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Abstract

A semantics may be compositional and yet partial, in the sense that
not all well-formed expressions are assigned meanings by it. Examples
come from both natural and formal languages. When can such a seman-
tics be extended to a total one, preserving compositionality? This sort
of extension problem was formulated in Hodges [9], and solved there in a
particular case, in which the total extension respects a precise version of
the fregean dictum that the meaning of an expression is the contribution
it makes to the meanings of complex phrases of which it is a part. Hodges’
result presupposes the so-called Husserl property, which says roughly that
synonymous expressions must have the same category. Here I solve a dif-
ferent version of the compositional extension problem, corresponding to
another type of linguistic situation in which we only have a partial seman-
tics, and without assuming the Husserl property. I also briefly compare
Hodges’ framework for grammars in terms of partial algebras with more
familiar ones, going back to Montague, which use many-sorted algebras
instead.

Keywords: compositional extension, compositionality, fregean extension, Husserl
property, partial algebra, term algebra

1 Introduction

The compositional extension problem considered in this paper is the following:
Suppose we have a compositional semantics (meaning assignment) for a given set
of expressions, which is partial in the sense that not all well-formed expressions
receive meanings. Can we extend this semantics to a total one which is (non-
trivial and) still compositional?

This problem arises in the study of semantics for formal as well as natural
languages. For example, suppose a linguist’s knowledge of a natural language

∗I thank Wilfrid Hodges for very helpful conversations, and Peter Pagin for useful remarks
on an early draft. Special thanks go to Tim Fernando for substantial comments and discus-
sion; cf. Section 9.2. Work on the paper was partially supported by the Bank of Sweden
Tercentenary Foundation in connection with the project Meaning and Interpretation.
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she is studying is partial, but that she has been able to assign meanings in a
compositional fashion to a significant fragment of it. It is natural to inquire
under which conditions the semantics can be extended to the whole language,
preserving the already assigned meanings as well as compositionality.

Or, suppose a particular linguistic theory only assigns meanings to expres-
sions of a certain category – say, to sentences but not to non-sentential parts
of sentences. This could happen because only sentences are deemed worthy of
‘meanings’ in some philosophically preferred sense. Or simply because the goal
of the theory is to yield truth conditions for sentences. An example from logic is
Hintikka’s game-theoretic semantics for predicate logic (cf. Hintikka and Sandu
[6]), which assigns meanings to sentences but not to formulas with free variables.
Still, the partial meaning assignment to sentences is compositional (in a suitable
sense), and it is again natural to ask if it can be extended to all the well-formed
expressions of the language while preserving compositionality.

The issue of the compositionality of game-theoretic semantics was the start-
ing point of a series of recent papers by Wilfrid Hodges (see [7], [8], and [1],
among others), but the framework he used and some of his results reach far
beyond that particular example.1 In [9], he introduced the extension problem
mentioned above in a general setting, and proved a significant result – Hodges’
Extension Theorem – about compositional extensions. In the present paper I
consider generalizations and variants of Hodges’ results.

Compositional extension problems show up in other forms too. One case,
also discussed by Hodges, is when new words or expressions are added to the lan-
guage. Again we want to know if our semantics extends in a compositional way.
Another case is that of idioms – say, when an already existing phrase acquires an
idiomatic meaning. One has to consider how both syntax and semantics should
be extended, and whether compositionality can be preserved.2 Here, however,
I only consider the ‘pure’ extension problem, where there is no change in the
syntax, only the question of extending a partial meaning assignment to a total
one.

This problem can be formulated in purely algebraic terms, roughly as the
1Hintikka had claimed that game-theoretic semantics for his ‘independence-friendly’ exten-

sion of predicate logic (IF logic) is non-compositional. In the process of evaluating that claim,
Hodges not only gave compositional versions of game-theoretic semantics but also uncovered
interesting aspects of the notion of compositionality, such as the partial vs. total issue that
leads to the compositional extension problem, and the so-called ‘Husserl Property’, to be dis-
cussed below. The debate concerning the compositionality of game-theoretic semantics now
seems to be over; cf. Sandu and Hintikka [16]. As a partial semantics, it is compositional in
the ‘core’ sense of compositionality (Section 3.7 below), and by Hodges’ Extension Theorem
(or by a direct construction), it can be extended to a total compositional semantics. But if
further requirements are made, in particular the requirement that the ‘meaning’ of a formula
should be a set of assignments to individual variables (as in standard Tarski sermantics for
predicate logic), then game-theoretic semantics for IF logic is provably not compositional in
this stronger sense (this is shown in Cameron and Hodges [1]).

2One could say that much of the vast literature about idioms is about ways to solve
this problem – despite the fact that (some) particular idioms are often described as ‘non-
compositional’ (see, for example, Nunberg, Sag, and Wasow [15]). In Westerst̊ahl [18] I discuss
why this is so, and state the issue explicitly as a compositional extension problem within the
present framework.
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question of the existence of certain extensions of partial congruence relations
on term algebras. The terms in these algebras represent analyzed linguistic
expressions. In [9], Hodges gives a solution under two extra conditions on the
initially given semantics, besides compositionality.

The first condition is cofinality, in the sense that any term which is not yet
meaningful under the given semantics is a subterm of some already meaningful
term. The game-theoretic semantics mentioned above is a case in point, since
any formula is a subformula of some sentence. The second condition is called
the Husserl property ; it says roughly that synonymous terms must have the
same semantic category. This is an interesting, though not self-evident, prop-
erty. Under these conditions Hodges shows not only that a total compositional
extension always exists, but that there is a unique one with a much stronger
property, a so-called fregean extension.

I consider the compositional extension problem under weaker assumptions.
What happens if we drop cofinality, or the Husserl property, or both? Without
any assumptions at all except compositionality, there need not exist any total
compositional extension (Example 8, Section 3.8). But (Theorem 12, Section
6) if we replace cofinality and the Husserl property by the – rather modest –
assumption that the set of meaningful terms is closed under subterms, then a
total compositional extension always exists.

Theorem 12, which is the main result here, is a variation rather than a gen-
eralization of Hodges’ Theorem, since cofinality is orthogonal to the assumption
of closure under subterms: If both cofinality and closure under subterms hold,
the given semantics must already be total, so the extension problem becomes
trivial. One may also consider retaining the Husserl property but dropping co-
finality, or, vice versa, keeping cofinality without the Husserl property. In the
first case, the extension problem turns out to have an easy solution (Corollary
11, Section 5), but in the second case it seems to be open.

The particular interest of Hodges’ Theorem stems (apart from applications
to game-theoretic semantics) from the fact that the notion of a fregean extension
explicates the natural idea that

(F) the meaning of a term is the contribution it makes to the meanings of
complex terms of which it is a constituent,

which in turn can be taken as one version of Frege’s famous Context Principle
(say, the ‘Contribution Principle’). The assumption of cofinality is natural here,
for then each ‘new’ term is part of an already meaningful term, and has to
‘contribute’ to the given meanings in the right way.

In other circumstances, however, the assumption of closure under subterms
– and hence not cofinality – is the natural one, a prime example being when one
wants to extend the semantics for a given fragment to the whole language. The-
orem 12 only shows the existence of a total compositional extension in this case,
though under very weak assumptions (notably, without assuming the Husserl
property). Such extensions, when they exist, are far from unique (Section 9.1).
Yet the argument needed to prove the existence claim turns out to be somewhat
subtle.
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At this point I would like to dispel a possible misunderstanding. It is some-
times claimed that compositionality is a trivial or empty requirement, since ‘any
semantics can be made compositional by suitable adjustments’. (Zadrozny [19]
is a strong statement of this view; see Westerst̊ahl [17] for a discussion.) But
what this usually turns out to mean is that for any meaning assignment to
some set of expressions there is another meaning assignment to these expres-
sions which is compositional and such that the original meanings are recoverable
from the new ones. And that claim is indeed trivial. It suffices to take as the
new meaning of e the pair consisting of e itself and the old meaning of e. This
new meaning assignment is one-to-one, i.e., no two expressions have the same
meaning, and that is in fact enough for compositionality in the standard sense
(Section 3.7) to be (trivially) satisfied. The compositional extension problem
considered here, on the other hand, is quite different. Now we are required
to find a total compositional semantics which agrees with a given one on cer-
tain terms. Such a semantics need not exist. When it does exist, it can be a
non-trivial matter to establish that this is so.

Hodges’ set-up is based on the notion of a partial algebra. In order to make
this paper self-contained, I present relevant notions and definitions in Section 3.
But before that, in Section 2, I compare his approach to one which is more
familiar in formal semantics but uses many-sorted algebras instead, and which
originates with Montague; see also Section 9.4. Section 4 presents Hodges’
Theorem. Section 5 deals with the case when cofinality is dropped but the
Husserl property holds. Sections 6 – 8 are devoted to the statement and proof
of the main result, and Section 9 ends with some further remarks and problems.

2 Many-Sorted vs. Partial Algebras

Compositionality is the property that the meaning of a complex expression is
determined by the meanings of its parts and the ‘mode of composition’. To
even begin to express this precisely one needs, minimally, a set E of structured
expressions and a (perhaps partial) function

µ : E −→ M

from E to some set M of ‘meanings’. A natural way to think of expressions
as structured is to take E as the carrier (domain) of some kind of algebra, so
that expressions are generated by means of the operations (‘rules’) of the alge-
bra starting from some atoms. In general, nothing prevents an expression from
being generated in more than one way, i.e., nothing prevents the occurrence
of (structural) ambiguity. Therefore one assigns meanings not as above to ele-
ments of E, but to derivations of these elements, and these can be conveniently
identified with terms in a corresponding term algebra TE. Expressions can be
thought of as surface strings, which are the values of the terms in the term
algebra; an ambiguous string is the value of more than one term.
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In practice, almost all grammars proposed for natural languages use some
system of categories to classify expressions, and to constrain the arguments and
values of the rules, i.e., the operations of the algebras. One idea is then to take
these algebras as many-sorted, where sorts correspond to syntactic categories.
This goes back to Montague [14] (though he didn’t use the notion of a many-
sorted algebra) and was developed by Janssen [11]; the account sketched below
is from Hendriks [5]. The syntax of a language is given by an algebra

A = 〈(As)s∈S , (Fγ)γ∈Γ〉,

where As contains the expressions (strings) of sort s (so E =
⋃

s∈S As), and
each Fγ is a total operation among expressions with arguments and values of
fixed sorts (given by A′s signature). A is assumed to be generated : Each As

has a subset Xs of atomic expressions of that sort (Xs may be empty), and
each expression is either atomic or the value of some operator applied to some
arguments.

Meanings are thus assigned not to expressions but to terms in a term algebra
T (A) corresponding to A (with the same sorts and signature). The meanings
themselves are given by another algebra

B = 〈(Bt)t∈T , (Gδ)δ∈∆〉.

The semantic signature can be completely different from the syntactic one, so
one considers mappings σ : S → T and ρ : Γ → ∆ from one to the other,
satisfying the condition that if Fγ takes objects of sorts s1, . . . , sn to objects of
sort s, then Gρ(γ) takes objects of sorts σ(s1), . . . , σ(sn) to objects of sort σ(s).
Then, a meaning assignment h to terms in T (A) is a (σ, ρ)-homomorphism if

(i) p ∈ As implies that h(p) ∈ Bσ(s),

(ii) h(Fγ(p1, . . . , pn)) = Gρ(γ)(h(p1), . . . , h(pn)).

Compositionality now amounts to the existence of such a homomorphism.
The framework also allows for the fact that meanings are often provided via

an intermediate logical language L; then B can be the syntactic algebra of L (L
is unambiguous so we don’t need the term algebra of B), and a homomorphic
mapping l from B to a ‘model-theoretic’ algebra M (same sorts and signature
as B) gives the semantics of L:

T (A) h−→ B l−→ M

A slight twist is that B in practice need not have primitive operators cor-
responding to those in A; instead they are definable in B, so one uses what
Hendriks calls the polynomial closure Π(B) rather than B.
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This by now classical type of framework allows modeling of a lot of syntactic
and semantic detail (see e.g. Hendriks [4]). On the other hand, for certain
purposes – such as a study of compositionality – some of these details may be
irrelevant, and even in the way. I have sketched it here mainly to contrast it with
the simpler set-up in Hodges [9], which uses partial algebras instead. Hodges’
account differs from the classical one in the following ways:

• Rather than using sorts or categories to enforce that operations are only to
be applied to certain arguments, one lets the operations be undefined for
unwanted arguments. The result is a (generated) partial algebra without
sorts. However, a notion of category can nevertheless be reconstructed via
substitutibility.

• Structure among ‘meanings’ is disregarded. They just form a set, not
an algebra whose sorts and signature need to be related to the syntax.
Indeed, nothing at all is assumed about these ‘meanings’.

• Similarly, although the syntactic partial algebra is called a grammar and
it is often helpful to think of its objects as strings, nothing is assumed
about these objects, nor about the operations on them.3

• Term algebras are used much as before, but meaning assignments to terms
are allowed to be partial. This relaxes the homomorphism requirement,
but leaves the essence of compositionality intact.

Thus, partiality enters at two places: algebras are partial, but also functions
associating meanings with terms. Partial algebras have been studied in Uni-
versal Algebra (cf. Grätzer [3], Ch. 2), but the generalization of the notion of
homomorphism to partial functions gives rise to some apparently new questions,
in particular the extension problem introduced by Hodges. We now present the
algebraic framework needed to set the stage for that problem.

3 The Framework

Most of the definitions in this section are just as in Hodges [9], with some
exceptions and extensions to be noted.

3.1 Grammars

Definition 1 A grammar is a partial algebra

E = 〈E, A, α〉α∈Σ,

3That is, nothing needs to be assumed about them in the present work. Actual grammars
clearly satisfy a number of constraints, which may be formulated as axioms for the class of
algebras one is interested in. For example, Kracht [13], and Keenan and Stabler [12], which
both construe grammars as partial algebras (though in different ways), presuppose such extra
structure. But it is not needed for the results here.
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where E is a set of expressions, A ⊆ E a set of atoms, and each symbol α in the
signature Σ denotes a partial function α – called a syntactic rule – from En to
E for some n ≥ 0.4 E is assumed to be generated from A by the rules. If [X]B,
or just [X], is the set generated in an algebra B from a subset X of its domain,
we may thus write E = 〈[A], α〉α∈Σ.5

Expressions may be thought of as strings, but no such assumption about
them is used below. In fact, they will play a subordinate role, since we are
mostly interested in the terms that denote them. Let V ar = {x, y, . . . } be a
countable set of variables, disjoint from E.

Definition 2 The set T (E) of terms is defined as follows:

• Elements of V ar ∪ A are terms.

• If t1, . . . , tn are terms and α ∈ Σ is n-ary, then ‘α(t1, . . . , tn)’ is a term.

Terms with variables are used as a convenient means to describe substitution;
Sections 3.2 and 3.3 below. T (E) is the domain of a total term algebra T (E) over
V ar ∪ A, whose operations αT (E) from n-tuples of terms to terms are defined
in the obvious way. Since T (E) is generated from V ar ∪ A in T (E), we have

T (E) = 〈[V ar ∪ A], αT (E)〉α∈Σ.

The interesting (variable-free) terms are those respecting the partiality of E.
These are called grammatical terms. For example, ‘α(b, β(c))’ is grammatical
only if β(c) and α(b, β(c)) are both defined. The set GT (E) of grammatical
terms and the function val, associating with each such term its value in E, are
defined simultaneously as follows:

Definition 3 • If a ∈ A then a is a grammatical term and val(a) = a.

• If p1, . . . , pn are grammatical terms with val(pi) = ei for 1 ≤ i ≤ n, α is
n-ary, and e = α(e1, . . . , en) is defined, then the term

α(p1, . . . , pn)

is also a grammatical term, and val(α(p1, . . . , pn)) = e.

Think of p ∈ GT (E) as a derivation (analysis tree) of the expression val(p). An
expression may have different derivations, in which case there is a structural
ambiguity.

4Hodges’ notation does not distinguish α from α. A more standard algebraic notation for
α would be αE.

5In algebra one often takes atoms to be 0-ary operations. This is not necessarily a good
idea in a linguistic context, where the atoms are lexical items from which the language is
generated. 0-ary operations are by definition invariant under automorphisms. Keenan and
Stabler [12] show that such invariance (and more restricted versions of it) is a very significant
phenomenon in grammars of natural languages, but it is not a property of most lexical items.
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GT (E) is the domain of a partial term algebra GT (E) over A, where, for
p1, . . . , pn ∈ GT (E), αGT (E)(p1, . . . , pn) is equal to ‘α(p1, . . . , pn)’ if this term
is in GT (E); otherwise undefined.6 Thus,

GT (E) = 〈[A], αGT (E)〉α∈Σ.

The notion of a subterm of a term in T (E) is defined in the usual way. Note
that if a term is grammatical, so are all of its subterms.

From now on, E will be a fixed but arbitrary grammar. We then write simply
T (GT ) for the corresponding set of (grammatical) terms.

3.2 Substitution

If s is a term (in T ), x1, . . . , xn are distinct variables, and p1, . . . , pn are (not
necessarily distinct) terms, then

s(p1, . . . , pn|x1, . . . , xn)(1)

denotes the term which results from replacing all occurrences of xi in s by
pi. This notation for substitution is more fine-grained than the usual one (like
‘s[p/q]’), since it can indicate precisely which occurrences of terms that are to
be replaced.

We follow the convention that in (1), no other variables than those dis-
played occur in s. In particular, if p1, . . . , pn are grammatical terms, then
s(p1, . . . , pn|x1, . . . , xn) is a variable-free term in T (which may or may not be
grammatical).

3.3 Occurrences

One sometimes needs to look at occurrences of terms rather than just terms.
This is not done in Hodges [9], but the notation (1) can be applied in this case
too, provided the following convention is observed.

Variable Convention: When the notation (1) is used, it is presupposed
that each variable xi occurs at most once in s.

This is no loss of generality, since if there are several occurrences of the same
variable, they can be replaced by new ones, and the term repeated accordingly
in the list p1, . . . , pn. Then, each variable in (1) that occurs in s marks a unique
occurrence of a subterm of s(p1, . . . , pn|x1, . . . , xn). So we can use (1) also for
the case when ‘p1’, . . . , ‘pn’ stand for occurrences of subterms. This should
lead to no confusion, as long as it is clearly indicated that we are talking about
occurrences rather than terms. The subterm relation extends in an obvious way
to occurrences.

6There might be some reluctance to call GT (E) a (partial) term algebra, since its algebraic
structure depends crucially on the algebra E, whereas the algebraic structure of a standard
(total) term algebra like T (E) depends only on the signature (Σ) of E. Still, this terminology
(not used by Hodges) seems natural enough.
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I will rely on an informal understanding of the notion of an occurrence,
but nevertheless make the following remarks.7 Note first that an occurrence is
always an occurrence of a term, say p, in a term, say t, i.e., p is a subterm of t,
so that t = s(p|x) for some s. If this occurrence is replaced by another term q
(NB q is a term, not an occurrence – it makes no sense to talk about replacing
an occurrence with another occurrence), the resulting term s(q|x) will contain
a corresponding occurrence of q. So the terms which occur in (have occurrences
in) a term t are exactly the subterms of t, including t itself.

In the ternary relation ‘X is an occurrence of Y in Z’, X is an occurrence, Y
is a term, and Z is either a term or an occurrence of a term; the latter is clear
from the second of the two facts/stipulations below. The first of these says that
it is uniquely determined which term an occurrence is an occurrence of. The
second is a form of transitivity.

(2) If p′ is an occurrence of p1 in q1, as well as an occurrence of p2 in q2, then
p1 = p2.

(3) If p′ is an occurrence of p in q′, which in turn is an occurrence of q in s,
then p′ is an occurrence of p in s.

3.4 Semantics and Synonymies

Definition 4 (a) A semantics for E is a partial function µ from GT to some
set M . p ∈ GT is (µ-)meaningful if p ∈ dom(µ). µ is total if dom(µ) = GT .

(b) A synonymy for E is a partial equivalence relation on GT , i.e., a symmetric
and transitive relation ≡ whose domain is a subset of GT . A semantics µ
induces the synonymy ≡µ with the same domain:

p ≡µ q ⇐⇒ p, q ∈ dom(µ) and µ(p) = µ(q).

(c) Two semantics µ and ν for E are equivalent if ≡µ = ≡ν .

Here we are mainly interested in semantics up to equivalence. This means that,
whenever convenient, we can use synonymies instead. Each synonymy ≡ has a
corresponding equivalence class semantics µ≡:

µ≡(p) = {q : p ≡ q}
for p ∈ dom(≡). The synonymy induced by µ≡ is again ≡ (Hodges [9], Lemma
1). So up to equivalence we can talk of the semantics corresponding to a given
synonymy.

We made no assumptions whatever about what the elements of M – the
‘meanings’ – are. If we restrict attention to synonymies, M drops out of the
picture altogether.

7The term/occurrence distinction is not the same as the type/token distinction. Occur-
rences are not types, since, for example, there are two occurrences of (the type) ‘a’ in (the
type) ‘α(a, β(a))’. And they are not tokens either, since tokens exist in space and time,
whereas writing ‘α(a, β(a))’ twice does not give us two new occurrences of ‘a’ in ‘α(a, β(a))’,
although it does give us two new tokens of that symbol.
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3.5 Extensions and Refinements

Our aim is to extend partial semantics to total ones, so we had better explain
what ‘extend’ means. This is clear for partial functions: ν extends µ iff they
agree on dom(µ) and dom(µ) ⊆ dom(ν); in other words, iff µ ⊆ ν.

For synonymies there are (at least) two notions, but no really established
terminology. We use the following, when ≡ and ≡′ are synonymies for E, and
dom(µ) = X:

• ≡′ includes ≡ iff ≡ ⊆ ≡′. [When ≡ is ≡µ and ≡′ is ≡ν , Hodges writes
this µ ≤ ν.]

• ≡′ extends ≡ iff ≡ = ≡′ ∩ (X × X).

If ≡′ extends ≡, it changes nothing on the terms in X. If it merely includes ≡,
it may introduce new synonymies among ‘old’ terms. This terminology is apt,
since extension for synonymies corresponds to extension for semantics (Hodges
[9], Lemma 2):

(4) ≡ν extends ≡µ iff ν is equivalent to some extension of µ.

A related and also useful notion (implicit in [9]) is that of refinement:

• ≡′ refines ≡ iff (i) dom(≡) ⊆ dom(≡′); and (ii) ≡′ ∩ (X × X) ⊆ ≡.

Thus, if ≡′ extends ≡, it refines (and includes) ≡. Merely refining ≡ allows
making finer meaning distinctions among ‘old’ terms, while keeping all the dis-
tinctions that ≡ makes.

3.6 Semantic Categories

For X ⊆ GT , and p, q ∈ GT , define

p ∼X q iff for all terms s ∈ T, s(p|x) ∈ X ⇔ s(q|x) ∈ X.

This gives us various notions of ‘categories’, as equivalence classes of ∼X . When
X = dom(µ), we call these µ-categories, or semantic categories (substitution
preserves meaningfulness). When X = GT , it makes sense to talk about syn-
tactic categories (preservation of grammaticality). Syntactic categories induce
a corresponding partition of the set E of expressions via the function val since,
as one easily shows,

val(p) = val(q) implies p ∼GT q.(5)

In the many-sorted algebra framework, on the other hand, no assumptions of
non-emptiness or disjointness are made about the carriers of the various sorts.
In this sense, the many-sorted approach allows more freedom than the partial
one – but see Section 9.4.

Definition 5 µ has the Husserl property if p ≡µ q implies p ∼dom(µ) q.
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The Husserl property, that synonymous terms have the same semantic category,
is reasonable in many contexts. It is, however, quite a strong assumption on
the semantics, and it is not always obvious in applications that it should be
expected to hold (see Hodges [9], Section 4). So it is natural to inquire what
happens without it.8

3.7 Compositionality

Hodges presents several versions of compositionality; here is the basic one:

Definition 6 Let Comp(≡µ) be the following condition:

(6) For any n, if pi ≡µ qi for 1 ≤ i ≤ n, and if s(p1, . . . , pn|x1, . . . , xn),
s(q1, . . . , qn|x1, . . . , xn) are both in dom(≡µ), then

s(p1, . . . , pn|x1, . . . , xn) ≡µ s(q1, . . . , qn|x1, . . . , xn).

Also, let 1-Comp(≡µ) be the same condition but with n = 1. Similarly for any
synonymy ≡ for E.

If µ is husserlian, 1-Comp(≡µ) implies Comp(≡µ), since we can then replace
pi by qi one by one, and be sure that the ‘intermediate’ terms arising in this
process are all meaningful. But without the Husserl property, 1-Comp(≡µ) is
strictly weaker.

The formulation of compositionality which corresponds most directly to the
intuitive idea – i.e., that the meaning of complex term is determined by the
meanings of its parts and the ‘mode of composition’ – is the following one,
which we may call Rule(µ):

(7) For each α ∈ Σ, there is an operation rα such that whenever α(p1, . . . , pk)
is in the domain of µ,

µ(α(p1, . . . , pk)) = rα(µ(p1), . . . , µ(pk)).

Note, however, that this only makes sense if dom(µ) is closed under subterms.
But under this condition, as Hodges shows, Comp(≡µ) and Rule(µ) are equiv-
alent.

This ends my exposition of Hodges’ framework. Observe that Comp(≡µ)
looks similar to the more familiar requirement that ≡µ is a congruence relation,
modulo the restriction to dom(µ). Indeed, consider the following variant, that
I will call Congr(≡µ):

8An example: Presumably the English words run and runs (taken as forms of the verb in
present tense) are synonymous, but are they intersubstitutable? This depends on what we
mean by ‘substitution’ and on how the rules are made. If we replace runs by run in John
runs we get something ungrammatical. So, first, a substitution in the sense relevant here
only takes place at the input of a grammar rule. Thus, second, if run and runs are inputs to
the same rule, the Husserl property is violated. But, third, it is not necessary for the rule to
behave like this. Instead, it could apply to the infinitival form (run), and add the -s if the
other argument (in this case John) is in the 3rd person singular. Now the Husserl property
holds.

11



(8) If pi ≡µ qi for 1 ≤ i ≤ k, α ∈ Σ is k-ary, and α(p1, . . . , pk), α(q1, . . . , qk)
are both in dom(µ), then α(p1, . . . , pk) ≡µ α(q1, . . . , qk).

Fact 7 If dom(µ) is closed under subterms, then Comp(≡µ) is equivalent to
Congr(≡µ).

Proof. It is immediate that Comp(≡µ) implies Congr(≡µ): just take s =
α(x1, . . . , xk). In the other direction, prove (6) by induction on s. The ba-
sis step is when s ∈ V ar ∪ A. If s ∈ A or if s is a variable �= x1, . . . , xn then
s(p1, . . . , pn| . . . ) = s(q1, . . . , qn| . . . ). If s = xi then s(p1, . . . , pn| . . . ) = pi and
s(q1, . . . , qn| . . . ) = qi. In both cases (6) holds.

For the inductive step, when s = α(t1, . . . , tk), it is assumed that

s(p1, . . . , pn| . . . ) = α(t1(p1, . . . , pn| . . . ), . . . , tk(p1, . . . , pn| . . . ))

is in dom(µ), and likewise for s(q1, . . . , qn| . . . ). To be able to conclude from
the induction hypothesis that

ti(p1, . . . , pn| . . . ) ≡µ ti(q1, . . . , qn| . . . ),

we need to know that both terms are in dom(µ), and this follows from the
assumptions and the fact that dom(µ) is closed under subterms. Then (6)
follows from Congr(≡µ). �

On the other hand, if dom(µ) is not closed under subterms, we could easily
have a ≡µ b, α(a), α(b) �∈ dom(µ), β(α(a)), β(α(b)) ∈ dom(µ), but β(α(a)) �≡µ

β(α(b)), which is compatible with Congr(≡µ) but not with Comp(≡µ). In some
applications one doesn’t want to assume closure under subterms, so Hodges’
condition Comp(≡µ) is the correct most general version of compositionality.
On the other hand, Congr(≡) makes sense for any partial equivalence relation
≡ on any partial algebra, not just for term algebras.

3.8 The Compositional Extension Problem

Let µ be a compositional semantics (for our fixed grammar) with dom(µ) =
X ⊆ GT . The general problem that interests us is:

(9) When does µ have a total compositional extension?

As noted earlier, it is equivalent to ask this question for ≡µ instead, but recall
(Section 3.5) that ‘extend’ then means something much stronger than ‘include’:
Any partial synonymy, compositional or not, trivially has a total compositional
synonymy that includes it, namely, GT × GT !

The next example shows that the compositional extension problem is not
quite trivial.

Example 8 Suppose all of the following are true:

12



a ≡µ b, α(b) ≡µ c

β(α(a)), β(c) ∈ X

α(a), β(α(b)) ∈ GT − X

β(α(a)) �≡µ β(c)

It is easy to find a compositional semantics µ for which this holds: the non-
synonymy of β(α(a)) and β(c) does not contradict compositionality since the
relevant subterms are not µ-meaningful. But there is no compositional extension
of µ to these terms, a fortiori no total one. �

The semantics in this example is certainly not husserlian (for example, α(b) ∈ X
but α(a) ∈ GT −X, even though a ≡µ b), and neither is its domain closed under
subterms.

4 Hodges’ Theorem

I said in Section 1 that Hodges proves his main result under two extra conditions,
one of which is the Husserl property. But not all of his observations use these
conditions. The formulation below (which draws on [10], though the claims can
be dug out of [9] as well) exhibits exactly what each claim requires.

The key notion corresponds to Frege’s ‘Contribution Principle’ (F) men-
tioned in the Introduction:

Definition 9 Suppose dom(µ) = X ⊆ GT . A relation ≡ on GT is a (total)
fregean cover of ≡µ iff it is a total synonymy on GT and the following holds:

F(a): p ≡ q and t(p|x) ∈ X implies t(q|x) ∈ X.

F(b): p ≡ q and t(p|x), t(q|x) ∈ X implies that t(p|x) ≡µ t(q|x).

F(c): If p �≡ q there is a term t such that either exactly one of t(p|x), t(q|x) is in
X, or both are and t(p|x) �≡µ t(q|x).

≡ is a fregean extension of ≡µ if it in addition extends ≡µ.

F(a) is a version of the Husserl property for two synonymies, and F(b) is a
corresponding version of 1-Comp. F(c) is a converse to 1-Comp, related to
what computer scientists call ‘full abstraction’. Now (F) says that the meaning
of any term is determined by how it contributes to the meanings of terms in X
of which it is a part. When this is expressed in terms of synonymies instead,
the vague term “contribute” disappears: we can say that the fregean cover must
not make other distinctions than those warranted by the given synonymy – this
is F(c) – and that it must make all those that are warranted – F(a) and F(b).
Of course it remains to be shown that an extension of ≡µ with these properties
exists.

With ≡µ as in the above definition, define the relation ≡F
µ as follows:

13



(10) p ≡F
µ q iff p ∼X q, and for all s, if s(p|x) ∈ X then s(p|x) ≡µ s(q|x),

for p, q ∈ GT . We collect most of Hodges’ results in the following theorem.

Theorem 10 (Hodges’ Theorem) Suppose dom(µ) = X ⊆ GT .

(i) There exists a unique fregean cover of ≡µ, namely, ≡F
µ. Moreover, ≡F

µ

refines ≡µ.

(ii) If X is cofinal in GT (i.e., every term in GT is a subterm of some term
in X), then ≡F

µ is husserlian and compositional.

(iii) (Extension Theorem) ≡F
µ extends ≡µ iff ≡µ is husserlian and composi-

tional.

(iv) These facts, and the definition of a fregean cover, generalize to the case
when GT is replaced by any set Y such that X ⊆ Y ⊆ GT and Y is closed
under subterms.

Proof. (Outline) (i) Let us verify uniqueness, since this illustrates nicely how
the notion of a fregean cover works. So suppose ≡1 and ≡2 are fregean covers
of ≡µ, and that p ≡1 q but p �≡2 q. By F(c), there is a term t such that either
exactly one of t(p|x), t(q|x) is in X, or both are and t(p|x) �≡µ t(q|x). But the
first case violates F(a) for ≡1, and the second case violates F(b). This shows
that ≡1 ⊆≡2. The inverse inclusion follows by symmetry, and thus ≡1 = ≡2.

Next, one checks one by one the conditions for ≡F
µ being a total synonymy

such that F(a)–(c) hold. Finally, suppose p, q ∈ X and p ≡F
µ q. Taking s as the

term x in (10), it follows that p ≡µ q, and hence ≡F
µ refines ≡µ.

(ii) The verification is not hard, but uses essentially the cofinality of X and that
≡F

µ satisfies F(a)–(c).

(iii) Suppose ≡µ is husserlian and compositional. By (i), it only remains to
show that for p, q ∈ X, p ≡µ q implies p ≡F

µ q. But if p ≡µ q we get p ∼X q by
the Husserl property, and the second condition in the right hand side of (10) by
compositionality. Thus, p ≡F

µ q.
Conversely, suppose ≡F

µ extends ≡µ. Thus, if p ≡µ q then p ≡F
µ q, so if

s(p|x) ∈ X, it follows by F(a) that s(q|x) ∈ X. That is, ≡µ is husserlian.
1-compositionality follows similarly by F(b), and general compositionality is
equivalent to 1-compositionality under the Husserl property.

(iv) This follows since it can be seen that the only properties of GT used above
are in fact that it is closed under subterms and contains X. �

It follows that any partial, husserlian, and compositional semantics µ whose
domain is cofinal in GT has a unique (up to equivalence) total fregean exten-
sion, and that this extension also is husserlian and compositional. Then, it is
indeed the case that the meaning of any grammatical term is determined (up
to equivalence) by the contributions it makes to the meanings of terms in the
domain of µ.
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5 Dropping Cofinality

Without cofinality, we cannot use Hodges’ Theorem to infer that if µ is husserlian
and compositional, its fregean cover has the same properties. However, we now
show that we still get compositionality in this case.

Corollary 11 If ≡µ is husserlian and compositional, its total fregean extension
≡F

µ is always compositional, but not necessarily husserlian.

Proof. We start with Hodges’ Theorem, and a construction which is also from
[9] (Lemma 9): define

Y = {p ∈ GT : p is a subterm of some term in X}.

Then X is cofinal in Y , and Y is closed under subterms, so by (iv) of Hodges’
Theorem there is a fregean extension µf of µ to Y , which again is compositional
and husserlian.

Now let µ1 be a one-point extension of µf to GT , i.e., an extension coinciding
with µf on Y and making all terms in GT − Y synonymous with each other,
but not with anything in Y .

It is easy to see that µ1 is in fact a fregean extension of µ (Hodges [9], Lemmas
8(a) and 9). By (i) of Hodges’ Theorem, ≡µ1 = ≡F

µ. But without cofinality
we cannot conclude that ≡F

µ is husserlian. Indeed, the following situation is
consistent with our assumptions:

a ≡µ b, α(a) ∈ GT − Y, but α(b) �∈ GT.(11)

In this case no total extension of µ can have the Husserl property, even though
µ does.

Nevertheless, ≡F
µ is still compositional. For suppose

pi ≡F
µ qi, 1 ≤ i ≤ n,

and that s(p1, . . . , pn|x1, . . . , xn) and s(q1, . . . , qn|x1, . . . , xn) are both gram-
matical. (Since the Husserl property might fail, it is not enough to show 1-
compositionality.) If s(p1, . . . , pn|x1, . . . , xn) and s(q1, . . . , qn|x1, . . . , xn) are
both in GT − Y , then they are µ1-synonymous by definition. So suppose
s(p1, . . . , pn|x1, . . . , xn) ∈ Y . Then p1, . . . , pn ∈ Y since Y is closed under
subterms. But then also q1, . . . , qn ∈ Y , since if qi ∈ GT − Y , pi �≡µ1 qi by
definition of µ1. Thus

pi ≡µf qi, 1 ≤ i ≤ n.

By (n applications of) the Husserl property for µf , s(q1, . . . , qn|x1, . . . , xn) ∈ Y .
Therefore

s(p1, . . . , pn|x1, . . . , xn) ≡µf s(q1, . . . , qn|x1, . . . , xn)
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by the compositionality of µf , and hence

s(p1, . . . , pn|x1, . . . , xn) ≡F
µ s(q1, . . . , qn|x1, . . . , xn).

�

6 An Extension Theorem without the Husserl
Property

If ≡µ is compositional but lacks the Husserl property, its fregean cover ≡F
µ is

no longer of interest when we look for a total compositional extension, since
by Hodges’ Theorem (iii), ≡F

µ does not then extend ≡µ. We shall show that
under one very weak extra assumption, a total compositional extension must
nevertheless exist. This is the property of a semantics, mentioned before, that
its domain is closed under subterms. It has been called the Domain Principle,
and is sometimes taken as part of the notion of compositionality (cf. Section 3.7).

Theorem 12 If µ is a compositional semantics whose domain is closed under
subterms, then ≡µ (and hence µ) has a total compositional extension.

This follows from Corollary 11 if µ is also husserlian. In fact, in that case it is
easy to see, using closure under subterms, that the one-point extension of ≡µ

to GT is identical to ≡F
µ. But we also saw from the proof of that corollary that

not all compositional semantics can be extended to husserlian ones.
Before starting on the proof of Theorem 12, let me make one remark, which

underlines the observation that in the absence of the Husserl property it is not
enough to consider merely 1-compositionality. First:

(12) There is a 1-compositional semantics (whose domain can be assumed to
be either cofinal in GT or to be closed under subterms) with no total
compositional extension.

This follows immediately from the existence of a total semantics which is 1-
compositional but not compositional (and hence not husserlian). For exam-
ple, suppose a1 ≡µ b1, a2 ≡µ b2, α(a1, a2), α(b1, b2) ∈ dom(µ), α(a1, a2) �≡µ

α(b1, b2), but α(a1, b2), α(b1, a2) �∈ GT . These assumptions are consistent with
µ being total.

By elaborating the example a little we obtain a stronger conclusion.

(13) There is a 1-compositional semantics (whose domain can be assumed to
be either cofinal in GT or to be closed under subterms) with no total and
1-compositional extension.
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Proof. Let there be six atoms, A = {a, b, c0, c1, d0, d1}, and a 3-place rule α.
Let

p0 = α(a, c0, d0)
p1 = α(a, c1, d0)
p2 = α(b, c0, d0)
p3 = α(b, c0, d1)

and suppose the grammar is such that

GT = A ∪ {p0, p1, p2, p3}.

Now if X = A ∪ {p1, p3}, X is closed under subterms. If we instead want X to
be a cofinal subset of GT , add a 1-place rule β, and add β(p0), β(p2) to GT and
to X.

Now take a semantics µ with domain X such that µ(a) = µ(b), µ(c0) =
µ(c1), µ(d0) = µ(d1), µ(p1) �= µ(p3), and (in the second case) µ(β(p0)) =
µ(β(p2)). µ is not husserlian or compositional, but it is trivially 1-compositional,
since if we substitute according to one synonymous pair at a time we end up
outside X. (In the second case, we have β(p0) ≡µ β(p2), which does not disturb
compositionality.) On the other hand,

(14) µ has no total 1-compositional extension.

For suppose µ′ were such an extension. Then the synonymies mentioned above
together with 1-compositionality imply that p0 ≡µ′ p1, p2 ≡µ′ p3, and p0 ≡µ′ p2.
Hence, p1 ≡µ′ p3, but this contradicts the assumption that µ′ extends µ. �

In preparation for the proof of Theorem 12, we devote the next section to some
observations about occurrences of subterms, and to a generalized version of
compositionality.

7 A Generalization of Compositionality

It is sometimes necessary to distinguish occurrences of (sub)terms from the
terms themselves. Here is a trivial example.9

(15) If p1, . . . , pn are distinct occurrences of terms in s, and if

s = s0(p1, . . . , pn|x1, . . . , xn) = t0(p1, . . . , pn|y1, . . . , yn),

then, for any terms p′1, . . . , p′n,

s0(p′1, . . . , p′n|x1, . . . , xn) = t0(p′1, . . . , p′n|y1, . . . , yn).
9Recall from Section 3.3 that our notation for substitution can be used with occurrences of

terms as well as with terms – though preferably not at the same time. On the first displayed
line in (15) below it is used in the first way, and on the second line it is used in the second
way. Thus, for example, there can be no repetitions in the sequence p1, . . . , pn, but there can
be in p′1, . . . , p′n.
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Though trivial, this fails completely if p1, . . . , pn are terms rather than occur-
rences of terms. For example,

α(a, c, a) = α(x, c, a)(a|x) = α(a, c, x)(a|x),

but

α(b, c, a) = α(x, c, a)(b|x) �= α(a, c, x)(b|x) = α(a, c, b).

The Occurrence Lemma below generalizes (15). We use the following termi-
nology. Suppose s is a term such that

s = s0(p1, . . . , pk|x1, . . . , xk) = t0(q1, . . . , qn|y1, . . . , yn),

where the pi and qj are distinct occurrences of terms in s. Thus, no pi is a sub-
term of any distinct pi′ , and similarly for the qj , though pi might be a subterm
of qj , or vice versa, for certain i, j. A subsequence of p1, . . . , pk, q1, . . . , qn is
a sequence containing only occurrences from the sequence p1, . . . , pk, q1, . . . , qn

and in the same order.

Lemma 13 (Occurrence Lemma) Suppose

s = s0(p1, . . . , pk|x1, . . . , xk) = t0(q1, . . . , qn|y1, . . . , yn),(16)

where the pi and qj are distinct occurrences of terms in s. Then there exists a
subsequence r1, . . . , rm of p1, . . . , pk, q1, . . . , qn (call it maximal with respect to
(16)), such that

(i) s = t(r1, . . . , rm|z1, . . . , zm) for some term t.

(ii) Each pi is a subterm of one of r1, . . . , rm, and likewise for each qj.

(iii) For 1 ≤ i �= j ≤ m, ri is not a subterm of rj.

Now suppose p′1, . . . , p′k are arbitrary terms. Let r′i be the result of replacing
each occurrence pj in ri by p′j. Then

(a) s0(p′1, . . . , p′k|x1, . . . , xk) = t(r′1, . . . , r′m|z1, . . . , zm).

Similarly, if q′1, . . . , q′n are terms, and s′i is the result of replacing each subterm
qj in ri by q′j, then

(b) t0(q′1, . . . , q′n|y1, . . . , yn) = t(s′1, . . . , s′m|z1, . . . , zm).

We remark that ri in the lemma may have no occurrences at all of the pj , in
which case r′i = ri. Or ri could have a subterm from p1, . . . , pk but no proper
one. Then ri = pj for some j, and r′i = p′j . In this case it is also possible
that ri = pj = ql for some l. If instead ri has at least one proper subterm from
p1, . . . , pk, then for some l, ri = ql and is of the form u(pl1 , . . . , plkl

|yl1 , . . . , ylkl
),

so r′i = u(p′l1 , . . . , p′lkl
|yl1 , . . . , ylkl

). Similar remarks apply to s′i.
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Note also that (15) is the special case of the Occurrence Lemma when k = n
and pi = qi, for then m = k and ri = pi (so r′i = p′i), and we can let t = t0, so
(15) is just (a).

The Occurrence Lemma is in fact an immediate observation, once one sees
what is going on. And to see this, a sufficiently typical example will be enough:

Example 14 Let

s = γ(p1, α(q1, q2)︸ ︷︷ ︸
p2

, β(p3, p4, p5)︸ ︷︷ ︸
q3

, q4︸︷︷︸
p6

) = γ(r1, . . . , r4);

so, for the obvious s0 and t0,

s = s0(p1, . . . , p6|x1, . . . , x6) = t0(q1, . . . , q4|y1, . . . , y4).

Note that r4 = q4 = p6. r1, . . . , r4 is a maximal subsequence of the se-
quence p1, . . . , p6, q1, . . . , q4. (So p1, . . . , p6, q1, . . . , q4 contains a repetition,
and r1, . . . , r4 could be either one of p1, p2, q3, q4 and p1, p2, p6, q3; it does not
matter which.) And we see that, as described in the Occurrence Lemma, for
any terms p′1, . . . , p′6 and q′1, . . . , q′4,

s0(p′1, . . . , p′6|x1, . . . , x6) = γ(r′1, . . . , r′4) = γ(p′1, p
′
2, β(p′3, p

′
4, p

′
5), p

′
6)

and

t0(q′1, . . . , q′4|y1, . . . , y4) = γ(s′1, . . . , s′4) = γ(p1, α(q′1, q
′
2), q

′
3, q

′
4).

We now apply the Occurrence Lemma to compositionality.

Lemma 15 (Generalized Compositionality Lemma) Suppose µ is a composi-
tional semantics (for our fixed grammar E) such that X = dom(µ) is closed
under subterms, and suppose

s0(p1, . . . , pk|x1, . . . , xk) = t0(q1, . . . , qn|y1, . . . , yn)

is a grammatical term. If pi ≡µ p′i for 1 ≤ i ≤ k and qj ≡µ q′j for 1 ≤ j ≤ n, and
if s0(p′1, . . . , p′k|x1, . . . , xk) and t0(q′1, . . . , q′n|y1, . . . , yn) are both in X, then

s0(p′1, . . . , p′k|x1, . . . , xk) ≡µ t0(q′1, . . . , q′n|y1, . . . , yn).

Proof. In this result it is not presupposed that p1, . . . , pk and q1, . . . , qn are
distinct occurrences of terms. The first thing to observe, however, is that we
might as well assume that they are. In fact, many claims about grammars and
semantics have a standard version and an ‘ocurrence version’, which turn out
to be equivalent – another example is the principle of compositionality itself,
Comp(≡µ). The proof of the required equivalence is completely straightforward
(using the facts about occurrences mentioned in Section 3.3 and the Occurrence
Lemma) but somewhat tedious, and I shall spare the reader.
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Thus, suppose the assumptions in the lemma hold, with p1, . . . , pk and
q1, . . . , qn distinct occurrences of terms, and let r′i, s

′
i, 1 ≤ i ≤ m, be as in

the Occurrence Lemma. We claim that

r′i ≡µ s′i

for 1 ≤ i ≤ m. By the Occurrence Lemma, compositionality, and the assumption
that s0(p′1, . . . , p′k|x1, . . . , xk) and t0(q′1, . . . , q′n|y1, . . . , yn) are both in X, the
desired conclusion follows.

To prove the claim, consider first the case when ri = pj for some j. Then
r′i = p′j , and moreover we have

ri = u(ql1 , . . . , qlkl
|wl1 , . . . , wlkl

)

for some term u. (This covers the case when ri = qv (with kl = 1 and u = y1),
as well as the case when ri has no occurrences at all of q1, . . . , qn (with u = pj)).
Now we get

r′i = p′j ≡µ pj = u(ql1 , . . . , qlkl
| . . . ) ≡µ u(q′l1 , . . . , q′lkl

| . . . ) = s′i.

The first µ-equivalence here is an assumption. The second follows from com-
positionality, once we know that the two terms are in X. But pj ∈ X by
assumption, and s′i ∈ X since, by (b) in the Occurrence Lemma, it is a subterm
of t0(q′1, . . . , q′n|y1, . . . , yn) ∈ X, and X is closed under subterms.

If ri �= p1, . . . , pk then it must be equal to qj for some j. This case is sym-
metric to the previous one. The proof is complete. �

The point of the Generalized Compositionality Lemma is that the grammati-
cal term s0(p1, . . . , pk|x1, . . . , xk) (= t0(q1, . . . , qn|y1, . . . , yn)) need not be in
the domain of µ. If s0(p1, . . . , pk|x1, . . . , xk) ∈ dom(µ), the conclusion of the
lemma is immediate by two applications of compositionality; indeed it would
then suffice to assume s0(p1, . . . , pk|x1, . . . , xk) ≡µ t0(q1, . . . , qn|y1, . . . , yn),
and closure of dom(µ) under subterms would not be required. But in the next
section it will be essential to consider the more general situation described in
the lemma.

8 Proof of Theorem 12

Suppose ≡µ is compositional and X = dom(µ) is closed under subterms. To
extend ≡µ to all of GT , new pairs may need to be added. Suppose, for example,
that α(a) ≡µ β(c1, c2), a ≡µ b, ci ≡µ di, i = 1, 2, but α(b), β(d1, d2) ∈ GT − X.
Then clearly it needs to be the case that α(b) is equivalent to β(d1, d2) (and of
course α(a) to α(b) etc.) in the extended semantics. So the idea is simply to
add such pairs to the synonymy ≡µ.

The new synonymies generate further requirements, so the above step has to
be repeated ω times. This will insure a weaker version of the Husserl property
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(we know the full version cannot be obtained in general), which is still such that
a final one-point extension gives the desired total semantics. Of course one must
check that compositionality, closure under subterms, etc., are preserved at each
step. The next subsection is devoted to the main step indicated above.

8.1 Extension to Corresponding Terms

Forget for the moment about µ, and let (in this subsection) ≡ be any synonymy
for E, with X = dom(≡).

Let s, s′ ∈ GT . We say that s corresponds to s′ if s′ results from substituting
≡-equivalent subterms in s. Then we let s ≡+ t if s and t correspond to ≡-
equivalent terms in X. In more detail:

Definition 16 (a) s corresponds to s′ (relative to ≡) if there is a term s0 and
distinct occurrences p1, . . . , pk in s and p′1, . . . , p′k in s′ such that pi ≡ p′i
for 1 ≤ i ≤ k, and

s = s0(p1, . . . , pk|x1, . . . , xk) and s′ = s0(p′1, . . . , p′k|x1, . . . , xk).

We let X+ be the set of terms corresponding to terms in X. Thus (since
any term in X corresponds to itself), X ⊆ X+ ⊆ GT .

(b) For s, t ∈ GT , let

s ≡+ t

iff there is a term s′ ∈ X corresponding to s and a term t′ ∈ X corre-
sponding to t such that s′ ≡ t′.

Lemma 17 ≡+ is symmetric, and reflexive on its field X+. Also, if s corre-
sponds to s′ ∈ X, then s ≡+ s′.

Proof. Immediate. �

Lemma 18 If ≡ is compositional, then ≡+ extends ≡, i.e., for all s, t ∈ X,
s ≡ t ⇔ s ≡+ t.

Proof. Suppose s, t ∈ X. If s ≡ t clearly s ≡+ t. If s ≡+ t, let s′, t′ correspond
to s, t, respectively, as in Definition 16 (b). Since s, t ∈ X, ≡-compositionality
applies, so s ≡ s′ ≡ t′ ≡ t. �

Lemma 19 If X is closed under subterms, so is X+.
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Proof. Suppose s ∈ X+ and let q be a subterm of s. It is clearly no loss of
generality here to assume that q is an occurrence of a term in s. Thus we have

s = s0(p1, . . . , pk|x1, . . . , xk) = t0(q|y),

and also p′1, . . . , p′k such that

s0(p′1, . . . , p′k|x1, . . . , xk) ∈ X

and pi ≡ p′i, 1 ≤ i ≤ k (where p1, . . . , pk and p′1, . . . , p′k are occurrences in the
respective terms). Let r1, . . . , rm be a maximal sequence relative to p1, . . . , pk, q
and s as in the Occurrence Lemma (Lemma 13), so that

s = t(r1, . . . , rm|z1, . . . , zm).

Thus,

s0(p′1, . . . , p′k|x1, . . . , xk) = t(r′1, . . . , r′m|z1, . . . , zm) ∈ X,(17)

where r′i is the result of replacing each occurrence pj in ri by p′j .

Case 1. q is a subterm of some pj . Then q ∈ X, since X is closed under
subterms, so q ∈ X+.

Case 2. q is not a subterm of any p1, . . . , pk. Then q = ri for some i.

Subcase 2.1. q does not overlap with any of p1, . . . , pk. Then r′i = q, and r′i
is a subterm of t(r′1, . . . , r′m|z1, . . . , zm) ∈ X, so again q ∈ X.

Subcase 2.2. Not Subcase 2.1. Then

q = ri = u(pi1 , . . . , pij
|zi1 , . . . , zij

)

for some u. Again, since X is closed under subterms, it follows from (17) that

r′i = u(p′i1 , . . . , p′ij
|zi1 , . . . , zij

) ∈ X.

But this means that q corresponds to r′i, so q ∈ X+. �

Lemma 20 If ≡ is compositional and X is closed under subterms, then ≡+ is
transitive.

Proof. Transitivity is an easy consequence of the fact that, when ≡ is composi-
tional and X is closed under subterms,

If s corresponds to both s′ ∈ X and s′′ ∈ X, then s′ ≡ s′′.(18)
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But (18) in turn follows by a direct application of the Generalized Composition-
ality Lemma. �

Before showing that ≡+ is also compositional under these conditions, let us first
note that the whole construction depends on ≡ being non-husserlian. In other
words, we have the

Fact 21 If ≡ is compositional and husserlian, then ≡+ = ≡.

Proof. This follows from Lemma 18 and

s ≡+ t ⇒ s, t ∈ X.(19)

To prove (19), suppose

s = s0(p1, . . . , pk|x1, . . . , xk) and s′ = s0(p′1, . . . , p′k|x1, . . . , xk) ∈ X,

where pi ≡ p′i, 1 ≤ i ≤ k. By (k uses of) the Husserl property, it follows that
s ∈ X. Similarly, t ∈ X. �

Lemma 22 If ≡ is compositional and X is closed under subterms, then ≡+ is
compositional.

Proof. By Fact 7 in Section 3.7, it is enough to show that ≡+ is a (partial)
congruence relation , i.e., that Congr(≡+) holds. Thus, suppose

pi ≡+ qi

for 1 ≤ i ≤ k, and α(p1, . . . , pk), α(q1, . . . , qk) ∈ X+. We then have, by defini-
tion, for 1 ≤ i ≤ k,

pi = si(pi1, . . . , piki
|xi1, . . . , xiki

)(20)

qi = ti(qi1, . . . , qili |yi1, . . . , yili),(21)

with

si(p′i1, . . . , p′iki
|xi1, . . . , xiki) ≡ ti(q′i1, . . . , q′ili |yi1, . . . , yili),(22)

where pij ≡ p′ij , 1 ≤ j ≤ ki, and qij ≡ q′ij , 1 ≤ j ≤ li. Furthermore,

α(p1, . . . , pk) = s0(a1, . . . , am|y1, . . . , ym),(23)

α(q1, . . . , qk) = t0(b1, . . . , bn|z1, . . . , zn),(24)
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where

s′ = s0(a′
1, . . . , a′

m|y1, . . . , ym) ∈ X,(25)

t′ = t0(b′1, . . . , b′n|z1, . . . , zn) ∈ X,(26)

and ai ≡ a′
i, 1 ≤ i ≤ m, and bj ≡ b′j , 1 ≤ j ≤ n.

If we can show that

s′ ≡ t′,(27)

it follows by the definition of ≡+ that

α(p1, . . . , pk) ≡+ α(q1, . . . , qk),

as desired.
Assume in the proof that all the pi, qi, pij , ar, etc. are distinct occurrences

of subterms in the respective terms; as with the Generalized Compositionality
Lemma this is no loss of generality.

We distinguish the various ways in which (the occurrences) p1, . . . , pk may
be related to (the occurrences) a1, . . . , am, and similarly for q1, . . . , qk and
b1, . . . , bn. Call pi (qi) small if it is a proper subterm of one of a1, . . . , am

(b1, . . . , bn).

Case 1: Some pi is small. But the only term that pi can be a proper subterm
of is α(p1, . . . , pk), so in this case α(p1, . . . , pk) = aj for some j, and all the pi

are small.

Subcase 1.1: Some qi is small. As above, α(q1, . . . , qk) = bl for some l, and
all the qi are small. Thus α(p1, . . . , pk) and α(q1, . . . , qk) are in X. Also,
p1, . . . , pk, q1, . . . , qk ∈ X since X is closed under subterms. Therefore, pi ≡
qi for 1 ≤ i ≤ k, so α(p1, . . . , pk) ≡ α(q1, . . . , qk) by Comp(≡), and hence
α(p1, . . . , pk) ≡+ α(q1, . . . , qk).

Subcase 1.2: No qi is small. For each i:

Let bfi(1), . . . , bfi(ri) be those among the occurrences b1, . . . , bn which are
subterms of qi.

That is, fi : {1, . . . , ri} → {1, . . . , n} enumerates these subterms (without
repetitions). Clearly, if i �= i′, then range(fi) is disjoint from range(fi′).
(ri = 0 is allowed; then qi is disjoint from all the bj . If ri = 1 then bfi(1)

could be a proper subterm of qi, or bfi(1) = qi.)

Now, it follows from our assumptions and (21) that there are terms vi such that

qi = vi(bfi(1), . . . , bfi(ri)|xfi(1), . . . , xfi(ri)) = ti(qi1, . . . , qili |yi1, . . . , yili).
(28)
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Here ti(q′i1, . . . , q′ili |yi1, . . . , yili) is in X by (22), and if we define

q′i = vi(b′fi(1)
, . . . , b′fi(ri)

|xfi(1), . . . , xfi(ri))

for 1 ≤ i ≤ k, then we have, in view of (24) and (26),

α(q′1, . . . , q′k) = t′,

so q′i is a subterm of t′, and hence it is also in X. Thus, the Generalized
Compositionality Lemma applies to (28), and we get

q′i ≡ ti(q′i1, . . . , q′ili |yi1, . . . , yili).

It follows from ordinary compositionality, using (22), (20), and the fact that
pi ∈ X in the present subcase, that

pi ≡ q′i

for 1 ≤ i ≤ k. Hence,

s′ = a′
j ≡ aj = α(p1, . . . , pk) ≡ α(q′1, . . . , q′k) = t′,

again by Comp(≡), since all of these terms are in X.

Case 2: No pi is small.

Subcase 2.1: Some qi is small. This case is symmetric to Subcase 1.2.

Subcase 2.2: No qi is small. Let bfi(l), vi, and q′i be as in Subcase 1.2. Similarly,
if we assume that

agi(1), . . . , agi(ni) are those among the occurrences a1, . . . , am which are
subterms of pi,

there are terms ui such that

pi = ui(agi(1), . . . , agi(ni)|xgi(1), . . . , xgi(ni)) = si(pi1, . . . , piki
|xi1, . . . , xiki

),

and letting

p′i = ui(a′
gi(1)

, . . . , a′
gi(ni)

|xgi(1), . . . , xgi(ni)),

we conclude as before, using the Generalized Compositionality Lemma, that

p′i ≡ q′i

for 1 ≤ i ≤ k. From this we get

s′ = α(p′1, . . . , p′k) ≡ α(q′1, . . . , q′k) = t′

by Comp(≡), and the proof of the lemma is finished. �
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8.2 Concluding the Proof

Now we can finish the proof of Theorem 12. We are assuming that ≡µ is
compositional and that its domain X is closed under subterms. Define

≡0 = ≡µ

≡n+1 = (≡n)+

Xn = dom(≡n),

and let

≡∗ =
⋃

n<ω ≡n

Y = dom(≡∗).

From the results in the previous subsection we see that each ≡n+1 is a
compositional synonymy which extends ≡n and whose domain Xn+1 is closed
under subterms. It follows immediately that ≡∗ is a compositional synonymy
whose domain is closed under subterms. Also, we see (by induction) that

if s, t ∈ X0, then (s ≡n+1 t ⇒ s ≡n t).

Hence, ≡∗ extends ≡µ. (Note that this uses the compositionality of each ≡n+1;
cf. Lemma 18). Finally, by the definition of ≡n+1,

(29) if pi ≡n qi for 1 ≤ i ≤ k, s(p1, . . . , pk|x1, . . . , xk) ∈ Xn and the term
s(q1, . . . , qk|x1, . . . , xk) is grammatical, then s(q1, . . . , qk|x1, . . . , xk) ∈
Xn+1.

But this means that ≡∗ satisfies the following weaker version of the Husserl
property:

(30) Suppose that pi ≡∗ qi for 1 ≤ i ≤ k, that s(p1, . . . , pk|x1, . . . , xk) ∈ Y ,
and that s(q1, . . . , qk|x1, . . . , xk) is grammatical. Then s(q1, . . . , qk|x1, . . . , xk) ∈
Y .

For take n so that pi ≡n qi for 1 ≤ i ≤ k and s(p1, . . . , pk|x1, . . . , xk) ∈ Xn.
By (29), s(q1, . . . , qk|x1, . . . , xk) ∈ Xn+1 ⊆ Y .

Now, let ≡1 be the total one-point extension of ≡∗, as defined in the proof
of Corollary 11 (Section 5). It is clear that the argument in that proof showing
that the one-point extension is compositional goes through when (30) replaces
the assumption of the Husserl property. Thus, ≡1 is indeed a total composi-
tional extension of ≡µ, and the proof is complete. �
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9 Remarks and Questions

9.1 Uniqueness

Theorem 12 concerns the existence of a total compositional extension of ≡µ. In
general, there may be several distinct such extensions, among them:

≡min =
⋂

{≡ ⊇ ≡µ: ≡ is a total compositional synonymy for E}.(31)

≡min is always a total compositional synonymy for E, without any assumptions
at all on ≡µ. (As pointed out in Hodges [9], this only depends on the form
of the condition defining ≡min.) But without such assumptions ≡min need not
extend ≡µ. For example, if µ is the semantics in Example 8 (Section 3.8), we
will have β(α(a)) ≡min β(c), though β(α(a)) and β(c) are both in dom(µ), and
β(α(a)) �≡µ β(c).

But (again pointed out by Hodges), as soon as we know that there exists a
total compositional synonymy, say ≡′, which does extend – or even refine – ≡µ,
it follows that ≡min also extends ≡µ: If p, q ∈ dom(µ) and p ≡min q, then, since
≡min⊆ ≡′, p ≡′ q, and so, since ≡′ refines ≡µ, p ≡µ q. Therefore, Theorem
12 implies that if µ is a compositional semantics whose domain is closed under
subterms, then ≡min is uniquely defined as the smallest total compositional
extension of ≡µ.

However, Hodges also shows that the ⊆-smallest total compositional exten-
sion need not be the most interesting one. For example, in the cofinal and
husserlian case it is not in general equivalent to the fregean extension. In gen-
eral, it looks like an interesting task to find criteria to choose between the various
compositional extensions (or refinements) of a given semantics, criteria which
apply also under the very general circumstances assumed in Theorem 12, for
example.

9.2 Another Route to Theorem 12

After reading the penultimate draft of this paper, Tim Fernando found another
proof of the main result. That proof is in many ways illuminating, and I will
outline it here (with his permission). The idea is to prove directly the fact
mentioned about ≡min above. For this, one needs to analyze the construction
of ≡min more carefully. The first part of this analysis does not depend on the
fact that we are dealing with terms in a term algebra.

Let ≡µ be a partial synonymy with domain X ⊆ B, but for the moment
assume no particular structure of the elements of B, just that B is the domain
of some partial algebra with signature Σ. Recall that the condition Congr
(Section 3.7) is still applicable in this case. Now do the following:

Step 1: Let ≡µ,B be the union of ≡µ and the identity relation on B. (≡µ,B is
the smallest total synonymy extending ≡µ.)

Step 2: Enlarge ≡µ,B inductively as follows: at each step,
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• if (p, q) and (q, r) are in the relation obtained so far, add (p, r);

• if (pi, qi) are in the relation obtained so far for 1 ≤ i ≤ n, and if α ∈ Σ and
α(p1, . . . , pn), α(q1, . . . , qn) are defined, add (α(p1, . . . , pn), α(q1, . . . , qn)).

Let ≡Σ
µ,B be the union of all these relations.

Lemma 23 (Fernando)

(i) ≡Σ
µ,B is included in every total synonymy R s.t. Congr(R) and ≡µ ⊆ R.

(ii) ≡Σ
µ,B is a total synonymy and Congr(≡Σ

µ,B) holds.

(iii) There is a total synonymy satisfying Congr which extends ≡µ iff ≡Σ
µ,B

refines ≡µ.

The proof is not hard. For (i), one checks that the relation obtained at each
step of the inductive construction includes such an R. For (ii), only transitivity
and Congr need to be verified, and this too is done following the construction
of ≡Σ

µ,B . (iii) follows from (i) and (ii).
This construction, which is the inductive analogue of a co-inductive con-

struction used in Fernando [2], is somewhat similar to the one in Section 8.
But it is more direct and more general, adding (after the first step) just what
is clearly needed to obtain Congr while maintaining transitivity, whereas the
construction in 8.1 looks into the structure of terms (and insures Congr and
transitivity at the same time).

Now let B = GT as before and assume that X is closed under subterms. By
Fact 7 (Section 3.7), Congr then amounts to real compositionality. Using this,
and Fernando’s lemma above, it follows that

≡min = ≡Σ
µ,GT .(32)

To prove Theorem 12, it suffices by the lemma to prove

Lemma 24 (Fernando) If Congr(≡µ) and X is closed under subterms, then
≡Σ

µ,GT refines ≡µ.

This may look straightforward but isn’t quite, or so it seems. Suppose (p, q)
has been added at a certain stage in the construction of ≡Σ

µ,GT , and p, q ∈ X.
We want to conclude that p ≡µ q. The problem comes with transitivity: (p, q)
may have been added because (p, b) and (b, q) were already there, but we do not
know that b ∈ X, and therefore cannot straightforwardly apply an inductive
hypothesis to reach the desired conclusion. Fernando’s proof has the look of a
cut-elimination argument, viewing the addition of pairs to ≡Σ

µ,GT as derivations
in a formal system, and expanding out final applications of transitivity in an
intricate manner.10

10Though the complexities in the two proofs of Theorem 12 are perhaps comparable, Fer-
nando’s proof has the advantage of relying on a general fact about extending equivalence
relations to congruence relations, and of applying techniques familiar from proof theory when
a detailed look at the structure of terms in the partial term algebra is needed.
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One may ask if ≡Σ
µ,GT is the same relation as ≡1 in Section 8.2, but that

will not in general be the case, since Fernando’s construction starts with the
very fine addition of the identity relation and then inductively adds just what
is needed, whereas ≡∗ is obtained by first inductively performing the step in 8.1
and then letting the very coarse one-point extension take care of what’s left.

9.3 An Open Problem

There is one main case that the results mentioned here do not settle, namely,
when dom(µ) is cofinal in GT but the Husserl property fails.

Open Problem: For a cofinal semantics, what is the condition besides
compositionality which (in the absence of the Husserl property) guarantees
that it has a total compositional extension?

Recall from Hodges’ Theorem that in this case too, the fregean cover is compo-
sitional, but it does not extend the given semantics. Among the variants and
generalizations of that theorem, this problem may well be the hardest one.

9.4 Many-Sorted Algebra

In a sense the partial algebra approach to formal semantics generalizes the
approach via many-sorted algebras (cf. Section 2), since it is rather clear that
each many-sorted algebra

A = 〈(As)s∈S , (Fγ)γ∈Γ〉

can be turned into a one-sorted partial algebra EA with domain EA =
⋃

s∈S As,
whereas on the other hand not every partial algebra corresponds to a many-
sorted one.

In more detail: Given A, if Fγ is an operation with domain As1 × · · ·×Asn
,

define a partial operation γ from (EA)n to EA by

γ(e1, . . . , en) =
{

Fγ(e1, . . . , en), if ei ∈ Asi
, 1 ≤ i ≤ n

undefined, otherwise.

If A0 is the set of atoms in A, we let EA = 〈EA, A0, γ〉γ∈Γ (or, with the notation
used in Section 3.1 to emphasize the fact that the algebra is generated, EA =
〈[A0], γ〉γ∈Γ). Then EA corresponds to A in the sense that, if for strings t of the
form ‘Fγ(t1, . . . , tn)’ we define (inductively) t∗ = γ(t∗1, . . . , t∗n), whereas a∗ = a
when a is an atom, we have the following

Fact 25 t ∈ T (A) iff t∗ ∈ GT (EA).

(Recall that T (A) is the term algebra of A.) However, the syntactic categories
of EA need not correspond to the sorts of A. Suppose a ∈ As∩As′ , b ∈ As−As′ ,
and that Fγ is a unary operation with domain As′ . Then a �∼GT (EA) b (since
γ(a) but not γ(b) is grammatical) even though a and b have the common sort s.
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The possibility for an object to belong to more than one sort is, however,
the only obstacle:

Fact 26 If (As)s∈S is a partition of EA, then its corresponding equivalence
relation is ∼GT (EA).

Hendriks [4] (p. 141, footnote 10) argues that the antecedent in the above fact
is a natural requirement on many-sorted algebras that represent the syntax of
natural languages.

Thus, we can easily turn a many-sorted algebra into a one-sorted partial
algebra, and if the sorts partition the expressions, the sorts can be recovered
in the partial algebra, even though they are not primitive there. But there is
no equally obvious way to go in the opposite direction. This is because the
domain of an operation in a many-sorted algebra must be a cartesian product,
but in a partial algebra E there may well be an operation α such that, say,
(a, b), (a′, b′) ∈ dom(α), but (a, b′) �∈ dom(α).

A natural question is if the extension theorems discussed here (Hodges’ The-
orem and its variants) can be transferred to the many-sorted approach.

9.5 Syntactic Categories

Continuing the discussion above, the crucial issue seems to be which role (syn-
tactic) categories are supposed to play. If they are to exactly match intersub-
stitutability, we have seen that they can in principle be dispensed with (i.e.,
defined) in Hodges’ partial algebra approach, and likewise in the many-sorted
Montague approach, provided Hendriks’ requirement above is satisfied.

However, the linguistic intuitions behind the assignment of categories to ex-
pressions presumably go far beyond considerations about substitution, and may
even clash with such considerations. I shall not pursue the matter here, but
merely note that it would be interesting to see how other notions of syntac-
tic category could be integrated with Hodges’ abstract approach to grammar.
Recent work by Keenan and Stabler [12] is particularly relevant here. They
develop an abstract framework for grammars – with the goal, among others, to
apply a precise notion of syntactic (or, more generally, linguistic) invariant to
existing grammars – and they too construe grammars as partial algebras, the
main difference from Hodges’ approach being that primitive syntactic categories
are built into their notion of an expression. But, unless extra axioms are added,
these categories need not be related in any simple way to substitution.11

11It can be quite natural not to have the domains of grammar rules being cartesian products.
Borrowing an example from Keenan and Stabler [12] (cf. their grammar Kor), suppose a case
marking rule combines expressions of category NP with expressions of category Case (say,
-nom, -acc, -dat, . . . ). Not all NP’s need to combine with all cases; for example, a reflexive
pronoun cannot combine with -nom. As noted, this could be a problem for a total many-sorted
approach.
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