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Abstract

Bolzano’s definition of consequence in effect associates with each set X
of symbols (in a given interpreted language) a consequence relation = x.
We present this in a precise and abstract form, in particular studying
minimal sets of symbols generating =>x. Then we present a method for
going in the other direction: extracting from an arbitrary consequence
relation = its associated set C= of constants. We show that this returns
the expected logical constants from familiar consequence relations, and
that, restricting attention to sets of symbols satisfying a strong minimality
condition, there is an isomorphism between the set of strongly minimal
sets of symbols and the set of corresponding consequence relations (both
ordered under inclusion).

1 Introduction

In virtually all accounts of logical consequence, the notion of a logical con-
stant is conceptually prior. Whether consequence is defined model-theoretically
(as truth preservation under reinterpretation of the non-constants), or proof-
theoretically (in terms of a system of axioms and rules), a selection of logical
symbols or operations is made at the start.! This leaves the familiar problem
of how this selection is made: What is it about a meaningful symbol or word
that makes it earn the label ‘logical’ 72

This problem is particularly visible in the model-theoretic account, and even
more so in Bolzano’s original substitutional version. In contrast with standard
modern presentations, Bolzano emphasized that any set X of symbols can be

*This is a much revised version of one part of my talk at the 2008 Philosophy of Logical
Consequence Conference in Uppsala. I thank the audience there, in particular Stephen Read
and Goran Sundholm, as well as the referee for this paper, for helpful remarks. The paper
presents the beginnings of ongoing work on logical constants now done jointly with Denis Bon-
nay — our discussions have been helpful also for this paper — supported by the ESF-funded
project ‘Logic for Interaction’ (LINT; http://www.illc.uva.nl/lint/index.php), a Collabora-
tive Research Project under the Eurocores program LogICCC. My work on the paper was
also supported by a grant from the Swedish Research Council.

LThe referee pointed out that some algebraic approaches, where the consequence relation
is a partial order and logical constants are definable in terms of it (e.g. as suprema, infima,
and complement), may be exceptions to this rule.

2See MacFarlane (2009) for a recent survey of approaches to the issue of logicality.



selected as constants, resulting in a corresponding consequence relation = x.
The issue of how to choose X then becomes acute.

Instead of seeing this choice as a problem we may view consequence as a
ternary relation: between the (set of) premises, the conclusion, and X.> An
equivalent perspective, to be adopted here, is to see = _ as a function from sets
of symbols to (binary) consequence relations.

My focus in the present paper, however, is also on a function going in the
opposite direction: take a consequence relation as given, and see if we can ex-
tract, in a systematic way, the symbols it treats as constants. This perspective,
although hardly explored in the literature, is rather natural: you could argue
that taking a consequence relation as primitive is more intuitive than starting
from a theoretical concept of logicality. In fact, I believe the two perspectives
complement each other, and that the study of their interplay may provide in-
sights both in the notion of logicality and in the abstract study of consequence
relations.

Since the territory is largely unexplored, it is not immediate what the right
definitions are, or what results to expect. Two guiding ideas, however, are
the following: (1) The two perspectives, from constants to consequence, and
back, should be inverse to each other in some suitable sense; (2) The method
of extracting constants should yield the usual sets of constants when applied
to familiar consequence relations, such as classical or intuitionistic first-order
consequence. We will see (Section 4) that (2) indeed holds for the method
chosen here, and that (1) holds to a limited extent.

But how is it possible to extract the constants from a given consequence
relation =7 The basic idea is this: Constants are symbols such that replacing
them by other symbols (or reinterpreting them) has the potential to destroy the
validity of =-inferences. Consider:

(1) Most logicians are mathematicians.
Most logicians are familiar with Lindstrém’s Theorem.
Hence: Some mathematicians are familiar with Lindstréom’s Theo-
rem.

If you think this is valid (as you should), you presumably also think inferences
obtained from (1) by replacing expressions like ‘logicians’, ‘mathematicians’,
etc. by other expressions of the same category are also valid, for instance,

(2) Most Stanford students are tennis players.
Most Stanford students own white sports cars.
Hence: Some tennis players own white sports cars.

One the other hand, replacing words like ‘most’ or ‘some’ clearly need not
preserve validity; for example, no one would think the following is valid:

(3) No logicians are mathematicians.
No logicians are familiar with Lindstrom’s Theorem.

3This perspective on Bolzano’s notion of consequence is explored in van Benthem (2003).



Hence: Some mathematicians are familiar with Lindstrom’s Theo-
rem.

However, even though it is hardly disputable which words are constants and
which are not in a particular inference like (1) or (2), it is less clear how this
could be turned into a general definition. In Peters and Westerstahl (2006), ch.
9, it was suggested that a symbol is constant if every =--inference where it occurs
essentially can be destroyed by replacing it. As noted there, the qualification
about essential occurrences is crucial. This can be illustrated by the following
examples from predicate logic:

(4) a. Pa = PaV3zRx
b. 3JxPz,Vz(Pz < Rr) = xRz

Both of these hold when = is classical first-order consequence, but in each of
them, 3 can be replaced by an arbitrary type (1) quantifier @ without destroying
the inference. Cases like (4a) are fairly easy to set aside: (4a) is an instance of
a more general inference where 3 doesn’t occur (p = ¢ V ). But (4b), which
is a kind of extensionality axiom, seems much harder to eliminate on syntactic
grounds.

In this paper, we avoid this difficulty by weakening the requirement: it is
enough that some =--inference can be destroyed by suitably replacing the symbol
in question. Even so, there turn out to be different ways in which this idea can
be implemented. What I will do here is to present the perhaps simplest such
implementation, under some fairly restrictive assumptions. This will give the
flavor of the approach, and also indicate at which points it could be improved.

2 Background assumptions

2.1 Language

We assume that a fixed interpreted language is given, which has a set Sent of
sentences, in which (atomic) symbols from a countable set Symb occur. For
definiteness, think of sentences a finite strings of symbols and possibly other
signs. Let u,v,u’, ... vary over Symb, ©,1, ... over Sent, and I", A, ... over sets
of sentences, and let

Ve

be the set of symbols occurring in ¢; similarly Vp = U{V,, : ¢ € T'}.

Very little needs to be assumed about how sentences are structured; the
important thing is that there is a notion of replacement of symbols by symbols.*
Such replacements should be ‘appropriate’, and the easiest way to think of this
is that it should respect categories. Thus, assuming that Symb is partitioned

4This is a simplifying assumption; a natural generalization is to consider replacing primitive
symbols by complex expressions of the same category.



into a set of categories, a replacement is a partial function p from Symb to Symb
such that for u € dom(p), u and p(u) belong to the same category. The result
of applying p to ¢, written

olp]

is simply the result of replacing each occurrence of u in ¢ by p(u). Here it is
convenient to always assume that V,, € dom(p) — in words, p is a replacement
for ¢ — so that p is the identity on symbols that don’t get replaced. We may
then assume that the following conditions hold:®

() a. [If pis areplacement for ¢, ¢[p] € Sent and V,,,) = range(p [ V,,)
b, plidy,] = ¢

If p, o agree on V,, then p[p] = ¢lo].

o

d.  @[pllo] = plop], when o is a replacement for ¢[p]

Finally, that the language is interpreted is taken to entail that each sentence
is either true or false.

2.2 Consequence relations

As another simplifying assumption, we take consequence relations to hold be-
tween finite sets of sentences and sentences (rather than, say, allowing infinite
sets of premises, or considering sequences instead of sets).

Definition 1
A relation R C P<¥(Sent) x Sent is

(i) reflezive iff for all ¢ € Sent, ¢ Ry ;5

(ii) transitive iff whenever A Ry and T' R4 for all ¢» € A, we have T' R ;
(iii) monotone iff A Ry and A CT implies ' R p;

(iv) truth-preserving iff whenever T' R ¢ and (every sentence in) T is true, ¢ is

also true.

Definition 2

A consequence relation is a reflexive, transitive, monotone, and truth-preserving
relation (between finite sets of sentences and sentences). We let =, =/, ... vary
over the set CONS of consequence relations.

Define:

(6) a. I' =M% o iff it is not the case that I' is true and ¢ is false.
b. T =™noiff o eT.

5These are essentially the conditions in Peter Aczel’s notion of a replacement system from
Aczel (1990).
SWriting 1 R ¢ instead of {1} R .



="9% ig essentially material implication. One easily verifies the following:

Fact 3
=mar —minc (ONS, and (CONS, C) is partial order with =™" as its smallest
and =" as its largest element.

If Ry C P<¥(Sent) x Sent, define
(7)  c(Ro) =N{R: R is a consequence relation and Ry C R}

Fact 4
If Ry preserves truth, cl(Ry)is the smallest consequence relation that includes Ry.

Proof. The set {R: R is a consequence relation and Ry C R} is non-empty
since it contains ="™%". One readily checks that cl(Rp) is also reflexive, transi-
tive, and monotone. O

3 From constants to consequence (Bolzano style)

3.1 The function =_

The following definition should be familiar to every logician, except possibly for
the fact that (a) it is substitutional rather than model-theoretic; (b) it allows
any set of symbols to be treated as logical.

Definition 5
For any X C Symb, define the relation = x by

I' =x ¢ iff for every replacement p (for I" and ¢) which is the identity
on X, if T'[p] is true, so is ¢[p].

A relation of the form = x is called a Bolzano consequence (relation); BCONS
is the set of Bolzano consequences.

It is straightforward to verify the following claims.

Fact 6
(a) BCONS C CONS

(b) In addition, Bolzano consequence is base monotone, in that
X CY implies =x C =y

(c) (BCONS, Q) is a partial order which has =y as its smallest and = gyms
as its largest element.

So (BCONS, C) is a sub-order of (CONS, C), and we see that



(8) =mar = :>Symb
It often happens, however, that
:>min g =0

BCONS is usually a proper subset of CONS.”
The following lemma is trivial but fundamental:

Lemma 7
(Replacement Lemma) If T" =x ¢ and p doesn’t move any (is the identity
on) symbols in X, then I'[p] =x ¢[p].

Proof. Use the composition property (5d) of replacement, noting that if
both p and ¢ only move symbols outside X, so does op. a

Furthermore, from base monotonicity and (5¢) we see that only symbols
occurring in premises and conclusion matter for Bolzano consequence:

Lemma 8
(Occurrence Lemma) I' = x ¢ if and only if I' =xnv,,, ¢

3.2 Examples
3.2.1 Propositional logic

Suppose our language is a standard language of propositional logic, whose sym-
bols consist of a suitable set X of connectives (say, Xo = {—, A, V}) and an infi-
nite supply po, p1, - - - of propositional letters, and let |=pr, be the corresponding
(classical) consequence relation. The usual definition of |=py, is model-theoretic,
but we can ‘simulate’ it also in the present substitutional setting, where pg, p1, . . .
are sentences with fixed truth values. Replacing proposition letters by others
amounts to ‘assigning’ arbitrary truth values to them, under the simple assump-
tion that the sequence of truth values of pg,p1,... is not eventually constant.
The following is then easily verified.

Fact 9
F):thpl.leFZXXOQO

3.2.2 First-order logic

Now suppose the language is that of first-order logic, whose symbols consist of
a suitable set X; of logical constants (say, X; = Xo U {3,V,=}) and a supply
of predicate symbols and individual constants, all with a given interpretation,
and let =po be the standard (classical) consequence relation.

"For example, in propositional logic, * *%p =>g *p, where p is a propositional letter and x*
any unary truth function, but * % xp A" % p.



At first blush, one might think = x, simply amounts to the relation Ero_, _, ,
i.e. the consequence relation you get with a substitutional interpretation of the
quantifiers, but this is not quite so. The reason is that in standard definitions
of logical consequence with substitutional quantification, as in Dunn and Bel-
nap Jr. (1968), only the quantifiers are interpreted substitutionally, not the
rest of the language. Without going into details here, in the substitutional ac-
count consequence is defined relative to arbitrary assignments of truth values
to atomic sentences, but there is no guarantee that every such assignment can
be ‘simulated’ by replacing predicate symbols and individual constants in our
given interpreted language. Only under such a guarantee will I' =x, ¢ im-
ply I' Ero..... ¢ (the converse implication always holds), but this is a very
strong assumption on the language, in contrast with the assumption needed to
‘simulate’ =py,.

Moreover, =ro,,,.. is different from =po: Dunn and Belnap point out that
if there are infinitely many individual constants, FO-validity (consequence of
the empty set) coincides with F'Og,pst-validity, but FO-consequence still differs.

In brief, Epo is a consequence relation, but not a Bolzano consequence.

3.2.3 Two toy examples

The following examples will be used to illustrate some claims later on.

Ex. 1 Symb = {a, b}
Sent = {Raa, Rab, Rba, Rbb}
True: Rab, Raa, Rbb
False: Rba

Each of the four subsets of {a, b} generates a Bolzano consequence. For example,

0 =y Raa
0 =>{a} Rab

I will not go through the details here, but it is fairly easy to see that these
consequence relations can be exhaustively described as follows:

(9)  a. =g = cd({(0, Raa), (D, Rbb)})
b. ={a} = ={b} = = {ab} = cl({(@,Raa), (@, Rbb), (@,Rab)})

Ex. 2 Symb = {a, b, c}
Sent = { Raa, Rab, Rac, Rba, Rbb, Reb, Rea, Reb, Rec}
True: all except Rba

Again it is (tedious but) fairly straightforward to give short complete descrip-
tions of the corresponding Bolzano consequences. We shall only need the fol-
lowing facts (proofs omitted here):



(10) a. =9 = c({(0, Raa), (D, RbD), (0, Rcc)})

=1(ay = A({(0, Raa), (0, Rbb), (0, Rec), (0, Rab), (I, Rac),
({Rca}, Reb), ({ Rba}, Rbe)})

c.  =acr = cd{(0, Raa), (0, Rbb), (I, Rec), (0, Rab), (0, Rac),
(0, Rbc), (0, Rea), (0, Reb)})

3.3 Minimal sets of symbols

Example 1 above illustrates that different sets may generate the same Bolzano
consequence. One would expect that sets that are minimal in this respect are
particularly well behaved. Another natural notion of minimality is the following.

Definition 10
X is minimal iff for all u € X, =x # = x_(u}-

Since = x _ (4} € = x, minimality of X in this sense means that if any one of
its symbols is left out, a smaller consequence relation results. We first observe
that this is in fact the same notion as the one first mentioned.

Fact 11
X is minimal iff no proper subset of X generates the same consequence relation.

Proof. Suppose the condition on the right-hand side holds, and take u € X.
Since X — {u} is a proper subset of X, we must have = x_(,} # =x, s0 X is
minimal.

Conversely, suppose X is minimal, =y = =x, and Y C X. We must show
that Y = X. If u € X —Y then Y C X — {u}, and so we have (by base
monotonicity)

=x = =y C =x_{u € =x

which means that = x_(,; = = x, contradicting the minimality of X. Thus,
Y =X. |

In Examples 1 and 2 of Section 3.2.3, all the singleton sets are minimal,
since in each case, =,y is distinct from =3. Note that the empty set is always
trivially minimal. The set {a,b} in Example 1 is not minimal, but it has a
minimal subset generating the same consequence relation (in fact, it has two
such subsets; cf. (9)). We now see that such a subset always exists.

Proposition 12
Every X C Symb has a subset which is minimal among those generating = x.

Proof. Suppose X = {uy,us,...}. Define sets X,, for each n by

X
| X, if =x, €=x,—fu.}
X1 = { X, — {un} otherwise

Thus, X = Xy 2 X; 2 X5 DO .... By a simple induction,



(11)  Foralln, =x, = =x.
Let X* == ﬁTIEUJX’I’L'
(12) =>X* = =X

This is clear from (11) if X is finite; then X* = X}, for some k. In the general
case, argue as follows. Since X* C X, it suffices to show =x C =-x«. Suppose
that T' =x ¢, that p only moves symbols outside X*, and I'[p] is true. We
must show that ¢[p] is true. Since T is finite, and only finitely many symbols
occur in a sentence, and we only need to care about symbols occurring I' and ¢
(Occurrence Lemma), we can assume

p=p"U{(ui,,v1),..., (uy,ve)}

where w;,,...,u;, € X* and p’ only moves symbols outside X. Take n such
that w;,,...,u;, € X,. We have I' =x_ ¢ by (11), and p only moves symbols
outside X,,, so I'[p] =x, ¢[p] (Replacement Lemma). Thus, ¢[p] is true, and
(12) is proved.

Finally,

(13)  X* is minimal.
Take u; € X*. Then u; € X;11, 50 =x, € =x,—{u,}- By (11) and (12),
=x € =X, {wi)}

But X* — {u;} € X; — {us}, 50 = x+_(u;} € =x,—{u;}- It follows that =x+ Z
= x*—{u;}- 0O

Thus, if we restrict attention to minimal subsets of Symb, no consequence
relation of the form = x will be left out.

3.4 Strongly minimal sets

A stricter notion of minimality also proves to be useful:

Definition 13
X is strongly minimal iff for all u € X there is T, , and v’ such that I' = x ¢,
I'[u/u'] is true, but plu/u'] is false.®

Note that ) is always strongly minimal.

Fact 14
If X is strongly minimal, it is minimal.

8u/u’ is the replacement which maps u to u’ but is the identity on all other symbols.



Proof. Take u € X and let T, ¢, and u’ be as above. Then the replacement
p = {(u,u’)} shows that I' % x_ 1,3 . O

Strong minimality says that =x C =x_¢, fails in a particular way: a
counter-example exists which involves replacing only wu.

In Example 1 (Section 3.2.3), the two minimal sets {a} and {b} are not
strongly minimal. For example, in the case of {a}, it follows from (9b) that
the only inferences we have to worry about are () =(a} Raa and 0 ={a} Rab,
but replacing a gives the true conclusion Rbb. Similarly for {o}. The set {a,b}
is not even minimal. So {a,b} has no strongly minimal subset other than (.
Moreover, =, 5 is not of the form = x for any strongly minimal X.

Thus, not all Bolzano consequences are of the form = x for strongly minimal
X. However, those of this form are particularly well behaved:

Lemma 15
If X is strongly minimal then, for all Y,

XCY iff =x C=y
Proof. Tt always holds that X C Y implies =x C =y. So suppose X is
strongly minimal and = x C =y. Take u € X, and let T, ¢, and u’ be as in the
definition of strong minimality. So I' = x ¢, and hence I' =y ¢. But if u € Y,

it would follow that I'[u/u'] =y @lu/u'], by the Replacement Lemma. That is
impossible, since I'[u/u'] is true and ¢[u/u'] is false. Thus, u € Y. a

We immediately get:

Corollary 16
The mapping = _ is one-one on strongly minimal sets.

4 From consequence to constants

We now turn to the problem of extracting the constants of a given consequence
relation. As indicated in the Introduction, the method of extraction chosen in
this paper is the following:

Definition 17
For = € CONS, let C—. be the set of symbols w such that there are I', ¢, and
u’ such that T' = ¢ but I'[u/u'] & plu/u].

So a constant in this sense is such that some way of replacing it, but leaving
all other symbols as they are, destroys some valid inference.

4.1 Some general facts

We first note that all constants in this sense relative to a Bolzano consequence
relation = x belong to X.

10



Lemma 18
For all X C Symb, Cs, C X.

Proof. Ifu € C. ., thereareT, ¢, and v’ such that T' =x ¢ but T'[u/u/] A x
plu/u']. But if u € X we would have I'[u/u'] = x ¢[u/u'] by the Replacement
Lemma. So u € X. ad

In particular, we always have

In Example 1, C-,,, = () for all X C Symb, since the only way to destroy an
inference in this example is to replace two symbols (by each other). This could
be taken to indicate that something is amiss here, either with the example or
with our definitions of = x and C,. (or both). A further hint to this effect is
provided by the following observation: Add a copy of b in the example, i.e. a
new symbol ¢ which behaves with respect to well-formedness and truth exactly
as b.2 This gives us the language of Example 2, but with the difference that
both Rba and Rca are false, whereas all the other sentences are true. Now we
can see that

(15)  Csy,, ={a}

For the fact that () =, Rac (replacing ¢ cannot produce a false conclusion)
but ) # () Rbc (replace ¢ by a) in this case shows that a € C-,,, and then
(15) follows by Lemma 18. Similarly, one can show that

(16)  Csy,, = {0}
(17) C:>{a,b} = {a,b}

In other words, by adding a copy of b to the language, which seems like a rather

harmless thing to do, Definitions 5 and 17 do produce the ‘right’ constants.
We shall not explore this further here, but instead note that under the

assumption of strong minimality, we get a strengthening of Lemma 18:

Fact 19
If X is strongly minimal, then X = C .

Proof. By Lemma 18, C— , C X. In the other direction, take u € X, and
suppose I', ¢, and u’ are as in the definition of strong minimality: T' =x ¢,
[u/u'] is true, but plu/u'] is false. But then trivially T'[u/u'] # x ¢[u/u'], since
= x preserves truth. Thus, v € C- . O

We can use Example 2 in Section 3.2.3 to see that the converse of Fact 19
fails. First, the argument above for (15) shows that this holds in Example 2 as
well.19 However,

9Intuitively, c is a new name of the individual named by b.
101n fact, each of (15)—(17) holds for Example 2.

11



(18)  {a} is not strongly minimal.

To see this, we must look at all non-trivial = (,;-inferences involving a, and
check that just replacing a by b or by ¢ does not yield true premises and a
false conclusion. But this follows by inspecting the description (10b) of those
inferences in Section 3.2.3. Thus, there are sets X satisfying X = C. , which
are not strongly minimal.

4.2 Application to some familiar consequence relations

As stated in the Introduction, we should check that Definition 17 is correct at
least in the sense of returning the expected logical constants from some familiar
consequence relations. But we must also watch out for undesired effects, in
Bolzano’s substitutional framework, of limited expressive resources of the lan-
guage. There is one case in particular, where a definition of this kind obviously
will not work:

Fact 20
If w is unique in its category, i.e. if there are no other symbols of the same
category in the language, then, for any consequence relation =, u ¢ C_,.

A typical case is negation: most logical languages have no other symbols of
the category ‘unary truth function’. We will see, however, that assuming there
is just one more such symbol will remove this problem.

4.2.1 Classical propositional logic

Consider the classical consequence relation =p;, from Section 3.2.1. In view
of Fact 20, however, let us assume there is also a symbol for the falsum unary
truth function F<t,t>711 so that Xo = {—, Fiz.y, A\, V}. This does not affect Fact
9, i.e. that, assuming the sequence of truth values of sentential symbols is not
eventually constant, =py, coincides with =, .

So the result we want is C:>X0 = Xy, i.e. we must show that X, C C:>x0~
But it is obvious that for each symbol in Xy we can destroy some valid inference
by replacing it. For example, replacing A by V destroys the validity of pAq Epr
p. We can also see that X is strongly minimal (cf. Fact 19). In fact, much more
can be shown. Let a propositional language be such that besides propositional
letters pg, p1, . . ., it contains symbols for some unary and binary truth functions,
and that sentences are built in the usual way and assigned truth values according
to the usual truth tables.

Proposition 21
In a propositional language such that Xy C Symb, every subset of Symb is
strongly minimal.

111.e. the constant function mapping each truth value to F.

12



The proof of this is not difficult, though somewhat lengthy, and will be
omitted here.

To appreciate what Proposition 21 says, note first that it also applies to
cases when some propositional letters are treated as constants. It is of course
familiar to use the symbols T and/or F in that way; what the result says is
that whatever propositional letters are included in X, the Bolzano consequence
relation = x is such that its constants, according to Definition 17, are precisely
the elements of X.

Note further that many of the consequence relations = x covered by Propo-
sition 21 will be quite unnatural. For example, if —€ Symb (denoting the binary
material implication truth function) but — ¢ X, then

{0 =} #x b,

since = x treats — as variable, i.e. replaceable by any binary truth function
symbol. In general, the ‘reasonable’ cases will be those relations = x where
X = Symb — {po,p1,...}. That is, in those cases, =>x coincides with classical
propositional consequence. But Proposition 21 entails that however X is chosen,
reasonably or unreasonably, Definition 17 will return exactly the symbols in X
as constants.

4.2.2 Classical first-order logic

We cannot expect a similar result for first-order logic, already because, as stated
in Section 3.2.2, Ero is not a Bolzano consequence relation. It is, however, a
consequence relation (once the language is fixed), so Definition 17 applies. Let
us just check that the definition returns the right constants, i.e. that

(19) C\=Fo =X = {ﬁvF(t,t)vAavavvzla:}

But this is fairly clear: First, for each symbol u in X; we can easily produce
an instance of Epo that gets destroyed when wu is replaced by another symbol
of the same category. Take = as an example: we have a = b Epo b = a but
aRb £rpo bRa, where R is a binary predicate symbol. Second, this cannot be
done for any predicate letter or individual constant symbol, precisely because the
definition of =po universally quantifies of all interpretations of these symbols.
O

4.2.3 Other logics

To repeat, Definition 17 applies to any consequence relation, not just Bolzano
consequence relations. For example, consider intuitionistic propositional logic,
with propositional connectives Xo = {=, Fi; 4, A, V,—, 4>}, Its consequence
relation, say Fpr, is defined axiomatically,'? but again it will be clear that

12The only unusual feature here is the presence of Fit,ty, but Fiy 4yp can be taken to be
equivalent to p A =p. So bFypr is defined via some standard axiomatization of intuitionistic

13



replacing a symbol in X5 will destroy some IPL-consequence, and moreover
that replacing ordinary propositional letters cannot have such an effect. That
is,

(20> C"IPL = X

This is just one example; clearly, similar reasoning can be applied to various
other logical systems to show that (with a vocabulary chosen so that Fact 20
is not a problem) the present definition of constancy returns the right set of
symbols.

4.3 An isomorphism

The second criterion of the correctness of a method of retrieving constants from
a consequence relation mentioned in the Introduction was that it is in some sense
inverse to the method of defining consequence from a set of constants. Here we
have only partial success. More precisely, we succeed for strongly minimal sets
of symbols.

Let MIN (STMIN) be the set of (strongly) minimal sets of symbols. By
Proposition 12, the image of the mapping =_ restricted to MIN is still all of
BCONS. Let STBCONS C BCONS be the image of = _ restricted to STMIN.

Corollary 22
The mapping =>_ is an isomorphism between (STMIN, C) and (STBCONS, C),
whose inverse is C_.

Proof. jFrom Corollary 16 and Fact 19, we see that = _ is a bijection with
inverse C_. It follows from Lemma 15 that this bijection is an isomorphism. O

5 Further directions

The main purpose of this paper has been introductory: to present some ideas and
results in a field of investigation that could be taken further. Various aspects
of the framework could be generalized, and variants of the main definitions
could be considered. For one thing, working in a Bolzano style substitutional
setting leaves you vulnerable to ‘accidental’ effects of the expressive means of
the language. An obvious instance was highlighted in Fact 20. More subtly,
the peculiarities illustrated by Examples 1 and 2 in Section 4.1 also seem partly
related to the use of a substitutional framework. Some of these issues would
disappear, or be significantly altered, if we switch to a Tarski style framework,
characterized by the slogan: Instead of replacing symbols, reinterpret them!
On the other hand, the Bolzano setting was not chosen merely for simplicity.
Especially when you consider consequence relations as primitive, the use of a
fixed interpreted language seems quite natural. In fact, whereas going from sets

propositional logic plus this defining axiom.
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of constants to consequence relations is a process that transfers fairly smoothly
from a substitutional to a model-theoretic setting, it seems less obvious how
to effect this transfer when going in the other direction. I believe that both
settings, and the relations between them, are worth studying.

In any case, it is clear that more needs to be done, if the goal of viewing
the two processes as inverse to each other is to be attained. We achieved the
strictest kind of inverse relationship — isomorphism — for the case of strongly
minimal sets of symbols, but we didn’t extend this to arbitrary sets, nor did
we provide an independent characterization of the set of consequence relations
that are generated from strongly minimal sets.

A weaker inverse relationship can be described as follows: Start from an
arbitrary X C Symb, form the consequence relation = x, then extract the con-
stants with C_: Is the relation generated by the set of extracted constants the
same as the original one? If so, we have

(21) =X = =0.,

even when C-, , is a proper subset of X.
But this fails in general in the present framework. Consider again Example
2 from Section 3.2.3. We have

celCs,

since ) = (4,¢y Rbe but () % ¢, .y Rba. However, a is not in C=,, ,: checking the
relevant valid inferences (see (10c)), none becomes invalid when a is replaced
by b or by c¢. So, by Lemma 18,

(22)  Cop, = {0}

But we also have
0 = {a,c} Rtab

whereas
0 %y Rab

(by the replacement that permutes a and b). This shows that
Fach F FOa(,,

so we have a counter-example to (21).

The same example also provides a negative answer to another natural ques-
tion: although X C Y always implies =x C =y, what about monotonicity in
the other direction, i.e.

(23) If=C=' then Co CC...

Even when the consequence relations are Bolzano consequences, this can fail:
we have =3 € =4} in Example 2 but, by (22), and (15) in Section 4.1,
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C:>{a} Z C:>{a,c}'

There are moves one can make to insure that (21), and even (23), holds,
but a discussion of these, and a fuller account of the various ways of going from
consequence relations to constants and back, is deferred to another occasion.?
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