
Constant operators: partial quantifiers

Dag Westerståhl

1. Introduction

This paper concerns a small part of a larger project to do with the notion
of logical constants. A background idea is that this notion is not necessarily
unitary, but contains distinct ingredients. One such ingredient is often called
topic neutrality, and made precise in the form of requirements of invariance
under various transformations between models. Such invariance has been the
object of several recent studies (Feferman 1999, van Benthem 2002, Bonnay
2006) and is rather well understood. Another ingredient may be called con-
stancy; in one version, it is the idea that a logical operator ‘means the same’
over different universes. It is less clear how this idea should be made precise,
and the project mentioned deals with just that.

The goal is to treat operators of any type. By “type” we mean type in a
simple type theory à la Church. There are several familiar versions of this
theory, and in many cases it is just a matter of convenience which version
one chooses. It seems, however, that notions of ‘constancy’ are somewhat
sensitive to this choice. For example, does one use relational or functional
types? Also, are they types of total or partial objects? To begin, at least, one
needs to look at what ‘constancy’ could amount to in each of these cases. In
particular, the introduction of partial objects appears to complicate matters. It
may be that much of this complication is spurious or unnecessary, but if so,
that is something that needs to be established.

First-order generalized quantifiers, or just quantifiers, are a paradigmatic
kind of operators, well studied in logic as well as language (see, for exam-
ple, Peters and Westerståhl 2006 for an overview). The issue of which of
these operators are logical constants has often been raised: The logician’s ∀
and ∃ are of course prime examples, but what about something like most or
each other? Quantifiers are often presented in a relational framework, but
some prefer a functional one, finding that it better reflects the compositional
function-argument structure commonly ascribed to the syntax of natural lan-
guages. Usually, quantifiers are seen as total, but in their pioneering paper

2 Dag Westerståhl

on generalized quantifiers in natural language, Barwise and Cooper (1981),
who worked in a functional framework, actually used partial quantifiers; more
precisely, quantifiers that were undefined for certain arguments.

This paper focuses on one aspect of what ‘constancy’ could mean for
quantifiers in a partial framework, with a view to extend the results to (a) op-
erators of other first-order types (such as the denotations of many adjectives),
and eventually, (b) arbitrary types. More precisely, it focuses on the condition
of extension (EXT), familiar from generalized quantifier theory. Since quanti-
fiers are ubiquitous in logic and language, intuitions about them are stronger
than in other cases, and might lead to insights about those cases. Of course,
the insights may be negative: perhaps first-order quantifiers (i.e. quantifiers
over individuals) form a very special class, and the senses in which they are
constant will not transfer to other types. Some such issues will be discussed
here.

Apart from Barwise and Cooper (1981), little has been written about par-
tial quantifiers, and Barwise and Cooper did not deal with the issue of ‘con-
stancy’. Not did they use the full power of partial quantifiers, as partial func-
tions whose arguments may also be partial. The observations in the present
paper are preliminary and exploratory. I first present and compare some main
versions of simple type theory, and then discuss how quantifiers fare in these
systems.

2. Versions of simple type theory

A type theory usually comes with (i) a set of types, (ii) a definition of the
objects of the various types, (iii) a language in which one can talk about
these objects, and (iv) a logic for this language, described both semantically
in terms of what its expressions denote, and proof-theoretically in terms of a
formal deduction system for how certain of these expressions can be inferred
from others. Here I will only be concerned with the first two of these aspects,
and will therefore talk of type systems rather than type theories.

The use of type theory in model-theoretic semantics (aspects (i) – (iii)
above) began with Montague (see Montague 1974). There are the basic types
e of individuals and t of truth values. Montague wanted to handle intensional
phenomena and so he had another type s for possible worlds or indices, which
however was not quite on a par with the other basic types. His type theory,
and the accompanying language and intensional logic IL did what he wanted

Constant operators: partial quantifiers 3

them to do, but from a mathematical point of view they had some idiosyn-
cracies (which, for example, resulted in the fact the Church-Rosser theorem
did not hold for IL). Indeed, Barwise and Cooper (1981) said that Montague
Grammar “looks a bit like a Rube Goldberg machine” (p. 204). It was later
realized that by using a more standard format of simple type theory, only
with an extra basic type s, the idiosyncracies disappear but the usefulness for
semantics remains (cf. Gallin 1975, van Benthem and Doets 1983, Muskens
1989a). Another observation was that s played little role in parts of the theory
— the extensional part — and in practice most of the theory of quantifiers
developed within the Montague framework used only the extensional part.

The type systems to be considered here all have e and (when needed) t as
basic types. However, nothing seriously turns on that; everything we say is
adaptable to the presence of other basic types.

2.1. Universal operators

Let Θ be a type system where the set T Θ of types is generated inductively
from the basic e and (possibly) t. For each universe M, MΘ

e = M and MΘ
t

is a fixed set of truth values (usually {T,F}). Further, M generates for each
τ ∈ T Θ (by a definition following the one for the types) the domain MΘ

τ of
objects of type τ . (We leave off the superscript Θ whenever possible.)

Definition: Let τ ∈ T Θ. A universal operator in Θ of type τ is a func-
tion(al) u that with each universe M associates a unique object uM

in MΘ
τ .

Various natural language expressions, in particular determiners and noun
phrases, are naturally taken to denote universal operators. It is for such oper-
ators that the issue of ‘constancy’, or logicality, is raised.

2.2. Standard functional type systems

Let TFT be the type system whose types are given by

(a1) a basic type (e and t) is a type

(a2) if σ and τ are types, so is 〈σ ,τ〉

and the corresponding objects by (dropping the superscript TFT)

4 Dag Westerståhl

(b1) Mt = {T,F}

(b2) Me = M

(b3) M〈σ ,τ〉 = the set of all total functions from Mσ to Mτ = [Mσ −→Mτ]

This is probably the most widely used (simple) type system. Sets and re-
lations are rendered as characteristic functions. Note that all functions are
unary. To deal with functions of several arguments one uses currying, based
on the natural bijection between [X ×Y −→ Z] and [X −→ [Y −→ Z]]. How-
ever, curried types tend to get rather complex, and moreover the bijection fails
for partial functions (see Muskens 1989b), to be considered later. Therefore,
we focus on a variant of TFT that allows multi-argument functions; call this
system TFT+:1

(c1) a basic type is a type

(c2) If σ1, . . . ,σn and τ are types, so is 〈σ1 . . .σn,τ〉 (n≥ 1)

(d1) Me = M

(d2) Mt = {T,F}

(d3) M〈σ1...σn,τ〉 = [Mσ1 ×·· ·×Mσn −→Mτ]

Every type τ in TFT+ can be uniquely written as

τ = 〈σ11 . . .σ1k1 , . . . ,〈σn1 . . .σnkn ,τ0〉 . . .〉

where τ0 is e or t (n ≥ 0). Following the terminology in van Benthem (1989)
(for TFT), we call τ individual if τ0 = e and Boolean if τ0 = t. Boolean
types are relations but their arguments need not be; cf. 〈〈e,e〉, t〉. The strictly
relational types of TFT+ are defined (inductively) as follows:

Definition: τ is strictly relational iff τ is either primitive or of the form
〈σ1 . . .σn, t〉, where each σi is strictly relational.

(e is included for convenience here.) It is easily seen that τ is strictly relational
if and only if no occurrence of a right bracket 〉 in τ is immediately preceded
by an occurrence of e or of another right bracket.

We end by noting the following characteristic fact about TFT+; it does not
hold for relational or partial types (see below).

Constant operators: partial quantifiers 5

Fact 1
If τ 6= τ ′ in TFT+, then Mτ ∩Mτ ′ = /0, provided the truth values do not belong
to any Mσ except Mt .

Proof. Induction. It is clear that

τ 6= e =⇒ Mτ ∩Me = /0

τ 6= t =⇒ Mτ ∩Mt = /0

For the induction step, suppose f ∈ Mτ ∩Mτ ′ , where τ = 〈σ1 . . .σn,τ0〉 and
τ ′ = 〈σ ′

1 . . .σ ′
n,τ

′
0〉. It follows that

dom(f) = Mσ1 ×·· ·×Mσn = Mσ ′
1
×·· ·×Mσ ′

n
6= /0

and thus Mσi = Mσ ′
i
, 1 ≤ i ≤ n. By induction hypothesis, σi = σ ′

i , 1 ≤ i ≤ n.
Now take a ∈ dom(f). Then

f (a) ∈Mτ0 ∩Mτ ′0

Again by induction hypothesis, τ0 = τ ′0, and so τ = τ ′. 2

2.3. Relational types

Although Montague Grammar uses a functional type system, many of its op-
erators, and in particular quantifiers, have an essentially relational character.
More exactly, their functional types (in TFT+) are strictly relational in the
above sense. Muskens (1989a) concludes from this and other arguments that
Montague Grammar is more simply formulated in a framework that is rela-
tional by definition. Let RT have the following types and objects:

(a1) The only primitive type is e.

(a2) If τ1, . . . ,τn are types (n≥ 0), so is (τ1, . . . ,τn).

(b1) Me = M

(b2) M(τ1,...,τn) = P(Mτ1 ×·· ·×Mτn)

6 Dag Westerståhl

Here it is stipulated that the cartesian product of the empty sequence () of sets
is { /0}. Thus, M() = P({ /0}) = { /0,{ /0}} = {0,1} = {F,T}, so () corresponds
to the type t in TFT.

It is not hard to establish that there is an isomorphism between RT and the
strictly relational part of TFT+ (cf. Muskens 1989b):

Fact 2
The mapping π from the RT-types to strictly relational TFT+-types given by

π(e) = e
π(()) = t
π((τ1, . . . ,τn)) = 〈π(τ1) . . .π(τn), t〉 (n≥ 1)

is a bijection. Moreover, it extends naturally to bijections πM from MRT
τ to

MTFT+

π(τ) , in such a way that for R ∈MRT
(τ1,...,τn)

and ai ∈MRT
τi

,

(a1, . . . ,an) ∈ R ⇐⇒ πM(R)(πM(a1), . . . ,πM(a1)) = T

Accordingly, π further extends to a bijection from universal operators u in RT
to universal operators in TFT+ over strictly relational types, letting

π(u)M = πM(uM)

The mappings πM should really be indexed for types as well, writing πM,τ ,
but we leave that index out for perspicuity. To see the need for it, note that the
domains in RT are not in general disjoint; for example /0 belongs to all MRT

τ

for τ 6= e, { /0} belongs to MRT
((e)), MRT

(((e))), etc. So πM maps the empty set to
different objects depending on which type we are considering; more exactly,
to the ‘empty’ characteristic function in that type. But this does not prevent
each πM,τ from being a bijection.

2.4. Going partial

Muskens (1989a) argues that partiality naturally belongs to a formal seman-
tical framework; the most obvious reasons coming from apparent truth value
gaps and lack of denotation of certain terms. There are also purely conceptual
advantages.

For one example, take the denotation of the predicate prime (number). Ar-
guably, only natural numbers can be prime or non-prime; there is something

Constant operators: partial quantifiers 7

amiss with asking, for example, if the dog Fido is prime. We could of course
introduce a new basic type for the natural numbers, but if we prefer to stick
with e and t (while treating treat numbers as individuals, not sets), another
option is to stipulate that the set N of numbers is the ‘range of significance’
of the predicate prime, or, more precisely, that in each universe of discourse
M, that range is the set of numbers in M.

Similarly, consider the successor function, S(n)= n+1, taken to be of type
〈e,e〉. This function is only defined for natural numbers, so in an arbitrary
universe M, SM is naturally taken to be a partial function. Its domain is not
quite the set of numbers in M; rather

dom(SM) = {n ∈M∩N : n+1 ∈M}

(Not only the arguments but also the values must belong to M.)
How can we modify a type system to take care of partiality? In RT, it is

fairly clear what to do. A predicate generally gets a positive and a negative
extension, i.e. two sets P+ and P− of objects of the appropriate type. Their
union is the range of significance; in the example above, P+ is the set of
primes in that range, and P− the set of non-primes; Fido belongs to neither.

In full generality, let (following Muskens 1989a) a partial relation be a
pair of ordinary relations, the first member of which is its positive part, or
extension, and the second its negative part, or anti-extension. In the corre-
sponding type system, which we call PRT, types are as in RT but the objects
of each type are defined as follows:

(a1) Me = M

(a2) M(τ1,...,τn) = (P(Mτ1 ×·· ·×Mτn))
2

A partial relation in M(τ1,...,τn) is coherent iff its negative and positive parts
are disjoint, and classical iff its negative part is the complement of its positive
part. Let PRT-3 be the version of PRT which constrains partial relations to be
coherent, and PRT-2 the one which constrains them to be classical (the choice
of labels will become clear below). RT is clearly isomorphic to PRT-2.

For the functional type systems, there are essentially two ways to ‘go par-
tial’: either consider partial functions instead of total ones, or keep total func-
tions but add an extra truth value. Modifying TFT+ in the first way is ex-
tremely simple: just take the set of all partial functions from X to Y instead,
which we will denote [X ↪→ Y]. That is, PFT+ is the type system which has
the same types as TFT+, and whose objects are given by:

8 Dag Westerståhl

(c1) Me = M

(c2) Mt = {T,F}
(c3) M〈σ1...σn,τ〉 = [Mσ1 ×·· ·×Mσn ↪→Mτ]

This will be our main candidate here for a partial version of functional
type theory.2

Note that distinct domains in PFT+ are not disjoint, since every non-
primitive type now contains a null object: the function (of the type in ques-
tion) with empty domain, which can be identified with the empty set. This
must of course not be confused with the various (total) characteristic func-
tions of the empty set.

Fact 3
For all τ , MTFT+

τ ⊆MPFT+

τ .

Proof. Induction. The base step is immediate. Consider 〈σ1 . . .σn,τ〉 and sup-
pose MTFT+

σi
⊆MPFT+

σi
, 1≤ i≤ n, and MTFT+

τ ⊆MPFT+

τ . An object F in MTFT+

〈σ1...σn,τ〉
is a total function from MTFT+

σ1
×·· ·×MTFT+

σn
to MTFT+

τ . Thus, F is a partial
function from MPFT+

σ1
×·· ·×MPFT+

σn
to MPFT+

τ (cf. note 2). 2

Corollary 4
Every universal operator in TFT+ is also a universal operator in PFT+.

We may now expect PRT to correspond to the strictly relational part of
PFT+. Before looking at this, however, we should consider the other way of
partializing TFT+, i.e. by introducing extra truth values. Actually, there are
two ways to go about this. Let TFT+

3 be just as TFT+ except that

Mt = {T,F,N}

and let TFT+
4 be like TFT+ except that

Mt = {T,F,N,B}

(The notation is from Belnap 1977; ‘N’ stands for ‘neither’ and ‘B’ for ‘both’.)
The main idea, of course, is that instead of saying that a function F with

values in Mt is undefined for a certain argument a, we stipulate that F(a) =
N (or F(a) = B). Note that this works only for functions with values in Mt .

Constant operators: partial quantifiers 9

More generally, it extends to the strictly relational part of TFT+, but not to a
type like 〈e,e〉. But what about the fourth truth value?

TFT+
3 and TFT+

4 essentially commit us to a 3-valued or 4-valued logic,
respectively. It turns out that for many purposes, the 4-valued version is quite
natural, and mathematically more elegant. This can be seen already from PRT.
In the general case, a partial relation splits the domain into four parts; only if
we add the coherence requirement do we get three.3

Muskens (1989a) gives a clear and informative account of 3- and 4-valued
logic, and the generalization to type theory. In particular, he shows that, as
one would expect, there is a tight connection between PRT and the (strictly)
relational part of TFT+

4 .4

It should be fairly obvious by now how to map (isomorphically) the ob-
jects in MPRT

τ to the the objects in MTFT+
4

π(τ) ; we omit the details. Likewise,
one sees how PRT-3 maps isomorphically onto the strictly relational part of
TFT+

3 .
Note also that Fact 1 holds (with the same proof) for TFT+

3 and TFT+
4 .

Now, what about partial sets and relations in PFT+? If we restrict atten-
tion to coherent relations, they are already there; more exactly, their partial
characteristic functions are. The positive part of such a relation is mapped to
T, the negative part to F, and the mapping is undefined on the remaining part.
It is easy to see that in this way one obtains an isomorphism between PRT-3
and the strictly relational part of TFT+

3 . Similarly, the strictly relational part
of TFT+

3 and PFT+ are isomorphic; we omit details.
PFT+ admits a 3-valued logic but doesn’t necessitate one. Of course one

needs to make a decision about what to make of a sentence “c is P” when c
denotes an object for which the characteristic function denoted by P is un-
defined. Farmer (1990) stipulates that the sentence is false in this case (thus
preserving a 2-valued logic), arguing that this fits best with mathematical
practice.5 Since our concern is type systems rather than type theory, we shall
not pursue this further here.

2.5. Summing up

We have looked at a variety of similar but not equivalent formulations of
simple type theory. Which of these one prefers can be a matter of usefulness
for the purpose at hand, but also a matter of taste. In the context of the present
paper, the following considerations can be made:

10 Dag Westerståhl

1. We are eventually interested not only in the (strictly) relational types
but also in the purely functional types, such as 〈e,e〉.

2. As to partial relations, the coherence constraint seems natural.

3. One main source of intuition are generalized quantifiers, which are re-
lational.

Therefore, among partial systems we focus on PFT+, and among total ones,
RT and TFT+.

3. Monotonicity and related properties

Let Θ be a type system of the kind considered here. On issue that turns out
to be important to the matter of ‘constancy’ (but is rarely considered in the
literature, as far as I know), is to what extent the domains of a given type τ can
overlap for different universes of individuals. In particular, if you extend the
universe (of discourse), do you then also extend the corresponding domain
MΘ

τ ? If you do, we say that τ is monotone. The main result in this section
is a characterization of the monotone types for each of the type systems in
section 2. We use the following terminology.

Definition: A type τ in a type system Θ is

(a) monotone iff M ⊆M′ implies MΘ
τ ⊆M′Θ

τ ;

(b) distinct iff M 6= M′ implies MΘ
τ 6= M′Θ

τ ;

(c) disjoint iff M 6= M′ implies MΘ
τ ∩M′Θ

τ = /0.

For example, we have seen that types in RT are not disjoint, since each
domain (except Me) contains the empty set. We need one more

Definition: A type τ in a type system Θ is truth-functional if (the ex-
pression) τ does not contain e.

The domain of a truth-functional type does not depend on M, so these
types are trivially monotone and non-distinct.

Theorem 5 All types in RT, PRT, PRT-3, and PFT+ are monotone. All non-
truth-functional types in these systems are distinct.

Constant operators: partial quantifiers 11

Proof. Use induction. Obviously, t and e are monotone. Among the relational
systems, consider PRT (the others are similar). Suppose M ⊆M′. If (dropping
the superscript) Mτi ⊆M′

τi
, 1≤ i≤ n, and (R1,R2) ∈M(τ1,...,τn), then

R j ⊆ Mτ1 ×·· ·×Mτn ⊆ M′
τ1
×·· ·×M′

τn

j = 1,2. Thus (R1,R2) ∈M′
(τ1,...,τn)

.
For PFT+, consider 〈σ1 . . .σn,τ〉. F ∈M〈σ1...σn,τ〉 is a partial function from

Mσ1 ×·· ·×Mσn to Mτ . If M ⊆ M′ then, by induction hypothesis, Mσi ⊆ M′
σi

,
1 ≤ i ≤ n, and Mτ ⊆ M′

τ . Therefore, F is a partial function from M′
σ1
×·· ·×

M′
σn

to M′
τ .

This proves the first claim of the theorem. For the second claim, consider
again the relational type systems first. e is trivially distinct, and it is clearly
enough to show that

M(σ1,...,σn) = M′
(σ1,...,σn)

implies that Mσi = M′
σi

for 1≤ i≤ n

for all RT-types σ1, . . . ,σn. Consider PRT; the other cases are similar. Fix i
between 1 and n and suppose (Ri1,Ri2) ∈ Mσi . Take any (R j1,R j2) ∈ Mσ j for
1≤ j ≤ n, j 6= i. Then

((R11,R12), . . . ,(Rn1,Rn2)) ∈Mσ1 ×·· ·×Mσn

Thus
{((R11,R12), . . . ,(Rn1,Rn2))} ∈M(σ1,...,σn) = M′

(σ1,...,σn)

It follows that (Ri1,Ri2) ∈M′
σi

. This shows that Mσi ⊆M′
σi

, and by a symmet-
ric argument we see that M′

σi
⊆Mσi .

For PFT+ one shows instead that

M〈σ1...σn,τ〉 = M′
〈σ1...σn,τ〉 implies Mσi = M′

σi
for 1≤ i≤ n, and Mτ = M′

τ .

The proof of this is similar. 2

This result fails for PRT-2 (since the complement of a relation increases
when the universe is extended). But that is an artifact of attempting to present
RT in the format of PRT. In practice one would use RT instead.

The situation as regards monotonicity is very different in the total func-
tional type systems. We need one final

Definition: A TFT+-type τ is extended truth-functional if it is either
truth-functional or of the form

12 Dag Westerståhl

(1) 〈σ11 . . .σ1k1 , . . . ,〈σn1 . . .σnkn ,e〉 . . .〉

with each σi j truth-functional. (This includes the case n = 0, i.e. τ = e.)

Theorem 6 The monotone types in TFT+, TFT+
3 , and TFT+

4 are exactly the
extended truth-functional types. All other types are disjoint. The same holds
for TFT and its 3- and 4-valued variants.

Proof. The claim for TFT and its variants follows from the one for TFT+ and
its variants by restricting attention to TFT-types, so we can focus on types
in TFT+. The following argument works for any one of TFT+, TFT+

3 , and
TFT+

4 . Clearly, a truth-functional type τ is monotone, since then Mτ is inde-
pendent of M. Suppose τ has the form (1), where each σi j is truth-functional.
An element F of Mτ can be seen (using currying!) as a function from the
product

Mσ11 ×·· ·×Mσnkn

to M. If M ⊆ M′, then Mσi j = M′
σi j

for each i, j, since σi j is truth-functional,
and it follows that F ∈ M′

τ . So τ is monotone, and we have verified the first
part of the claim. To prove second part, we start with a number of observa-
tions:

(2) If at least one of the τi is distinct, then 〈τ1 . . .τn,σ〉 is disjoint for any
type σ .

The assumption entails that if M 6= M′, then Mτ1×·· ·×Mτn 6= M′
τ1
×·· ·×M′

τn
.

But then, if f ∈M〈τ1...τn,σ〉 and g ∈M′
〈τ1...τn,σ〉, dom(f) 6= dom(g), so f 6= g.

(3) If τ is distinct, then 〈σ1 . . .σn,τ〉 is distinct for any types σ1, . . . ,σn.

To see this, take b ∈ Mτ −M′
τ . There is some f ∈ M〈σ1...σn,τ〉 such that for

some a ∈Mσ1 ×·· ·×Mσn , f (a) = b. Then f 6∈M′
〈σ1...σn,τ〉.

(4) If τ is disjoint, then 〈σ1 . . .σn,τ〉 is disjoint for any types σ1, . . . ,σn.

This is because a function in M〈σ1...σn,τ〉 and a function in M′
〈σ1...σn,τ〉 cannot

have common values (since τ is disjoint), and so cannot be identical.

(5) τ is distinct if and only if it is not truth-functional.

Proof: Clearly truth-functional types are not distinct. In the other direction,
use induction over τ . If τ = e it is distinct. Suppose τ = 〈σ1 . . .σn,τ0〉. Since

Constant operators: partial quantifiers 13

τ is assumed not to be truth-functional, at least one of σ1 . . .σn and τ0 is
not truth-functional, and hence distinct, by induction hypothesis. But then it
follows from (2) and (3) that τ is distinct. This proves (5).

Now we can prove the second part of the proposition. Every type τ has
the form

〈σ11 . . .σ1k1 , . . . ,〈σn1 . . .σnkn ,τ0〉 . . .〉

where τ0 is either e or t. If each σi j is truth-functional, then τ is extended
truth-functional, and hence monotone by the first part of the proof. Suppose
instead that some σi j is not truth-functional, and hence distinct, by (5). Then

σ = 〈σi1 . . .σiki , . . . ,〈σn1 . . .σnkn ,τ0〉 . . .〉

is disjoint by (2). Therefore, 〈σi−11 . . .σi−1ki−1 ,σ〉 is disjoint by (4). Repeating
this argument, it follows that τ is disjoint. This completes the proof. 2

4. EXT for standard quantifiers and beyond

The quantifiers we consider are first-order in the sense that they quantify over
individuals (not in the sense of being definable in first-order logic!). More
generally, let the level of a (functional or relational) type be the maximal
number of nestings of angle brackets, or parentheses, that occur in it. Then
quantifiers have level 2. Lindström (1966) introduced a practical type sys-
tem tailor-made for quantifiers, which is still normally used in this context,
but here we shall stick to relational or functional types as before. Thus, let
the first-order relational types be those of the form 〈e . . .e, t〉 (in TFT+ or
PFT+) or (e . . .e) (in RT). A quantifier is then a universal operator of type
〈σ1 . . .σn, t〉, or (σ1 . . .σn), where each σi is a first-order relational type (in
the respective system).

For standard quantifiers, there is a familiar notion of ‘constancy’ over
varying universes, usually called extension or EXT. It says that if you extend
M to M′, the quantifier remains the same on arguments over M. For example,
it rules out a quantifier meaning some on universes with less that 10 elements
and every on other universes. In fact, EXT is easily defined for arbitrary types
in RT:

Definition: A universal operator u of type (σ1, . . . ,σn) is EXT if M ⊆
M′ implies that uM = uM′ �M [= uM′ ∩ (Mσ1 ×·· ·×Mσn)].

14 Dag Westerståhl

This works because RT-types are monotone. Since RT is isomorphic to the
strictly relational part of TFT+, EXT is defined for arbitrary strictly relational
types in TFT+ as well. But note that in TFT+ it is almost never the case that
uM = uM′ � M, in the sense of ordinary function restriction, since the argu-
ments of uM are functions with domain M (when u is a quantifier), whereas
uM′ has arguments with domain M′ (cf. Fact 1). The reformulation of EXT for
strictly relational types becomes clumsier in TFT+, precisely because types
in TFT+ are not monotone.

Eventually we want to generalize in three directions from the case of
quantifiers: (1) to arbitrary (strictly) relational types (for EXT this was done
above), (2) to other functional types, and (3) to partial types. It is then con-
venient to take the functional type systems as a starting-point, even when
dealing with quantifiers. If we need to go back to the relational case (to RT)
we use the mapping π from Fact 2.

Here our focus is on (3). Remaining with the types of quantifiers, we con-
sider the corresponding partial objects. That is, we look at universal operators
of these types in PFT+, or in other words, partial quantifiers.

5. Partial quantifiers

A partial quantifier q of type 〈σ1 . . .σn, t〉 may exhibit partiality in two ways:
qM may itself be a partial (characteristic) function, and it may take partial
(characteristic) functions as arguments, i.e. the domain of qM could be the
whole MPFT+

σ1
× ·· · ×MPFT+

σn
(or any subset of it). As noted, Barwise and

Cooper (1981) considered the first kind of partiality. A quantifier like the
three was only defined for those (characteristic functions of) subsets of M
having exactly three elements. The intuition was that a sentence like The
three boys failed the exam has no truth value unless there are exactly three
boys in the (discourse) universe. For now, however, we must allow both kinds
of partiality. To simplify notation we often consider the case of type 〈ee, t〉
below (type ((e,e)) in RT, or 〈2〉 in the standard typing of quantifiers), but
everything we say generalizes to arbitrary quantifier types (and some of it to
arbitrary strictly relational types).

Even if our main objects are characteristic functions, it is convenient to
have a notation for the sets they correspond to. The following definition is
formulated for the case of 〈ee, t〉 but works for any first-order relational type.
For f ∈MPFT+

〈ee,t〉 , let

Constant operators: partial quantifiers 15

(6) f +M = {(a,b) ∈M2 : f (a,b) = T}

(7) f−M = {(a,b) ∈M2 : f (a,b) = F}

f +M and f−M together determine f . That is, we have the following

Fact 7
If f +M = g+M′

and f−M = g−M′
, then f = g (and hence dom(f)⊆ (M∩M′)2).

Experience with partial quantifiers in the full sense seems limited, but one
obvious source is ‘partial versions’ of already familiar total quantifiers.

5.1. Total quantifiers as partial quantifiers

By Corollary 4, an ordinary total quantifier Q (in TFT+) already is a quantifier
in PFT+. The switch to PFT+ is a change of perspective on the same object.
What does this switch amount to for EXT?

Roughly, EXT in TFT+ says that, for arguments f of QM, the universe
outside f +M is irrelevant. Using the same condition in PFT+ we get the fol-
lowing property:

Definition: q is p-EXTgq,s if, whenever f ∈ dom(qM), g ∈ dom(qM′),
and f +M = g+M′

, it holds that qM(f) = qM′(g).6

(p’ stands for ‘partial’, ‘gq’ for ‘generalized quantifier’, and ‘s’ for strong; cf.
below.) One easily sees that we have:

Fact 8
A quantifier in TFT+ is EXT if and only if it is p-EXTgq,s as an operator in
PFT+.

However, in the partial case it seems at least as natural to consider the
weaker condition that everything outside f +M and f−M is irrelevant:

Definition: q is p-EXTgq if, whenever f ∈ dom(qM), g ∈ dom(qM′),
f +M = g+M′

, and f−M = g−M′
, it holds that qM(f) = qM′(g).

Using the fact that f +M and f−M determine f we can find a simpler for-
mulation of this requirement:

16 Dag Westerståhl

Fact 9
q is p-EXTgq if and only if it has the following property:

(8) If f ∈ dom(qM)∩dom(qM′) and M ⊆M′, then qM(f) = qM′(f).

Proof. That (8) follows from p-EXTgq is immediate. In the other direction,
given the assumptions in p-EXTgq, use Fact 7, and apply (8) to M and M∪M′,
and to M′ and M∪M′. 2

(8) no longer mentions f +M or f−M. It is thus a putative formulation of
EXT for arbitrary types in PFT+. Indeed, it is a slight strengthening of what
is perhaps the most obvious candidate for EXT in a partial functional frame-
work:

Definition A universal operator u of type 〈σ ,τ〉 in PFT+ is p-EXT if
M ⊆M′ entails uM = uM′ � M.7

p-EXT is stronger than (8), since uM = uM′ � M entails that dom(uM) ⊆
dom(uM′), which does not follow from (8). As an example, consider, the suc-
cessor function S mentioned earlier, taken as a universal operator of type
〈e,e〉, such that for each M, dom(SM) = {n ∈M∩N : n+1 ∈M}. S is clearly
p-EXT.

But we have already observed that a condition like p-EXT can never hold
in a total functional framework. More precisely, we have:

Fact 10
For any universal operator in TFT+ of type 〈〈τ1τ2, t〉, t〉 (where τ1,τ2 are
strictly relational), when seen as an operator in PFT+, p-EXTgq trivially holds.
Also, p-EXT trivially fails, except when the type is truth-functional.

Proof. Suppose M ⊆ M′. If Q is such an operator, dom(QM) = MTFT+

〈τ1τ2,t〉, and

dom(QM′) = M′TFT+

〈τ1τ2,t〉. Now consider two cases.

Case 1: At least one of τ1 and τ2 is not truth-functional. Then, since both
are strictly relational, it follows that the type 〈τ1τ2, t〉 is not extended truth-
functional. Hence, by Theorem 6, if f ∈ dom(QM)∩dom(QM′), then M = M′,
and p-EXTgq holds trivially. Similarly, if M is a proper subset of M′, it can
never hold that uM = uM′ � M, so p-EXT fails.

Case 2: Both τ1 and τ2 are truth-functional. Then the arguments of QM do
not depend on M at all, so p-EXTgq again holds trivially (use the formulation
(8)), and so does p-EXT. 2

Constant operators: partial quantifiers 17

It follows that we shall never get any interesting examples of p-EXTgq, but
not p-EXTgq,s, quantifiers if we restrict attention to quantifiers in TFT+. But
perhaps the conclusion we should draw from this is that even though every
total quantifier Q is also a partial quantifier, it isn’t really Q itself that is its
closest ‘partial version’. There are indeed other such versions, which extend
Q to a partial quantifier.

5.2. Partial version of total quantifiers

A total quantifier Q of type 〈〈ee, t〉, t〉, say, puts, for any M, a condition on
(characteristic functions of) relations R ⊆ M2, or, more exactly, on R and its
complement. An obvious way to extend Q to a partial quantifier is to put the
same condition on relations corresponding to partial characteristic functions
f . But now we have a choice whether to take the complement with respect to
the whole M2, or with respect to the possibly smaller set dom(f). Note that
in both cases, there seems to be no obvious reason to limit attention to some
partial characteristic functions and not to others. Thus, the resulting partial
quantifiers will have all of MPFT+

〈ee,t〉 as their domain, for each M.
Let us formulate this precisely, generalizing to the case of a universal

operator Q in TFT+ of type 〈〈τ1τ2, t〉, t〉, where τ1 and τ2 are strictly rela-
tional. It is somewhat more perspicuous to use the RT-framework here. Let-
ting σi = π−1(τi), i = 1,2, π−1(Q) is thus of RT-type ((σ1,σ2)).

Corresponding to Q we define a global binary relation RQ between rela-
tions between objects of type σ1 and objects of type σ2, as follows:

Definition: For any relations S,R of the above kind:
RQ(S,R)⇔∃M[R⊆MRT

σ1
×MRT

σ2
& S =(MRT

σ1
×MRT

σ2
)−R & π−1(Q)M(R)]

Fact 11
For all M and all R⊆MRT

σ1
×MRT

σ2
,

π
−1(Q)M(R) ⇐⇒ RQ((MRT

σ1
×MRT

σ2
)−R,R)

Moreover, every such global relation R corresponds to a universal operator
QR in TFT+ such that RQR = R.

Proof. We proof the first part and leave the second to the reader. The left-
to-right direction is obvious from the definition of R. In the other direction,

18 Dag Westerståhl

take R⊆MRT
σ1
×MRT

σ2
and suppose the right-hand side of the claim holds. Then

there is a universe M′ such that R ⊆ M′RT
σ1
×M′RT

σ2
, and (MRT

σ1
×MRT

σ2
)−R =

(M′RT
σ1
×M′RT

σ2
)−R, and π−1(Q)M′(R).

Now take (a,b) ∈ MRT
σ1
×MRT

σ2
. If (a,b) ∈ R, then (a,b) ∈ M′RT

σ1
×M′RT

σ2
by

the above. If (a,b)∈ (MRT
σ1
×MRT

σ2
)−R, then again (a,b)∈M′RT

σ1
×M′RT

σ2
. Thus,

MRT
σ1
×MRT

σ2
⊆ M′RT

σ1
×M′RT

σ2
, and from a similar argument we conclude that

MRT
σ1
×MRT

σ2
= M′RT

σ1
×M′RT

σ2
. Thus, MRT

σ1
= M′RT

σ1
, and it then follows from The-

orem 5 that M = M′. Hence, π−1(Q)M(R). 2

So these global relations are just another way to present universal oper-
ators of this type, and, generalizing, any total operator of strictly relational
type; in particular, any (total) quantifier. We use this presentation to extend
from total to partial operators, going back, however, to the case of a quantifier
Q of type 〈〈ee, t〉, t〉 in TFT+.

Definition
Define two quantifiers in PFT+ of the same type, Qp1and Qp2, by let-
ting, for each M and each f ∈MPFT+

〈ee,t〉 ,

Qp1
M (f) = T iff RQ(M2− f +M, f +M)

Qp2
M (f) = T iff RQ(dom(f)− f +M, f +M) iff RQ(f−M, f +M)

This is taken to mean that when the right-hand side is false for f , the
operators get the value F.

By Fact 11, it is clear what Qp1 means, given Q. The effect of Qp2 is the
following:

Fact 12
For all f ∈MPFT+

〈ee,t〉 , Qp2
M (f) = T⇐⇒∃A⊆M[dom(f) = A2 & π−1(Q)A(f +M)]

Proof. By Fact 11, we see that Qp2
M (f) = T iff there is a set A such that f +M ⊆

A2, A2− f +M = dom(f)− f +M, and π−1(Q)A(f +M). Therefore, it is enough
to show that the right-hand side entails that dom(f) = A2. If (a,b) ∈ dom(f),
then either f (a,b) = T or f (a,b) = F, so (a,b) ∈ f +M or (a,b) ∈ f−M =
dom(f)− f +M, and in both cases it follows that (a,b) ∈ A2. In the other
direction, if (a,b) ∈ A2, then (a,b) ∈ f +M or (a,b) ∈ A2− f +M, and in both
cases we have (a,b) ∈ dom(f). 2

Constant operators: partial quantifiers 19

To see some examples, consider first the simplest type of a quantifier,
〈〈e, t〉, t〉 (type 〈1〉 in the standard notation). For Q = ∃≥2 we have, when
f ∈MPFT+

〈e,t〉 ,

(∃p1
≥2)M(f) = T ⇐⇒ | f +M| ≥ 2 ⇐⇒ (∃p2

≥2)M(f) = T

This quantifier just says something about the size of the set f +M, so the com-
plement doesn’t matter, and the two partial versions of ∃≥2 coincide. The rea-
son is that ∃≥2 is EXT. The partial version is p-EXTgq,s. On the other hand,
take the Rescher quantifier QR, which is not EXT:

(QR)p1
M (f) = T ⇐⇒ | f +M|> |M− f +M|

(QR)p2
M (f) = T ⇐⇒ | f +M|> | f−M|

It is clear that (QR)p2 is p-EXTgq, but not p-EXTgq,s, whereas (QR)p1 is not
even p-EXTgq. These observations are instances of the next fact. Let Q as
before be of type 〈〈ee, t〉, t〉.

Fact 13
(a) For f ∈MTFT+

〈ee,t〉 , QM(f) = Qp1
M (f) = Qp2

M (f).

(b) If Q is EXT, then Qp1 = Qp2.

(c) Q is EXT iff Qp1 is p-EXTgq iff Q is p-EXTgq,s.

(d) Qp2 is always p-EXTgq.

Proof. Straightforward verification, observing that EXT for Q means that the
first argument of RQ is irrelevant, and that the second part of (c) is Fact 8. 2

(a) says that on total (characteristic functions of) relations, Q coincides
with its partial versions, so it makes sense to call these extensions of Q.

Two examples of type 〈〈ee, t〉, t〉 are

WM(f) = T ⇐⇒ f +M is a well-ordering of M

WfM(f) = T ⇐⇒ f +M is a well-founded relation

W is not EXT, since it requires the ordering to be total (∀x∃yP(x,y) must be
true in the model (M, f +M)), but Wf, which only says that f +M has no infinite
descending chain, is EXT. So there is just one partial version of Wf, but the
two partial versions of W are distinct. Using Fact 12 we see that they are:

20 Dag Westerståhl

W p1
M (f) = T⇔ f +M is a well-ordering of M

W p2
M (f) = T⇔∃A⊆M[dom(f) = A2 & f +M is a well-ordering of A]

for f ∈MPFT+

〈ee,t〉 .
There is a general conclusion to be drawn here, not so much about EXT as

about this way of quantifying over partial sets and relations. To express it, we
do two things. First, we get rid of the existential quantifier in Fact 12. Indeed,
the set A there is determined by f , via the usual dom function. To be precise,
define this function as follows. Let R be any n-ary relation.

dom(R) = R, if n = 1

dom(R) = {a : ∃b1, . . . ,bn−1R(a,b1, . . . ,bn−1)}, if n > 1

For example, if f is a (partial) function from M2 to Mt , i.e. a (many-one)
relation between ordered pairs of individuals and truth values, then dom(f)
is a set of ordered pairs, i.e. a binary relation, so dom(dom(f)) is the domain
of that relation.

Second, we recall the notion of relativization of (total) quantifiers. Ex-
pressed in the RT framework, if for every M, QM is a relation between R1, . . . ,Rk,
where Ri is an ni-ary relation over M, then the relativized quantifier Qrel has
one extra set argument and is defined by

Qrel
M (A,R1, . . . ,Rk) ⇐⇒ QA(R1∩An1 , . . . ,Rk∩Ank)

This is an important notion for natural language quantifiers, since almost
all such quantifiers turn out be relativized, which in turn explains significant
facts about the way quantification works in natural language (see Peters and
Westerståhl 2006, ch. 4). We may also note that relativized quantifiers are
automatically EXT.

Now, using the above, together with Facts 11 and 12, one proves the fol-
lowing result.

Proposition 14
If Q is a quantifier of type 〈〈e . . .e, t〉, t〉 in TFT+, then, for all f ∈MPFT+

〈e...e,t〉,

(a) (QR)p1
M (f) = T ⇐⇒ π−1(Q)M(f +M)

(b) (QR)p2
M (f) = T ⇐⇒ π−1(Q)rel

M (dom(dom(f)), f +M)

Constant operators: partial quantifiers 21

Moreover, the proposition generalizes to (total) quantifiers of arbitrary
type; I leave the working out of this as an exercise.

What this result tells us is that, although extending total quantifiers to cor-
responding partial ones is possible and even natural, what can be expressed
by these partial quantifiers can already be expressed by the total ones, or their
relativizations. Intuitively, this seems to be exactly what one should expect.
Consider again the partial predicate prime (section 2.4). Suppose I am talk-
ing about a bunch (a finite set M) of mathematical objects: natural numbers,
reals, functions, sets, etc., and I say

(9) Most (things) are prime.

The Rescher quantifier QR = most things doesn’t apply directly to partial
predicates, but we can use either of its two partial versions. With (QR)p1 we
get, letting prime+M be the set of prime numbers in M,

(10) Most things in M are prime+M.

This is expressible by the total Rescher quantifier, but perhaps an unlikely
interpretation of my words. It is more plausible that (QR)p2 was used:

(11) Most numbers in M are prime+M.

By Proposition 14 (b), this is expressible with the (total) most, the relativiza-
tion of QR.

5.3. Summing up

We have seen that although total quantifiers themselves aren’t very natural
from a partial perspective, there are perfectly natural partial versions of them.
These partial versions exhibit EXT-like properties in predictable ways (Fact
13); there are more options available for ‘constancy’ than in the total case.
However, if relativization is allowed, interpreting sentences with partial pred-
icates and relations can be done already with the total quantifiers, so there
seems to be no real (semantic) need for the partial versions.

Of course, there are endless ways of construing partial quantifiers that are
not versions in any straightforward sense of total ones; hopefully the reader
has got a glimpse of the variety of options that partiality allows from the
discussion above. It remains to be seen if some of these options are actually

22 Dag Westerståhl

‘realized’ in natural languages. That is, I am not doubting here that partial
predicates and relations are used in language; the issue is what kind of partial
quantification, if any, is employed.

As noted, one (the only?) proposal in this direction came from Barwise
and Cooper (1981). Seen in the present framework, they considered quanti-
fiers q in PFT+ of type 〈〈e, t〉,〈〈e, t〉, t〉〉 (or, more simply, 〈〈e, t〉〈e, t〉, t〉 if we
forget about currying) but restricted attention to the special case when each
qM is a partial function from MTFT+

〈e,t〉 to [MTFT+

〈e,t〉 −→{T,F}], so the only partial
object is qM itself; all the other objects involved are total.8

A main intuition behind this sort of partiality is the alleged lack of truth
value of a sentence like

(12) The three boys went to see a movie.

when there aren’t exactly three boys in the discourse universe (or some suit-
ably chosen salient universe). These intuitions can certainly be debated. Pe-
ters and Westerståhl (2006) argue that (disregarding such intuitions) the only
crucial use of partial quantifiers in Barwise and Cooper (1981) occurs in their
notion of strong quantifiers, which is used to explain the distribution of noun
phrases in existential-there sentences.9 They also argue that it is doubtful that
partiality is really called for in that explanation.

Apart from what has been said in this section, and in Barwise and Cooper
(1981) and Peters and Westerståhl (2006), I know of no principled discussion
of partial quantifiers in natural language. It may be a topic worth exploring
further.

6. Discussion

6.1. EXT versus PERM

In stark contrast with EXT, it is obvious how to formulate invariance prop-
erties like ISOM and PERM for arbitrary types, even in a partial framework.
Any bijection h from M to M′ lifts straightforwardly to a bijection hτ from
MTFT+

τ to M′TFT+

τ , for any type τ , so u of type τ is ISOM if for any such h,

uh(M) = hτ(uM)

PERM is the weaker condition which only concerns permutations of M:

uM = hτ(uM)

Constant operators: partial quantifiers 23

Exactly the same goes for PFT+, since a bijection from M to M′ lifts equally
straightforwardly to a bijection from MPFT+

τ to M′PFT+

τ .
This just re-emphasizes the familiar fact that EXT and PERM (or ISOM)

are completely different conditions. Further illustration is afforded by a quick
look at which operators have the respective properties in various types. For
example, in TFT+, the only PERM operator of type 〈e,e〉 is the identity func-
tion, whereas there are no PERM operators of type 〈〈e, t〉,e〉 (cf. van Benthem
1989, section 2.1). Similarly in PFT+: an 〈e,e〉 type operator u is PERM iff
for all M and all a ∈ M, if uM(a) is defined then uM(a) = a; and there are
no PERM operators of type 〈〈e, t〉,e〉 except the null (everywhere undefined)
operator.

By contrast, an operator u of type 〈e,e〉 in PFT+ is p-EXT iff there exists
a fixed global partial function F (like the successor function S) such that for
all M and all a∈M, if uM(a) is defined then uM(a) = F(a). And there are lots
of p-EXT operators of type 〈〈e, t〉,e〉 in PFT+.

6.2. EXT as a ‘constancy’ property

This paper has looked at EXT as a reasonable ‘constancy’ property, worth
spelling out for arbitrary types. Two questions could be asked about this strat-
egy. First, are there other similar properties that should also be studied? Sec-
ond, is EXT really reasonable?

It has been argued that EXT is not quite reasonable, or at least that it is per-
haps sufficient for constancy but not necessary, since some familiar quanti-
fiers are not EXT. Notably, the standard universal quantifier ∀ (type 〈〈e, t〉, t〉)
is not EXT, but doesn’t it ‘mean the same’ on every universe? The matter is
discussed at some length in Peters and Westerståhl (2006) (chapters 3.4 and
4.5), with the tentative conclusion that all natural language quantifiers, except
some which essentially involve a predicate thing that always denotes the uni-
verse, are EXT. While this may be a significant observation, it still leaves the
issue of a necessary condition for constancy somewhat up in the air.

A slightly different take on the matter might be as follows. In contrast
with invariance properties like PERM, EXT is not closed under definability.
The quantifier ∃ is EXT, but not its inner negation (saying of a set that its com-
plement is not empty). Any language with rudimentary means of expression
will have the power to refer essentially to the universe, and thereby to define
non-EXT operators.10 In view of this, it would clearly be unreasonable to re-

24 Dag Westerståhl

quire that all logical constants are EXT. But a weaker requirement could be
that they are all definable from (logical and) EXT operators. And this seems
indeed to be the case, for all the ‘usual’ logical constants. Moreover, it seems
to be an empirical fact that all natural language quantifiers (all quantifiers re-
quired in the analysis of natural language) are definable from EXT quantifiers
(see Peters and Westerståhl 2006, ch. 4.5). This would be enough to motivate
spelling out EXT for arbitrary types, as we have begun to do here.

One may still feel that an analysis of ‘constancy’ has not been accom-
plished. This leads to the first question asked above: Are there alternative
analyses? One such analysis, taking constancy in terms of what is variable
and what is constant in valid inferences, is sketched in Peters and Westerståhl
(2006), ch. 9.3. But if we stick to the idea of constancy as independence
(somehow) of the universe, there is perhaps one other version worth explor-
ing. The idea, which could be called rigidity, would be that a universal oper-
ator u is constant over universes if there is a fixed global operator U such that
on each M, uM is the restriction, in some sense, of U to M. This idea is clearly
very similar to EXT, but not exactly the same. It might even avoid some of the
problems we ran into with EXT. Its proper formulation, and the exact relation
to EXT, must however be left for another occasion.

6.3. Further issues

If the goal of this paper was to find the proper formulation of EXT for arbi-
trary types, the result so far is at least incomplete, and at worst a failure. But
sometimes there is illumination even in failure. For example, it may be a mis-
take to look for the proper formulation of EXT. Perhaps there are several; we
have suggested three, preliminarily called p-EXTgq,s, p-EXTgq, and p-EXT,
each corresponding in some way to EXT for total (strictly) relational types.
We managed to get an idea of what these amount to for partial quantifiers,
and we noted that the last two make good sense for arbitrary types.

However, our findings are certainly incomplete. For one thing, one would
like to know if there is a good notion of EXT for total operators of types
other than the strictly relational ones, and if so, how it correlates with the
formulations for the partial case that we found. For another, whereas EXT is
unproblematic for all (strictly) relational types in the total case, this is not so
for the partial case. The reason is that many of the facts we observed about
the various formulations of partial EXT relied on the assumption that we were

Constant operators: partial quantifiers 25

dealing with first-order quantifiers, or, more generally, with operators of types
whose level is at most 2. Are they generalizable, or does something important
happen at level 2? Along with the issues mentioned in the previous subsec-
tion, these are questions for further study. Their answers, like the preliminary
ones found in this paper, would be small pieces of the puzzling question of
what characterizes a logical constant.11

Notes

1. Another variant has instead product types and unary function types; the difference be-
tween that system and TFT+ is negligible here.

2. For the record, we should make clear exactly what (set-theoretic) object a partial function
is. We identify a (unary) partial function from A to B with a many-one relation (set of
ordered pairs) whose domain is a subset of A and whose range is a subset of B. It is total
iff the domain is equal to A. Similarly for partial functions with several arguments. This
has the consequence that a partial function from A to B is automatically a partial function
from any superset of A to B.

3. It is common but somewhat misleading to call N and B truth values. The labels may
seem fine but the question is if our notion of truth can really make sense of truth values
other than T and F. As Muskens points out, it is better, and in accordance with the picture
that PRT presents, to think of T,F,N,B as truth combinations rather than truth values:
‘true and not false’, ‘false and not true’, ‘neither true nor false’, and ‘both true and false’,
respectively (thus preserving the intuitive idea of only two truth values). But the common
practice is to talk about 3- and 4-valued logics.

4. More exactly, he considers PRT equipped with a formal language and a proof system,
calling the resulting relational type theory TT4

2, and similarly for TFT4, with a (total)
functional type theory called TY4

2. The language for TT4
2 is a sub-language of the lan-

guage for TY4
2 (both languages are functional, based on lambda abstraction and applica-

tion), and he shows that a sentence ϕ in the TT4
2-language is a TT4

2 logical consequence
of a set of sentences Γ in that language (with respect to models based on the frames for
PRT defined above) if and only if ϕ is a TY4

2 logical consequence of Γ.
5. Farmer studies a variant of PFT (i.e. PFT+ with unary functions and currying), letting

individual types allow partial functions but not Boolean types, and using a classical (2-
valued) logic to describe this system. However, he does not seem to be aware of the
problem mentioned earlier with currying partial functions.

6. In general, for quantifier type 〈σ1 . . .σn, t〉 we get the condition:

If (f1, . . . , fn) ∈ dom(qM), (g1, . . . ,gn) ∈ dom(qM′), and f +M
i = g+M′

i , 1≤ i≤ n, then
qM(f1, . . . , fn) = qM′(g1, . . . ,gn).

Similarly for the other versions of EXT below.
7. We really mean uM′ � MPFT+

〈σ ,t〉 , of course, but since any domain in PFT+ is determined by
the set of individuals, the shorter notation uM′ � M makes sense. Similarly for the general
case of a type 〈σ1 . . .σn,τ〉. For completeness, we should also stipulate that an operator
of type e is never p-EXT, whereas an operator of type t always is.

26 Dag Westerståhl

8. Concerning EXT for such quantifiers, two options seem natural (and nothing in what
Barwise and Cooper say indicates which one would be preferable): Whenever A,B⊆M⊆
M′ (we simplify matters by using sets rather than characteristic functions as arguments
of q):

(i) If qM(A,B) and qM′(A,B) are both defined, then qM(A,B) = qM′(A,B).

(ii) If qM(A,B) is defined, then qM′(A,B) is also defined and qM(A,B) = qM′(A,B).

Indeed, modulo the trouble of expressing this for characteristic functions instead, (i) is
p-EXTgq (cf. footnote 6 and use the formulation (8)), which is equivalent to p-EXTgq,s

for these quantifiers, since all arguments are total, and (ii) is p-EXT.
9. Roughly, the problem is to explain why There are several/at least two/no girls in the

garden is fine, whereas There are most/the five/all girls in the garden is not. See Peters
and Westerståhl (2006), ch. 6.3, for a detailed overview of this issue.

10. For example, if the language has individual variables (or corresponding expressions) and
identity, or 1-place predicates and Boolean connectives, or a predicate thing.

11. Work on this paper was supported by a grant from the Swedish Research Council. I would
like to thank Reinhard Muskens for some helpful remarks on type systems.

References

Barwise, Jon, and Robin Cooper
1981 Generalized quantifiers and natural language. Linguistics and Philosophy 4:

159–219.
Belnap, Nuel

1977 A useful four-valued logic,. In Modern Uses of Multiple-Valued Logic, J. M.
Dunn, and G. Epstein (eds.), 8–37. Dordrecht: Reidel.

Bonnay, Denis
2006 Qu’est-ce qu’une Constante Logique? Paris: Dissertation, IHPST (Université

de Paris I).
Farmer, William B.

1990 A partial functions version of church’s simple theory of types. The Journal of
Symbolic Logic 55: 1269–1291.

Feferman, Solomon
1999 Logic, logics, and logicism. Notre Dame Journal of Formal Logic 40: 31–54.

Gallin, D.
1975 Intensional and Higher-Order Modal Logic. Dordrecht: North-Holland.

Lindström, Per
1966 First-order predicate logic with generalized quantifiers. Theoria 32: 186–195.

Montague, Richard
1974 Formal Philosophy (edited and with an introduction by Richmond Thomason).

New Haven: Yale University Press.
Muskens, Reinhard

1989a Meaning and Partiality. Amsterdam: Dissertation, University of Amsterdam.
1989b A relational formulation of the theory of types. Linguistics and Philosophy 12:

325–346.

Constant operators: partial quantifiers 27

Peters, Stanley, and Dag Westerståhl
2006 Quantifiers in Language and Logic. Oxford: Oxford University Press.

van Benthem, Johan
1989 Logical constants across varying types. Notre Dame Journal of Formal Logic

30: 315–342.
2002 Logical constants; the variable fortunes of an elusive notion. In Reflections

of the Foundations of Mathematics: Essays in Honor of Solomon Feferman
(Lecture Notes in Logic 15), Wilfrid Sieg et al. (ed.), 420–440. Natick, MA:
AK Peters Ltd.

van Benthem, Johan, and Kees Doets
1983 Higher-order logic. In Handbook of Philosophical Logic, Vol I, Dov Gabbay,

and Franz Guenthner (eds.), 275–329. Dordrecht: D. Reidel.

