
Logical Consequence Inside Out

Denis Bonnay1 and Dag Westerst̊ahl2

1 University Paris Ouest, denis.bonnay@ens.fr
2 University of Gothenburg, dag.westerstahl@phil.gu.se

Tarski’s definition of logical consequence for an interpreted language rests on the
distinction between extra-logical symbols, whose interpretation is allowed to vary
across models, and logical symbols, aka logical constants, whose interpretation
remains fixed. In this perspective, logicality come first, and consequence is a by-
product of the division between logical and extra-logical symbols. Our aim here
is to lay the basis for a shift in perspective: let consequence come first, so that the
demarcation of a set of constants can be viewed as the by-product of the analysis
of a relation of logical consequence. The idea for extracting logical constants
from a consequence relation is the following: they are the symbols which are
essential to the validity of at least one inference, in the sense that replacing
them or varying their interpretation would destroy the validity of that inference.
Conversely, definitions of logical consequence can be construed as providing us
with mappings from sets of symbols (the ones selected as logical constants) to
consequence relations.3 Extraction of constants is expected to be an ‘inverse’ to
generation of consequence relations.

In Sections 1 and 2, we introduce a general substitutional framework for the
abstract study of consequence relations. Extraction of constants is presented in
Section 3. It is shown that extraction thus defined does not straightforwardly
provide an inverse to generation of consequence relations. To circumvent this
limitation, we consider in Section 4 ‘richness’ properties of languages that make
things better. In Section 5, we prove that extraction and generation constitute a
Galois connection, considering families of expansions of a language, instead of a
single language at a time. This gives us the correspondence for non-substitutional
Tarskian consequence as a limit case.

1 Preliminaries

1.1 Languages

In the Bolzano setting, languages are interpreted ; in particular every sentence is
either true or false. We shall need very few assumptions about what sentences
look like or how they are structured. For definiteness, a language L has a set
SentL of sentences, which are finite strings of signs, some of which, called symbols,
belong to a set SymbL. Let u, v, u′, . . . vary over SymbL, ϕ,ψ, . . . over SentL, and
Γ,∆, . . . over finite subsets sets of SentL. Vϕ is the set of symbols occurring in
ϕ; likewise VΓ = ∪{Vϕ : ϕ ∈ Γ}. TrL ⊆ SentL is the set of true sentences in L.

3 This “ternary” view of logical consequence is advocated in particular by van Benthem
[2], who traces it back to Bolzano.

1.2 Replacement

We need a notion of ‘appropriate’ replacement of symbols by other symbols.
To this end, think of SymbL as partitioned into a set of categories. Then, a
replacement is a partial function ρ from SymbL to SymbL such that for u ∈
dom(ρ), u and ρ(u) belong to the same category. ϕ[ρ] is the result of replacing
each occurrence of u in ϕ by ρ(u). It is convenient to assume that Vϕ ⊆ dom(ρ)
— in words, ρ is a replacement for ϕ — so that ρ is the identity on symbols that
don’t get replaced. We may then assume that the following conditions hold:4

(1) a. If ρ is a replacement for ϕ, ϕ[ρ] ∈ Sent and Vϕ[ρ] = range(ρ � Vϕ)
b. ϕ[idVϕ] = ϕ
c. If ρ, σ agree on Vϕ, then ϕ[ρ] = ϕ[σ].
d. ϕ[ρ][σ] = ϕ[σρ], when σ is a replacement for ϕ[ρ]

1.3 Consequence relations

Definition 1. A relation R ⊆ ℘(SentL)× SentL is
1. reflexive iff for all ϕ ∈ SentL, ϕRϕ ;5

2. transitive iff whenever ∆Rϕ and Γ Rψ for all ψ ∈ ∆, we have Γ Rϕ;
3. monotone iff ∆Rϕ and ∆ ⊆ Γ implies Γ Rϕ;
4. truth-preserving iff whenever Γ Rϕ and (every sentence in) Γ is true, ϕ is

also true.

Definition 2. A consequence relation in L is a reflexive, transitive, monotone,
and truth-preserving relation between finite sets of L-sentences and L-sentences.6

Let⇒,⇒′, . . . vary over the set CONSL of consequence relations in L. Define:

(2) a. Γ ⇒max ϕ iff it is not the case that Γ is true and ϕ is false.
b. Γ ⇒min ϕ iff ϕ ∈ Γ .

⇒max is essentially material implication.

Proposition 1. ⇒max,⇒min∈ CONSL, and (CONSL,⊆) is partial order with
⇒min as its smallest and ⇒max as its largest element.

2 Bolzano Consequence

2.1 Definition of ⇒

The following definition should be familiar, except that (a) it is substitutional
rather than model-theoretic; (b) it allows any set of symbols to be treated as
logical.
4 Essentially the conditions in Peter Aczel’s notion of a replacement system from [1].
5 Writing ψRϕ instead of {ψ}Rϕ.
6 The notion of a consequence relation could be varied in various ways, but in this

paper we stick to Definition 2.

Definition 3. For any X ⊆ SymbL, define the relation ⇒X by

Γ ⇒X ϕ iff for every replacement ρ (for Γ and ϕ) which is the identity
on X, if Γ [ρ] is true, so is ϕ[ρ].

A relation of the form ⇒X is called a Bolzano consequence (relation); BCONSL
is the set of Bolzano consequences.7

Proposition 2. (a) BCONSL ⊆ CONSL
(b) In addition, Bolzano consequence is base monotone:

X ⊆ Y implies ⇒X ⊆ ⇒Y

(c) (BCONSL,⊆) is a partial order with ⇒∅ as its smallest and ⇒Symb as its
largest element.

(BCONSL,⊆) is a sub-order of (CONSL,⊆), and⇒max = ⇒Symb, although
usually ⇒min (⇒∅. The following two lemmas are trivial but fundamental:

Lemma 1. (Replacement Lemma) If Γ ⇒X ϕ and ρ doesn’t move any sym-
bols in X, then Γ [ρ]⇒X ϕ[ρ].

Lemma 2. (Occurrence Lemma) Γ ⇒X ϕ if and only if Γ ⇒X∩VΓ∪{ϕ} ϕ.

2.2 Examples

Propositional logic A standard language of propositional logic has symbols in
a set X0 of connectives, say, X0 = {¬,∧,∨}, and an infinite supply p0, p1, . . . of
propositional letters. The usual definition of logical consequence, |=PL, is model-
theoretic, but we can ‘simulate’ it in the present substitutional setting, where
p0, p1, . . . are sentences with fixed truth values. Assuming that the sequence of
truth values of p0, p1, . . . is not eventually constant, one easily verifies that

(3) Γ |=PL ϕ iff Γ ⇒X0 ϕ

First-order logic For first-order logic the symbols are, say, X1 = X0∪{∃,∀,=},
and a supply of predicate symbols and individual constants. Now there is a
difference between model-theoretic and substitutional definitions: in general we
have

(4) |=FO (|=FOsubst (⇒X1

where |=FOsubst , i.e. the consequence relation you get with a standard substi-
tutional interpretation of the quantifiers, as in [3]. So |=FO is a consequence
relation, but not a Bolzano consequence.

7 For readability, we use ‘⇒X in two ways: as a relation symbol, which enables us to
write things like Γ ⇒X ϕ, and as the value of the function⇒ : SymbL −→ BCONSL

for the argument X.

2.3 Minimal sets of symbols

Different sets may generate the same Bolzano consequence, so one expect sets
that are minimal in this respect to be particularly well behaved.

Definition 4. X is minimal iff for all u ∈ X, ⇒X 6= ⇒X−{u}.

Proposition 3. X is minimal iff no proper subset of X generates the same
consequence relation.

The next result shows that it is sufficient to look at consequence relations
generated by minimal sets.

Proposition 4. Every X ⊆ SymbL has a subset which is minimal among those
generating ⇒X .

A stricter notion of minimality is the following:

Definition 5. X is strongly minimal iff for all u ∈ X there are Γ , ϕ, and u′

such that Γ ⇒X ϕ, Γ [u/u′] is true, but ϕ[u/u′] is false.8

The following is practically immediate.

(5) If X is strongly minimal, it is minimal.

Let MINL (SMINL) be the set of (strongly) minimal subsets of SymbL. Strong
minimality says that ⇒X ⊆ ⇒X−{u} fails in a particular way: a counter-
example exists which involves replacing only u. One can show that, unless extra
assumptions are made about the language (Section 4 below), not all Bolzano
consequences are of the form ⇒X for strongly minimal X. But those of this
form are particularly well behaved:

Proposition 5. If X is strongly minimal then, for all Y ⊆ SymbL, X ⊆ Y iff
⇒X ⊆ ⇒Y .

Corollary 1. The mapping ⇒ is one-one on strongly minimal sets.

3 Extracting constants from consequence relations

3.1 Defining extraction

We now introduce an operation corresponding to the extraction of logical con-
stants from a consequence relation. When a particular consequence relation is
given, certain symbols are to be considered as logical constants because the con-
sequence relation makes them play a special role with respect to validity. Our
guiding intuition is that a symbol is constant if replacing it can destroy at least
one inference.9

8 u/u′ is the replacement which maps u to u′ but is the identity on all other symbols.
9 This is a variation on a similar idea first introduced in [4], Ch. 9.

Definition 6. The function C : CONSL → ℘(SymbL) is defined for ⇒ ∈
CONSL and u ∈ SymbL by u ∈ C⇒ iff there are Γ , ϕ and u′ such that Γ ⇒ ϕ
but Γ [u/u′] 6⇒ ϕ[u/u′].

Logical consequence can be construed as a function from sets of symbols to
consequence relations. Extraction goes in the opposite direction. Moreover, the
domains of both functions are naturally ordered by inclusion, so the situation
is as shown in Figure 3.1. Proposition 2(b) said that ⇒ is an order-preserving
mapping from (℘(SymbL),⊆) to (CONSL,⊆). We would like C to provide some
sort of inverse order-preserving mapping. Before looking into this and other
properties of C , let us see some examples of how C works.

(℘(SymbL),⊆)

⇒

&&
(CONSL,⊆)

C

ff

Fig. 1. Logical consequence and constant extraction

3.2 Examples

The function C might fail to yield the intended result because of its substi-
tutional character. In particular, if a symbol u is unique in its category, there
is no other symbol to replace u with, and trivially it will not count as a logi-
cal constant, no matter what inferential role it plays. This situation arises with
negation, which is usually the only unary connective in the language. To sidestep
this difficulty, let us assume, when considering propositional logic or first-order
logic, that they come equipped with another unary connective, say †, interpreted
by the constant unary truth-function ‘equal to false’. Then we get :

Proposition 6. C|=PL is the standard set of logical constants of PL.

Let us see why in two examples. p |=PL p∨ q but p 6|=PL p∧ q. Replacing ∨ by ∧
destroys the validity of the first inference, so ∨ ∈ C|=PL . Similarly, ¬¬p |=PL p
but ††p 6|=PL p, therefore ¬ ∈ C|=PL . Similarly for quantifiers in first-order logic.

Proposition 7. C|=FO = C|=FOsubst
is the standard set of logical constants of

first-order logic.

3.3 Facts about C in the Bolzano setting

As a direct consequence of the Replacement Lemma, C will never pick out
non-logical constants when it is applied to a Bolzano consequence.

Proposition 8. For all X ∈ ℘(SymbL), C⇒X
⊆ X.

Something stronger holds for strongly minimal X:

Proposition 9. For all X ∈ SMINL, C⇒X
= X.

From this and Proposition 5, we get:

Proposition 10. ⇒ restricted to SMINL is an isomorphism with inverse C .

This tells us that C plays its role as an order-preserving inverse mapping
on some proper subset of CONSL, namely the Bolzano consequences generated
from strongly minimal sets of constants. These are of course severe limitations
to the scope of the result, and the remainder of this paper will be devoted to
providing an understanding of the global picture. But in the present framework,
C is simply not an order-preserving inverse on all of CONSL.

Proposition 11. There are languages L and consequence relations ⇒ and ⇒′
in CONSL such that:
(a) ⇒ ⊆⇒′ but C⇒ 6⊆ C⇒′
(b) ⇒ 6⊆ ⇒C⇒

The failure of (a) in particular is no surprise given that there are both a positive
and a negative condition in the definition of C . The witness to a non-valid
inference might disappear by shifting to a bigger consequence relation. More
surprisingly, the situation is no better for Bolzano consequences.

Proposition 12. There are languages L and sets X,Y ⊆ SymbL such that:
(a) ⇒X ⊆ ⇒Y but C⇒X

6⊆ C⇒Y

(b) ⇒X 6⊆ ⇒C⇒X

4 Extra symbols

The following example vividly illustrates the importance of having extra symbols
available in a language. Let SymbL = {a, b}, SentL = {Rxy : x, y ∈ SymbL}, and
TrL = {Raa,Rbb,Rab}. For example,

⇒∅ Raa,10 6⇒∅ Rab, ⇒{a} Rab

Here, you must move two symbols in order to turn a true sentence into a false
one. As a result, C picks no constants at all: for all X ⊆ SymbL, C⇒X

= ∅.
However, expand L conservatively to L′ by adding at least one new symbol c,
while TrL = TrL′ ∩ SentL. Then, regardless of the truth values of new sentences
in L′:

(6) In L′, for all X ⊆ SymbL, C⇒X
= X.

For example, we now have ⇒{a} Rab in L′ (by conservativity), but 6⇒{a} Rcb,
(by the replacement ρ(c) = b, ρ(b) = a). Thus, in L′, a ∈ C⇒{a} .
10 Writing ⇒X ϕ for ∅ ⇒X ϕ, i.e. ϕ is valid relative to the constants in X.

4.1 Richness and abundance

One way of making extra symbols available is to simply assume that there are
infinitely many symbols of each category in L. Call such languages rich. Note
that nothing prevents most of these symbols from meaning the same.

Proposition 13. If L is rich, then ⇒X ⊆ ⇒Y implies ⇒X = ⇒X∩Y . In par-
ticular, for any X, the set {Z :⇒Z =⇒X} is closed under finite intersections,
so if X is finite, this set has a smallest element.

Proposition 14. If L is rich, and X is minimal and finite, then C⇒X
= X.

Using a variant of the earlier example, one can show that the assumption of
finiteness in this proposition is essential.

Corollary 2. If L is rich, then for finite X, ⇒X = ⇒C⇒X
.

Corollary 3. If L is rich, then every finite X ⊆ SymbL has a unique smallest
subset, namely C⇒X

, that generates ⇒X .

Here is an even stronger requirement on L. u and u′ (of the same category)
are synonymous,

u ≡L u′

iff replacing (some) occurrences of u by u′ or vice versa does not change the
truth value of L-sentences. We say that L is abundant iff there are infinitely
many synonyms of each symbol. So all the results above hold for abundant L,
but in addition we have

Proposition 15. If L is abundant, minimality and strong minimality coincide.

Another variant of our example shows that this can fail when only richness is
assumed.

Corollary 4. If L is abundant, the results of Proposition 14 and Corollaries 2
and 3 hold for infinite X as well.

4.2 Expansions

Richness and abundance may seem a bit extravagant assumptions. What one
really needs, however, is the ability to add new symbols to L, in particular
symbols with the same meaning as old ones, i.e. synonyms or copies. We now
slightly revise our Bolzano set-up to make this possible.

Recall that an interpreted language L, as we defined it, comes with sets
SymbL, SentL, and TrL; in fact, we may set L = 〈SymbL,SentL,TrL〉. We say
that L′ is an expansion of L, L ≤ L′, iff SymbL ⊆ SymbL′ , SentL = {ϕ ∈ SentL′ :
Vϕ ⊆ SymbL}, and TrL = TrL′ ∩ SentL. L′ is an expansion with copies, L ≤c L′,
iff in addition every new symbol is synonymous, in L′, with some L-symbol.

Proposition 16. ≤ is a partial order (reflexive, antisymmetric, and transitive),
and ≤c is a sub-order.

A partially ordered set Z is directed iff it is upward closed: if a, b ∈ Z there
is c ∈ Z such that a ≤ c and b ≤ c. Now, our idea is to replace the fixed
language L with a directed family L of expansions of L. This requires a slight
reformulation of what we have done so far. In what follows, L is any directed
family of expansions of L. To start with Bolzano consequence, suppose Γ ∪{ϕ} ⊆
SentL and X ⊆ SymbL.

Definition 7. Γ VX,L ϕ iff for every L′ ∈ L and every replacement ρ in L′ (for
Γ and ϕ) which is the identity on X, if Γ [ρ] ⊆ TrL′ , then ϕ[ρ] ∈ TrL′ .

The family L is suppressed in this notation, and has to be made clear in context.
If L = {L}, we have our previous notion of Bolzano consequence: VX,L =⇒X .
Normally, the sentences we talk about will belong to several languages in L..
That this is not a problem follows from

Lemma 3. If Γ ∪ {ϕ} ⊆ SentL, X ⊆ SymbL, and L′ ∈ L, then

Γ VX,L ϕ iff Γ VX,L′ ϕ,

where the right-hand side is relative to the subclass L′ = {L′′ ∈ L : L′ ≤ L′′}.

In what follows, when L is given and L′ ∈ L, we always understand VX,L′

to be relative to the corresponding subfamily generated by L′.
Next, we extend the notion of (strong) minimality to the new set-up: X is

minimal iff for each u ∈ X there is L′ ∈ L such that VX,L′ 6= VX−{u},L′ , and
analogously for strong minimality. Finally, we extend the definition of C to the
case of consequence relations of the form VX,L. Let u ∈ SymbL.

Definition 8. u ∈ CVX,L
iff there are L′ ∈ L, Γ ∪ {ϕ} ⊆ SentL′ , and u′ ∈

SymbL′ such that Γ VX,L′ ϕ but Γ [u/u′] 6VX,L′ ϕ[u/u′].

Call a family L is copy-closed iff for every L′ ∈ L and every A ⊆ SymbL′
there are L′′ ∈ L and B ⊆ SymbL′′ such that B ∩ SymbL′ = ∅ and there is a
copy b ∈ B of every a ∈ A. A simple case of a copy-closed family is copies(L) =
{L′ : L ≤c L′}. This is essentially the interpreted language L with the possibility
of adding (arbitrarily many) new names of already named things. Thus, it is
a very mild extension of the original Bolzano set-up. Now all results assuming
richness or abundance from the previous subsection hold automatically relative
to copy-closed families, without any further assumptions:

Proposition 17. Relative to a copy-closed directed family of expansions of L:

(a) Minimality and strong minimality coincide.
(b) For all X ⊆ SymbL, VX,L = VCVX,L

.
(c) Each X ⊆ SymbL has a unique smallest subset, CVX,L

, generating VX,L.

5 Galois connections

5.1 General consequence relations

We generalized our initial framework by working with directed families of ex-
pansions of L. In terms of Figure 3.1, the sets of symbols we are interested in are
still subsets SymbL. But such sets generate consequence relations for L as well
as for the expansions of L. In particular, the extended Definition 8 of C appeals
not only to the consequence relation of L but also to those of the expansions.
As a result, we need to extend our notion of a consequence relation.

Definition 9. A general consequence relation for a family of languages L is a
family of consequence relations V = {⇒L′}L′∈L such that for all L′, L′′ ∈ L
with L′ ≤ L′′, ⇒L′ ⊆ ⇒L′′ .

For X ⊆ SymbL, let VX be the family {VX,L′}L′∈L. VX is a general con-
sequence relation. Note that the extended Definition 8 of C applies not just
to VX,L but to any general consequence relation. Given a directed family L of
expansions of L, we let GCONSL be the class of general consequence relations
for L and BGCONSL the class of general consequence relations of the formVX .

5.2 Galois connection for copies

What kind of correspondence do we get betweenVX and C in this setting? We
want something as close as possible to an isomorphism, with as few assumptions
as possible on L. A relevant notion of correspondence in that context is the
notion of Galois connection. A Galois connection between two ordered sets A
and B is a pair (f, g) of functions, with f : A → B and g : B → A, such that
the following four conditions hold: (1) f is monotone, (2) g ◦ f is decreasing,
(3) g is monotone, (4) f ◦ g is increasing. f is then an isomorphism with inverse
g from g(B) to f(A). Intuitively, f and g, even though they do not constitute
a full-blown isomorphism, give rise to one between the sufficiently well-behaved
subsets g(B) and f(A).

Proposition 18. Relative to a copy-closed family, the following hold:

(a) VX ⊆VY implies CVX
⊆ CVY

(b) VX ⊆VCVX

Considering (V , C) as a tentative Galois connection between ℘(SymbL) and
GCONSL, conditions (1) and (2) are always satisfied. (a) and (b) in Proposition
18 are (3) and (4), when the class of general consequence relations is restricted
to BGCONSL. We have shown:

Theorem 1. (V , C) is a Galois connection between ℘(SymbL) and BGCONSL
for copy-closed families of languages.

The set CBGCONSL of sets of symbols which are the image of some VX in
BGCONSL under C is of special interest, since it is the restriction of ℘(SymbL)
for which V is an isomorphism.

Proposition 19. Relative to a copy-closed family of expansions of L, CBGCONSL

is the set of minimal sets in ℘(SymbL).

On the left-hand side of our picture, the well-behaved objects in ℘(SymbL)
are the minimal sets. On the right-hand side, our Galois connection has the non-
typical property thatV is onto. If we were to extend the picture to include not
only BGCONSL but all of GCONSL, we would get that the part of GCONSL
for which we have the isomorphism is precisely BGCONSL, but the properties
stated in Proposition 18 for relations in BGCONSL do not hold for all relations
in GCONSL.

Question: Is there a natural class GCONS ∗L ⊇ BGCONSL for which they hold?

5.3 Tarskian consequence

copies(L) is the simplest case of a copy-closed family of languages. A maximal
case is the family of all expansions of a base-language L. Instead of just fixing a
set of true sentences, consider interpreted languages L for which truth is defined
as truth with respect to a fixed intended interpretation I of symbols of L. Let
‘J � ϕ’ abbreviate ‘ϕ is true according to interpretation J ’. Tarskian consequence
(with a fixed domain of interpretation) can then be defined:

Definition 10. Γ �X ϕ iff for all J such that J ≈X I, if J � Γ , then J � ϕ.

(J ≈X I means that J and I agree on X ⊆ SymbL.) Tarskian consequence is
equivalent to Bolzano consequence with respect to the family of all expansions:

Proposition 20. Γ �X ϕ iff for every L′ ≥ L and every replacement ρ that
keeps all elements in X fixed, if I ′ � Γ [ρ], then I ′ � ϕ[ρ].

(Here I ′ is an interpretation extending I to the new symbols in SymbL′ .) Together
with Proposition 18 and the fact that the family of all expansions is copy-closed,
this implies that there is a Galois connection between ℘(SymbL) and the class
of Tarskian consequence relations.

References

1. P. Aczel, Replacement systems and the axiomatization of situation theory, in R.
Cooper, K. Mukai, and J. Perry (eds.), Situation Theory and its Applications, Vol.
1, CSLI Publications, Stanford, 1990, 3–33.

2. J. van Benthem, Is there still logic in Bolzano’s key?, in E. Morscher (ed.), Bernard
Bolzanos Leistungen in Logik, Mathematik und Physik Bd., 16, Academia Verlag,
Sankt Augustin, 2003, 11-34.

3. M. Dunn and N. Belnap Jr., The substitution interpretation of the quantifiers, Noûs
4 (1968), 177–185.

4. S. Peters and D. Westerst̊ahl, Quantifiers in Language and Logic, Oxford UP, Ox-
ford, 2006.

