider
the replacement ρ which maps each such u to u′ and is the identity
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elsewhere. Again, by locality, for any ψ ∈ SentL, J |= ψ iff IL′ |= ψ[ρ].
Therefore, since IL′ |= Γ[ρ] implies IL′ |= ϕ[ρ], J |= Γ implies J |= ϕ,
as required. 2

It follows that the general consequence relation VX = {VX,L′

}L′∈expT (L) can also be written |=X = {|=X,L′}L′∈expT (L). In this case
there is essentially only a notational difference between the consequence
relation |=X,L and the family of consequence relations it generates, since
each |=X,L′ is defined independently of the expansions of L′. Still, since
|=X can be seen as a general consequence relation in our sense, and since
expT (L) is a full family, Theorem 37 applies. Let TCONSL be the set
of general consequence relations of the form |=X for some X ⊆ SymbL,
where L is a Tarskian interpreted language.

THEOREM 43. (Fin) C and |= constitute a Galois connection be-
tween (TCONSL,v) and (℘(SymbL),⊆).

This happy ending stems from a double virtue of expansions. On the
one hand, they allow the Galois connection to hold. On the other hand,
they allow semantic consequence to be reduced to substitutional conse-
quence. Even though the problem in both cases amounts to circumvent-
ing potential limitations in the richness of the language, expansions do
not play exactly the same role in the two cases. To get the equivalence
between semantic consequence on the one hand and the substitutional
definition of consequence with quantification over expansions on the
other, expansions have to be semantically rich, they need to provide
enough symbols to make all semantic values available. To get the Galois
connection, expansions have to be syntactically rich, they need to have
enough new symbols for the purely syntactic factorization property
(Lemma 33) to hold.

9. Further perspectives

9.1. Where we are

The extraction procedure hardwired in the definition of C can rightly
be taken to satisfy the two adequacy criteria mentioned in the In-
troduction. First, C yields results in accordance with our intuitions
when applied to standard examples of logical consequence relations.
Second, extraction thus defined does provide an inverse to the process
of generating a consequence relation from a set of constants. This claim
was made mathematically precise by means of the concept of a Galois
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connection. In particular, if one allows expansions to play a role in the
definitionV of consequence, C turns out to constitute a Galois inverse
to VX (on compact consequence relations defined on a full family of
expansions). This was eventually shown to cover the familiar case of
compact Tarskian consequence relations. In these settings, the role of
C on VX is to pick out a unique minimal set of constants.

We shall end by noting some potential limitations of the definition
of C and, reflecting on them, suggest a few leads for further work. Our
extraction procedure can be claimed to be both quite liberal and quite
severe. We say that u is constant if it occurs essentially in at least one
valid inference, in the sense that one can get to an invalid inference by
replacing that symbol and nothing else. The phrase ‘occurs essentially
in at least one valid inference’ in the definitional clause is responsible for
the liberality. Is one inference enough for constancy?28 The phrase ‘by
replacing that symbol and nothing else’ is responsible for the severity.
Why should one replace only one thing at a time?

9.2. Analytic and logical consequence

The liberality in the definition of C shows up in that C⇒ will usually
declare many more inferences valid than ⇒ does (at least for many
relations ⇒ not of the form ⇒X). The reason is that ⇒ might include
some meaning postulates for a symbol u, even though it does not treat
u as a logical constant. The kind of scenario we have in mind is one
where ⇒ partly fixes the interpretation of a symbol u by declaring
valid some inferences essentially involving u, but cannot be construed
as being of the form ⇒X for some X with u ∈ X. In such a scenario, u
will belong to C⇒, so that ⇒C⇒ , contrary to ⇒, relies on keeping the
denotation of u completely fixed.

As a consequence, C cannot be used to tell the difference between
logical inferences and merely analytic inferences. One might have hoped
that C would select logical constants, in a way such that the further
application of⇒ would have isolated a core of purely logical inferences.
Thus, ⇒C⇒ would have been a subset of ⇒, the subset of its purely
logical inferences, whereas inferences in ⇒ − ⇒C⇒ would have been
the analytic ones. But this is not what is happening. To the contrary,
⇒C⇒ will go beyond ⇒ by exploiting all the information that can be
gained from the fixed interpretation of constants in C⇒.

The upshot is that C may do a good job at spotting constants
with respect to validity – those symbols that matter to the validity

28 As we noted in Section 1.2, the stronger version (which would read ‘in all valid
inferences’) is not easily workable because of the necessary qualification regarding
valid inferences whose validity is not due to the purported constant.
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or invalidity of inferences – but that it does not ground a distinction
between two kinds of constants, namely the logical constants properly
speaking as opposed to symbols that merely come up with some mean-
ing postulates attached to them. A natural question is then whether
it is possible to define in a similar vein an operation that would select
among all the constants in C⇒ all and only the logical ones. We shall
leave this for future work.

9.3. Non-uniform consequence

Let us turn to C being too severe. In principle, it seems that nothing
precludes the role played by a constant u to show up only in connection
with other substitutions. In that case, C would fail to select u. By
contrast, one might consider a different extraction procedure, say C∗.
As before, u ∈ C∗⇒ would require finding a valid inference Γ ⇒ ϕ in
which u occurs. But now the invalid inference which is to witness u’s
essential involvement in that validity could be obtained by means of a
replacement ρ which moves u (as before) but possibly other symbols as
well. However, this cannot be the whole story. It could not yet capture
the fact that u was essential to the validity of Γ ⇒ ϕ, since, after all,
putting some other symbol in place of u could be totally contingent to
the destruction of the inference. We need to require that substituting u
was indeed necessary for ρ to do so. This leads to the following defini-
tion: u ∈ C∗⇒ iff there is an inference Γ⇒ ϕ and a replacement ρ such
that Γ[ρ] 6⇒ ϕ[ρ] but Γ[ρ−u] ⇒ ϕ[ρ−u], where ρ−u is the replacement
which differs from ρ at most on u and maps u to itself.
C∗ is indeed less severe than C . It is easy to check that, for any

⇒, C⇒ ⊆ C∗⇒.29 The converse is not true in general, as witnessed by
our language L1. We had a 6∈ C⇒{a} but we get a ∈ C∗⇒{a} . To see

this, recall that ⇒{a}Rab (and ⇒{a}Raa) but 6⇒{a} Rba. Let ρ swap
a and b. We get ⇒{a} Rab, 6⇒{a} Rab[ρ] and ⇒{a} Rab[ρ{−a}]. Not
uninterestingly, this suggests that C∗ solves some of the problems on
account of which we had to introduce rich languages or full expansions.
By way of ρ, no stop-over is needed, so that a ∈ C∗⇒{a} not only in the

context of L2 (where c is available) but already in L1 (where no symbol
different from a and b is available).

We shall not engage here in a thorough examination of the properties
of C∗. Despite what was pointed out in the previous paragraph, C∗

does not yield a straightforward Galois correspondence for ⇒ or |=X .
However, let us mention that it can be shown that C∗ does yield a

29 As a consequence, C∗ cannot help with the conceptual difficulties surrounding
the difference between logical and analytic inferences.
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straightforward Galois connection for another notion of logical conse-
quence. The notion we have in mind is stronger than the standard one in
that it allows for non-uniform replacements of non-logical constants.
Accordingly, a classical tautology such as p ∨ ¬p ceases to be valid,
since p ∨ ¬q is not valid. This stronger notion of logical consequence
has recently received a lot of interest from linguists who are looking for
a connection between logicality and grammaticality (not all validities or
contradictions are ungrammatical, but validity or contradiction seems
to play a role in some sentences being ungrammatical).30 It is a rather
pleasant surprise that this notion independently appears in connection
with the extraction problem and the contrast between C and C∗.
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