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Abstract

The traditional square of opposition dates back to Aristotle’s logic
and has been intensely discussed ever since, both in medieval and mod-
ern times. It presents certain logical relations, or oppositions, that hold
between the four quantifiers all, no, not all, and some. Aristotle and tradi-
tional logicians, as well as most linguists today, took all to have existential
import, so that “All As are B” entails that there are As, whereas modern
logic drops this assumption. Replacing Aristotle’s account of all with the
modern one (and similarly for not all) results in the modern version of
the square, and there has been much recent debate about which of these
two squares is the ‘right’ one.

My main point in the present paper is that this question is not, or
should not primarily be, about existential import, but rather about pat-
terns of negation. I argue that the modern square, but not the traditional
one, presents a general pattern of negation one finds in natural language.
To see this clearly, one needs to apply the square not just to the four
Aristotelian quantifiers, but to other generalized quantifiers of that type.
Any such quantifier spans a modern square, which exhibits that pattern
of negation but, very often, not the oppositions found in the traditional
square. I provide some technical results and tools, and illustrate with sev-
eral examples of squares based on quantifiers interpreting various English
determiners. The final example introduces a second pattern of negation,
which occurs with certain complex quantifiers, and which also is repre-
sentable in a square.

1 Introduction

A square of opposition illustrates geometrically how certain operators are logi-
cally related via certain forms of opposition or negation. In the quantified square

∗This paper is a concise account of one aspect of my work on quantification and negation
over the past years, begun in [10], continued in [8], and presented on various occasions; recently
at the 1st Square Conference in Montreux, June 2007, and the 10th Mathematics of Language
Workshop at UCLA, July 2007. I thank the audiences at these meetings for helpful questions
and remarks. In addition, comments by Larry Horn and Stanley Peters have been valuable to
me. Work on the paper was supported by a grant from the Swedish Research Council.
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all no

some not all

Figure 1: The quantified square

(Figure 1), the operators are the Aristotelian quantifiers, but they can also be
modal, or temporal, or propositional operators. In these squares we have or-
dinary, contradictory or outer negation along the diagonals, and various other
forms of negation along the edges. Precisely what these other forms are is a mat-
ter of debate, as we will see presently. But an easily identifiable rough pattern
is always present, and can be found for other operators as well. For example,
the deontic square replaces necessary by obligatory, impossible by prohibited,
and possible by permitted (Figure 2).

and neither nor

or ‘nand’
(Sheffer stroke)

impossiblenecessary

possible not
necessary

always never

sometimes not
always

Figure 2: Various squares

The quantified square is basic, in the sense that it reappears in the ex-
planation of the meaning of the operators in the other squares. For example, a
conjunction is true iff all its conjuncts are true, and a disjunction is true iff some
of the disjuncts are. Likewise, a proposition is necessary iff it is true under all
circumstances (possible worlds), possible if true under some circumstance, and
impossible if true under none. In this paper I focus on the quantified square.

2 Aristotle’s square

The Aristotelian square was described in words by Aristotle, and drawn as
a diagram by Apuleios and Boethius some 800 years later (Figure 3). Here
the only non-traditional notation used is allei, which is the universal quantifer
with existential import, i.e. such that allei(A,B) is true iff A is non-empty and
included in B. This is what Aristotle and most of his medieval followers, in
agreement with many philosophers and most linguists today, took words like
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Figure 3: The Aristotelian square

“all” and “every” to mean. In contrast, Frege and most logicians after him take
them to stand for the quantifier all without existential import: all(A,B) ⇔ A ⊆
B. Now, what certain words in certain languages mean looks like an empirical
question, one that could be settled by appropriate investigations. Also, the
difference between the two suggestions seems rather small. But the thrust of
the present paper is that, in the context of the square, this issue is just an
indicator of a much more principled one, namely, the nature of negation. Before
I get to that, however, let me describe the content of the Aristotelian square.

The (medieval) naming A, E, O, I of the four corners is handy and will
be used in what follows. As to the logical relations depicted in the square, we
have, aside from contradictory negation along the two diagonals, the relations
of contrariety, subcontrariety, and subalternation along the sides. These are
seen as relations not between the quantifiers themselves but the corresponding
statements made with them. Thus, ϕ and ψ are contrary iff they cannot both
be true (but can both be false), subcontrary iff they cannot both be false (but
can both be true), and ψ is subalternate to ϕ iff whenever ϕ is true, so is ψ.

That the A and E corners are contrary clearly shows that the universal
quantifier has existential import in this square. The same conclusion follows
from the fact that I is held to be subalternate to A. The diagram also contains
the classification of statements according to quality: they are either affirmative
or negative; negative statements don’t make existential claims in the Aristotelian
square, but affirmative ones do. And the final classification concerns quantity,
i.e. whether a statement is universal or particular.
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3 The square as a general pattern of negation

Numerous issues related to the square of opposition have been discussed in the
literature, among them the question of existential import at the A corner (and
possible other corners).1 My focus in this paper, however, is rather on the square
as a pattern of negation in natural languages. The four Aristotelian quantifiers
exhibit this pattern, but they are just one instance. Indeed, any (generalized)
quantifier (of type 〈1, 1〉) spans a square, provided the square is taken in the
modern (Fregean) way, not in the classical way.

The modern version of the Aristotelian square is drawn in Figure 4. At first
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Figure 4: The modern version of Aristotle’s square

sight, one may get the impression that the only difference is that all has replaced
allei at the A and O corners (I continue to use these names of the corners,
but without writing them in the diagrams). Likewise, if one disregards empty
terms, the two squares seem to coincide. As noted, the difference might appear
to boil down to different views about existental import. But this impression is
misleading, and vanishes as soon as one considers other quantifiers. Instead, the
main difference concerns the choice of relations along the sides of the square.
Existential import is a side issue in this context.

In the modern square there are only two relations along the sides: inner
negation and dual, and like outer negation they can be seen as operations on
the quantifiers themselves:

(1) a. The outer negation ofQ, ¬Q, is defined by: ¬Q(A,B) ⇔ not Q(A,B)

b. The inner negation of Q, Q¬, is defined by: Q¬(A,B) ⇔ Q(A,M−
B) (where M is the universe)

1Horn [3] is a classic history of negation, with thorough discussion of many related issues.
Pragmatic views on existential import are defended in Horn [4] and Peters and Westerst̊ahl
[8], ch. 4.2.1.
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c. The dual of Q, Qd, is defined by: Qd = ¬(Q¬) = (¬Q)¬

So in Figure 4 we have the same relation along both horizontal sides, in contrast
with the Aristotelian square. More importantly, this relation has little to do
with (sub)contrariety. In general, as we will see, nothing prevents Q and Q¬
from being both true, or both false, of the same arguments. Likewise, the
relation along the vertical sides has little or nothing to do with subalternation,
since we may easily have Q true and Qd false of the same arguments.

To appreciate these points, we need the general notion of a quantifier.

4 Quantifiers

Only the bare definitions follow; for (much) more about quantifiers, see [8].

(2) A (generalized) quantifier Q of type 〈1, 1〉 associates with each universe
M a binary relation QM between subsets of M .

Many such quantifiers interpret English simple or complex determiners, and we
can conveniently name them accordingly, as in the following examples. (|X | is
the cardinality of the set X). For all M and all A,B ⊆M ,

allM (A,B) ⇐⇒ A ⊆ B

(allei)M (A,B) ⇐⇒ ∅ 6= A ⊆ B

noM (A,B) ⇐⇒ A ∩B = ∅

at least twoM (A,B) ⇐⇒ |A ∩B| ≥ 2

exactly fiveM (A,B) ⇐⇒ |A ∩B| = 5

all but threeM (A,B) ⇐⇒ |A−B| = 3

more than two-thirds of the
M

(A,B) ⇐⇒ |A ∩B| > 2/3 · |A|

most = more than half of the

John’sM (A,B) ⇐⇒ ∅ 6= A ∩ {a : John ‘possesses’ a} ⊆ B

no except JohnM (A,B) ⇐⇒ A ∩B = {John}

infinitely manyM (A,B) ⇐⇒ A ∩B is infinite

an even number ofM (A,B) ⇐⇒ |A ∩B| is even

Also:

Let 1 (0) be the trivially true (false) quantifier (e.g. 1 = at least zero, 0

= fewer than zero).

The following properties of quantifiers will be relevant:

(3) a. Q is conservative (Conserv) iff QM (A,B) ⇔ QM (A,A∩B)

b. Q satisfies extension (Ext) iff for A,B ⊆M ⊆M ′, QM (A,B) ⇔
QM ′(A,B)
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c. Q is closed under isomorphism (Isom) iff for A,B ⊆M and A′, B′ ⊆
M ′, |A−B| = |A′−B′|, |A∩B| = |A′∩B′|, |B−A| = |B′−A′|, and
|M− (A∪B)| = |M ′− (A′∪B′)|, entails QM (A,B) ⇔ QM ′(A′, B′)

Conserv and Ext together mean that quantification is in effect restricted to
the first argument ([8], ch. 4.5). All quantifiers interpreting natural language
determiners satisfy these two properties. Many satisfy Isom as well; in the
list above, all do except those mentioning particular individuals, i.e. all except
John’s and no except John.

Ext entails that the universe is irrelevant, so we may drop the subscript

M for such quantifiers, as we in effect did in the definition (1) of the various
negations. Here is a first manifestation of the difference between the negations
in the modern square and the classical oppositions:

Fact 1

The combination Conserv + Ext is preserved under inner and outer negation
(and hence under duals), but (sub)contrariety is not. I.e. there are (sub)contrary
quantifiers Q and Q′ such that Q but not Q′ satisfies Conserv and Ext.

Note also that Conserv + Ext entails that the definition of inner negation
may be expressed as follows:

(4) Q¬(A,B) ⇐⇒ Q(A,A−B)

Below I assume that these two properties hold of all quantifiers mentioned.

5 Modern vs. classical squares

Every type 〈1, 1〉 quantifier spans a (modern) square. Define:

(5) square(Q) = {Q,¬Q,Q¬, Qd}

Fact 2

(a) square(0) = square(1) = {0,1}.

(b) If Q is non-trivial, so are the other quantifiers in its square.

(c) If Q′ ∈ square(Q), then square(Q) = square(Q′).

(d) square(Q) has either two or four members.

By (c), any two squares are either identical or disjoint. As to (d), a square
normally has four members, but it can happen that Q = Q¬ (and thus Qd =
¬Q), and then it has two.

Example 3

|square(Q)| = 2 when Q expresses identical conditions on A∩B and A−B (cf.
(4) above), such as the quantifier

exactly half (A,B) ⇐⇒ |A∩B| = |A−B|
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A more spectacular example is due to Keenan [5], who noted that the sentences

(6) a. Between one-third and two-thirds of the students passed.
b. Between one-third and two-thirds of the students didn’t pass.

are logically equivalent, i.e. that if Q = between one-third and two-thirds of the,
then Q = Q¬.

Note that square(all ei) is not the Aristotelian square: besides all ei and its
outer negation, it contains no ei and its outer negation, which holds of A,B iff
either A is empty or A∩B is non-empty. This may seem like a rather unnatural
square; certainly no one would take the last-mentioned quantifier to interpret
the word “some”. In my opinion, the unnaturalness is a consequence of taking
“all” (or “no”) to have existential import, but that is not a main point here.
The main point is that using a classical notion of square instead might save the
Aristotelian square, but not any others. That is, the pattern in the Aristotelian
square doesn’t generalize, and therefore isn’t a common pattern of negation. To
make this precise, let us introduce the following notion.

(7) A classical square is an arrangement of four quantifiers as traditionally
ordered and with the same logical relations – contradictories, contraries,
subcontraries, and subalternates – between the respective positions.

Now each position determines the diagonally opposed quantifier, i.e. its outer
negation, but not the quantifiers at the other two positions. For example:

Fact 4

The square

[A: at least five; E: no; I: some; O: at most four ]

is classical. More generally, for n ≥ k,

[A: at least n; E: fewer than k ; I: at least k ; O: fewer than n]

is classical.

The classical squares in Fact 4 look very unnatural. There is no interesting
sense, it seems, in which no is a negation of at least five or at most four. So it is
no accident that the debate surrounding the square to a large extent has been
restricted to the four Aristotelian quantifiers. In contrast, the modern square
exhibits a completely general pattern of negation for type 〈1, 1〉 quantifiers, and
thereby for expressions denoting such quantifiers; expressions that form a rich
and productive class in many languages.2

2The observations here about negation and opposition collect facts that are essentially
known from the literature; e.g. Barwise and Cooper [1], Keeenan and Stavi [6], Brown [2],
Loebner [7]. But the behavior of modern squares of opposition in the context of natural
language has not, to my knowledge, been systematically studied as is done in this paper.
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6 The A, E, O, and I corners

While square(Q) uniquely specifies the quantifiers involved, it says nothing
about how to distinguish the corners. Can we also find quantitative and quali-
tative aspects in the squares? Is this possible in an arbitrary quantified square?

In general, the answer is No. But in many cases we can obtain an identifica-
tion, or at least a partial one, by suitably generalizing features of those corners
in the Aristotelian square. I will look at three ways of doing this.

Monotonicity

A striking feature of the quantifiers in the Aristotelian square is their mono-
tonicity behavior. Indeed, these quantifiers are doubly monotone (with a small
caveat for the A and O corners).

(8) a. Q is right monotone increasing (mon↑) iff
Q(A,B) & B ⊆ B′ ⇒ Q(A,B′)

b. Q is right monotone decreasing (mon↓) iff
Q(A,B) & B′ ⊆ B ⇒ Q(A,B′)

c. Q is left monotone increasing (↑mon) iff
Q(A,B) & A ⊆ A′ ⇒ Q(A′, B)

d. Q is left monotone decreasing (↓mon) iff
Q(A,B) & A′ ⊆ A⇒ Q(A′, B)

Q is doubly monotone if it has both a left and a right monotonicity property.
For example, all is ↓mon↑. allei is mon↑ but only weakly ↓mon, in the sense
that Q(A,B) & ∅ 6= A′ ⊆ A⇒ Q(A′, B) (cf. also section 10 below).

Fact 5

([8], ch. 5) The monotonicity behavior of Q determines that of all elements of
square(Q):

(a) Q is Mon↑ iff Q¬ is Mon↓ iff ¬Q is Mon↓ iff Qd is Mon↑

(b) Q is ↑Mon iff Q¬ is ↑Mon iff ¬Q is ↓Mon iff Qd is ↓Mon

So if Q is doubly monotone, all four combinations are exemplified in its
square. This means that right monotonicity could be seen as quality, with
Mon↑ as affirmative and Mon↓ as negative. And left monotonicity could be
seen as quantity, with ↑Mon as particular and ↓Mon as universal. Thus, we
can identify the exact position in the square of any doubly monotone quantifier.

However, many quantifiers are only right monotone, like the proportional
quantifiers. So we can say, for example, that at least two-thirds of the is affir-
mative: it is either A or I, but we cannot say which. In one sense, this is not
unreasonable: the dual of at least two-thirds of the is more than one-third of the,
and it may seem arbitrary which of these two should go into the A position. As
we will see, however, our third criterion suggests that at least two-thirds of the
belongs in the A position.
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Symmetry

What can we say about quantifiers that are neither left nor right monotone, such
as an even number of or exactly ten? Some help may come from a property
identified and discussed already by Aristotle, who noted that the order between
the two arguments of the quantifier is irrelevant at the I and E corners.

(9) a. Q is symmetric iff Q(A,B) ⇒ Q(B,A).

b. Q is co-symmetric iff Q¬ is symmetric.

Fact 6

([8], ch. 6.1) The symmetry behavior of Q determines that of all elements of

square(Q): Q is symmetric iff Q¬ is co-symmetric iff ¬Q symmetric iff Qd is
co-symmetric.

Thus, when a quantifier has symmetry behavior, Fact 6 allows us to dis-
tinguish the I and E from the A and O corners. In particular, if Q is right
monotone and either symmetric or co-symmetric, we can again pinpoint its ex-
act position in the square, given that the I and E positions are symmetric, and
the A and O positions co-symmetric. For example, at most ten is at the E

position. But we already knew that, since at most ten is ↓Mon↓. Indeed, if Q
is right monotone and symmetric, it is clearly also left monotone. In fact, the
cases where symmetry would give extra information are somewhat limited. This
is also illustrated by the next result. Let Fin mean that attention is restricted
to finite universes.

Fact 7

(Isom, Fin) If Q is Mon↑ and symmetric, then Q = at least n, for some n ≥ 0.

So we only get extra information for cases like an even number of, which satisfies
all assumptions of Fact 7 except monotonicity, and no except John, which is
symmetric but not Isom or right monotone. This gives us two possible config-
urations of square(an even number of ) and square(no except John).

We should also ask, however, if the two criteria for positioning quantifiers in
squares, monotonicity and symmetry, can ever conflict with each other. After
all, the intuitions behind them are rather different. A conflict would occur if
we found a symmetric quantifier that was also either ↓Mon↑ or ↑Mon↓ (and
correspondingly for co-symmetry). Fortunately, this cannot happen:

Fact 8

If Q is symmetric and either ↓Mon↑ or ↑Mon↓, Q is trivial (either 0 or 1).

Thus, the intuitions behind identifying the corners by means of monotonicity
and symmetry are quite robust.

Just as the selection of monotone and symmetric quantifiers is rather re-
stricted (Fact 7), so is the choice of doubly monotone quantifiers, at least when
Isom is presupposed. One can show the following (cf. [10], sect. 4.3):
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Theorem 9 (Isom, Fin) ↑Mon↑ quantifiers are finite disjunctions of quanti-
fiers of the form at least n of the k or more, i.e. |A| ≥ k & |A ∩ B| ≥ n
(0 ≤ n ≤ k). More generally, ↑Mon quantifiers are finite disjunctions of quan-
tifiers of the form |A ∩B| ≥ n & |A−B| ≥ k.

However, there is an interesting class of non-Isom quantifiers with significant
monotonicity properties: the possessives. For example, at least five of John’s is
↑Mon↑, hence belongs to the I corner. And (all of ) John’s is Mon↑ and weakly
↓Mon (you can decrease A as long as something belonging to John remains),
so it goes in the A corner. On the other hand, most of John’s is Mon↑ but not
left monotone, so at least we know it is affirmative (A or I).3

Reduction

In addition to monotonicity and symmetry, one can sometimes use a more prag-
matic and loose criterion: square(Q) should reduce to the (modern) Aristotelian
square in limiting cases. What a limiting case is varies with the type of quanti-
fier considered, but in many examples it is rather clear. For example, to return
to the proportional quantifiers discussed above, it is natural to take p = q as
the limiting case of at least p/q of the, and then |A ∩ B| ≥ p/q · |A| reduces to
|A ∩ B| ≥ |A|, i.e. A ⊆ B (assuming Fin, which is reasonable for proportional
quantifiers). This motivates placing at least p/q of the in the A corner, and its
dual more than (q-p)/q of the in the I corner (see section 8 below).

So in many cases, it is in fact possible to identify the A, E, O, and I corners of
a given square, as will be illustrated by the examples to follow in the remainder
of the paper. Note that, by Fact 2, it is enough to identify one corner of the
square; then the others are fixed too.

7 Numerical quantifiers

Let a numerical quantifier be one of the form at least n (n ≥ 0), or a Boolean
combination (including inner negation) of such quantifiers: at most n, more than
n, all but n, exactly n, between k and n, etc. Figure 5 presents square(at least
six ) and Figure 6 square(exactly five).4 The quantifiers in Figure 5 are doubly
monotone, so there is no question about the identification of the appropriate
corners. In the limiting case, when six is replaced by one (or five by zero) we
get square(all). In Figure 6 there is no monotonicity, but we have symmetry
and co-symmetry, so exactly five should be either at the E or the I corner. The
choice made in Figure 6 to place it at the E corner is dictated by the third
criterion for identifying the corners: with five replaced by zero, we again obtain
square(all).

3See [8], ch.7.12, for these and other monotonicity facts about possessives.
4Here and below I use italics to indicate a quantifier interpreting a corresponding English

determiner, so that one can see directly which corners of the square are ‘realizable’ as simple
or complex determiners. Also, the corners are always understood to be oriented as in the
Aristotelian square.
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all but at most five A are B
|A−B| ≤ 5

at most five A are B
|A ∩B| ≤ 5

at least six A are B
|A ∩B| ≥ 6

“all but at least six A are B”
|A−B| ≥ 6

Figure 5: square(at least six )

all but five A are B
|A − B| = 5

(exactly) five A are B
|A ∩B| = 5

“not five A are B”
|A ∩B| 6= 5

all but five A are not B
(with wide scope of “not”)

|A−B| 6= 5

Figure 6: square(exactly five)
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These squares are perhaps not very exciting, but there is nothing wrong
with them. The truth conditions at each corner are clear, and one sees how
English ‘realizes’ at least five of the eight corners by means of determiners. No
determiners seem to correspond to the I and O corners of square(exactly five).

But the point is that these squares are not classical. For example, |A∩B| ≤ 5
and |A−B| ≤ 5 are compatible (provided |A| ≤ 10), so they are not contraries.
And |A∩B| = 5 does not imply |A−B| 6= 5 (unless |A| 6= 10). Will the squares
become classical under suitable presuppositions, just as square(all) becomes
classical if one presupposes that A is non-empty? They will, but the required
presuppositions are unreasonable. This is seen from the next fact.

Fact 10

(a) square(at least n+ 1) is classical iff |A| > 2n is presupposed.

(b) square(exactly n) is classical iff |A| 6= 2n is presupposed.

Obviously, it makes no sense at all to have

(10) Five students passed the exam.

presuppose that the number of (salient) students was distinct from ten. Exactly
five simply doesn’t fit in a classical square of opposition.

8 Proportional quantifiers

at least 2/3 of the A are B

|A ∩ B| ≥ 2/3 · |A|

at most 1/3 of the A are B

|A ∩ B| ≤ 1/3 · |A|

more than 1/3 of the A are B

|A ∩ B| > 1/3 · |A|

fewer than 2/3 of the A are B

|A ∩ B| < 2/3 · |A|

Figure 7: square(at least 2/3 of the)

Q = at least 2/3 of the is Mon↑, but not left monotone or symmetric, so
two configurations are possible: either Q or Qd goes in the A corner. But we
already saw how our third criterion suggests the first alternative, as in Figure 7.

This time, all four corners are ‘realized’ as English determiners. And again,
the square is not classical. However, in this case it may be possible to argue
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that there is existential import at each corner, supplied by the definite arti-
cle the. But if A 6= ∅ is added to the truth conditions, we no longer have a
modern square. (though we do have a classical one). This could be taken to fa-
vor a presuppositional analysis of proportional quantifiers as regards existential
import.

Alternatively, one might consider square(at least 2/3 of the+), where at least
2/3 of the+(A,B) ⇔ |A∩B| ≥ 2/3 · |A| > 0. In this square (which incidentally
is both classical and modern), we get the same problem at the O and I corners
that the Aristotelian square had at the O corner, i.e. that the truth condition is
a disjunction, one of whose disjuncts is A = ∅. The matter hinges on how one
should understand proportional determiners in negation contexts, something
that might be worth investigating further, though I will not attempt that here.

9 Exceptive quantifiers

Exceptive quantifiers, i.e. quantifiers involved in the interpretation of exceptive
noun phrases, like “every professor except Mary” or “No students except foreign
exchange students”, have been studied extensively in the literature, (see [8], ch.
8, for an overview of the issues involved and a proposed general analysis). Their
interaction with negation is not without interest. Here I just exemplify with the
very simplest case (Figure 8).

every A except Mary is B

A − B = {m}

no A except Mary is B

A ∩ B = {m}

A ∩ B 6= {m}

A − B 6= {m}‘if Mary then some other’ A is B

Figure 8: square(every except Mary)

In this square there is (co-)symmetry and no monotonicity. But in the lim-
iting case when the exception set is empty we obtain square(all). So quantifiers
of the form Q(A,B) ⇔ A−B = {m1, . . . ,mk} (k ≥ 0) belong in the A corner.
square(every except John) is both modern and classical. The O corner appears
to be unrealized. A suggestion (from [8], ch. 4.3) has been made in Figure 8 for
the I corner; it should be taken as possible English determiner with the desired
interpretation.
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10 Possessive quantifiers

The final examples come from possessive constructions. Such constructions
generate a rich and interesting class of quantifiers related to natural languages.
An account of these quantifiers can be found in [8], ch. 7. [9] develops the
account further, including a study of possessives and negation. Here I will only
present one of the simplest examples. But already this example indicates some
new possibilities for negation to apply in complex quantificational contexts.

We took a sentence like

(11) Mary’s pupils are bright.

to mean that Mary ‘possesses’ at least one pupil and that all of her pupils are
bright. In other words, the truth conditions are

(12) Mary’s(A,B) ⇐⇒ ∅ 6= A ∩Rm ⊆ B

where m is Mary, R is the ‘possessor relation’, and Rm = {b : R(m, b)}.
Now form square(Mary’s) as usual (Figure 9). By (12), Mary’s is Mon↑ and

Mary’s A are B

∅ 6= A∩Rm ⊆ B

none of Mary’s A are B

∅ 6= A∩Rm ⊆ B

Mary has no A or

some of her A are B

A∩Rm = ∅ ∨ A∩Rm 6⊆ B

Mary has no A or

not all of her A are B

A∩Rm = ∅ ∨ A∩Rm 6⊆ B

Figure 9: square(Mary’s)

weakly ↓Mon (you can decrease A as long as A ∩Rm 6= ∅), so it belongs in the
A corner. While in this case the E corner provides a natural kind of negation
of “Mary’s As are B”, the O corner does not:

(13) Mary’s pupils aren’t bright.

can hardly mean that either Mary has no pupils or some of her pupils are not
bright. Still, (13) is ambiguous. It can mean what the inner negation yields,
that she has pupils but none of them are bright. But it also seems possible to
use (13) to express that she has pupils and some of them aren’t bright. This
becomes clearer if we start instead from a version of the positive statement
where the universal quantification is explicit:
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(14) All of Mary’s pupils are bright.

Now it is rather clear that

(15) All of Mary’s pupils aren’t bright.

has both readings, whereas

(16) Not all of Mary’s pupils are bright.

seems to have only the second reading. But none of these negative statements
expresses truth conditions that are found in square(Mary’s)!

It can be shown that the right way to deal with this situation is not the strat-
egy hinted at for proportional quantifiers earlier, i.e. to presuppose ‘possessive’
existential import, so that at all corners in Figure 9, A ∩ Rm 6= ∅ is assumed.
Instead, the behavior of sentences like (11) and (14) under negation reflects the
fact that these, and in fact all, possessives involve a second quantification over
the ‘possessions’, which is sometimes implicit, sometimes explicit. Moreover, it
need not be universal quantification:

(17) Most of Mary’s pupils are bright.

In general, possessives involve two quantifiers, one over the ‘possessors’ and
one over the ‘possessions’.5 But then there are many more possibilities to apply
outer or inner negation, or dual. In particular, there is an operation I will
call middle negation, obtained by applying (outer) negation to the ‘possessions’
quantifier, say, Q2. That is:

(18) ¬m(Q2 of Mary’s) = ¬Q2 of Mary’s

There is a corresponding ‘middle dual’:

(19) (Q2 of Mary’s)d
m

= (Q2)
d of Mary’s

Here I have illustrated with Mary’s, or rather Q2 of Mary’s, but middle
negation and dual can be defined for arbitrary possessive quantifiers. Moreover,
they generate a new ‘square of middle opposition’:

(20) squarem(Q) = {Q,Q¬,¬mQ,Qdm
}

This square has the same crucial property as the standard one:

Fact 11

If Q′ belongs to squarem(Q), then squarem(Q′) = squarem(Q).

For (all of) Mary’s, we can now check that the relations in the diagram of
Figure 10 obtain. Here all four corners are realized as possessive determiners,

5For Mary’s, the ‘possessor’ is Mary herself, and Mary can indeed be taken as a quantifier,
holding of a set B just in case B contains Mary. But the paradigmatic case is rather something
like “at least two of most teacher’s pupils”, where it is clear that most quantifies over the
‘possessors’ and at least two over the ‘possessions’.
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inner negation

none of Mary’s

dualm dualm¬m

some of Mary’s not all of Mary’s
inner negation
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Figure 10: squarem(Mary’s)

and we have in one diagram the two natural ways to negate (11). Further, the
semantics itself gives all corners ‘possessive’ existential import, and we have
double monotonicity of the expected kind at each corner.

Much more can be said. First, one can show that of the sixteen possible
ways of applying (or not) inner and outer negations and duals to the quantifiers
over ‘possessors’ and ‘possessives’, respectively, only eight yield distinct results.
Second, these eight quantifiers are naturally represented in a single cube of
opposition. But a detailed exploration of the properties of this cube must be
left for another occasion.

11 In conclusion

The square of opposition is a useful conceptual tool for understanding how
negation interacts with quantification (and thereby several other operators). It
doesn’t represent a particular quadruple of quantifiers, such as the four Aris-
totelian ones, but rather a pattern that recurs for all quantifiers. This pattern,
I have argued, uses the modern square, with its two basic forms of negation,
and their combination with each other, the dual.

I made a few general observations, and used examples to illustrate the va-
riety of negation-quantification interaction in natural language. In particular,
complex quantifiers built from simpler ones, such as those one finds with the
possessives, indicate even further varieties of such interaction, representable by
other squares, or cubes, of opposition.
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[7] Sebastian Löbner. Wahr neben Falsch. Niemayer, Tübingen, 1990.
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