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Abstract

We study definability in terms of monotone generalized quantifiers
satisfying Isomorphism closure, Conservativity and Extension. Among
the quantifiers with the latter three properties — here called CE quan-
tifiers — one finds the interpretations of determiner phrases in natural
languages. The property of monotonicity is also linguistically ubiq-
uitous, though some determiners like an even number of are highly
non-monotone. They are nevertheless definable in terms of monotone
CE quantifiers: we give a necessary and sufficient condition for such de-
finability. We further identify a stronger form of monotonicity, called
smoothness, which also has linguistic relevance, and we extend our
considerations to smooth quantifiers. The results lead us to propose
two tentative universals concerning monotonicity and natural language
quantification. The notions involved as well as our proofs are presented
using a graphical representation of quantifiers in the so-called number
triangle.
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1 Introduction, motivation, and summary

1.1 CE quantifiers and NL quantifiers

We shall study in the context of finite models the logical expressive power
of monotone (generalized) quantifiers of a familiar kind: functions Q which
with each universe M associate a binary relation QM between subsets of M ,1

and which satisfy the conditions of Isomorphism closure, Conservativity and
Extension: For all M, M ′, all A, B ⊆ M , and A′, B′ ⊆ M ′,

(Isom) If (M, A, B) ∼= (M ′, A′, B′), then QM (A, B) ⇔ QM ′(A′, B′).

(Cons) QM (A, B) ⇔ QM (A, A ∩ B).

(Ext) If M ⊆ M ′, then QM (A, B) ⇔ QM ′(A, B).

Such quantifiers will be called CE quantifiers for short. Monotonicity is the
extra property that

(Mon) If A ⊆ M and B ⊆ B′ ⊆ M , then QM (A, B) ⇒ QM (A, B′).

The class of CE quantifiers is a natural one in many respects. Isomor-
phism closure guarantees that these quantifiers really are relations between
‘quantities’, i.e., between numbers. It furthermore allows one to treat quan-
tifiers as logical constants, which can be added to, say, first-order logic (FO).
If we, as in this paper, restrict attention to finite universes, then each CE
quantifier in fact corresponds to a binary relation among natural numbers,
and vice versa (Section 2.1, Definition 2). The class of CE quantifiers is
closed under Boolean operations. But perhaps the most familiar feature
of CE quantifiers is their close connection to certain expressions in natural
languages.

Many natural languages, among them English, contain a rich variety of
(simple and complex) determiner expressions, and many of these expressions
can be taken to denote, on each universe, binary relations between sets. Here
are some English determiners:

(1) every, some, no, the, at least five, no more than ten, exactly seven, all
but three, between five and eight, at most half of the, more than three
quarters of the.

And here are some corresponding (second-order) relations on a universe M :2

1Or, equivalently, classes of structures of the form (M, A, B), where A, B ⊆ M . Then
(M, A, B) ∈ Q ⇔ QM (A, B).

2We use the convention of letting the English expressions in italics stand for the quan-
tifier denoted by that expression. |X| is the cardinality of the set X.
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everyM (A, B) ⇐⇒ A ⊆ B

noM (A, B) ⇐⇒ A ∩ B = ∅

theM (A, B) ⇐⇒ |A| = 1 and A ⊆ B

at-least-fiveM (A, B) ⇐⇒ |A ∩ B| ≥ 5

all-but-threeM (A, B) ⇐⇒ |A − B| = 3

between-five-and-eightM (A, B) ⇐⇒ 5 ≤ |A ∩ B| ≤ 8

at-most-half-of-theM (A, B) ⇐⇒ |A ∩ B| ≤ 1/2 · |A|

The plausibility of these interpretations is immediate from the truth condi-
tions of sentences like

Every cat purrs.

No train was on time.

The boy cried.

At least five linguists have seen Gone with the wind.

All but three professors came to the meeting.

At most half of the students passed the exam.

Let us stipulate for this paper that a natural language (NL) quantifier is
one which is denoted by some determiner in some natural language. It then
appears to be generally true that

(U1) NL quantifiers are CE quantifiers.3

(U1) expresses a linguistic universal : a generalization across languages
concerning, in this case, the interpretation of certain kinds of expressions.
At first blush, it would appear quite possible that there could be a natu-
ral language which had a determiner which denoted, on each universe, a

3We hasten to add that (1) several other types of quantifiers can be associated with ex-
pressions in natural languages (for example, some determiner expressions denote ternary
relations between sets, and some syntactic constructions appear to require polyadic quanti-
fiers (relations between relations, not just between sets) for their interpretation; cf. Keenan
and Westerst̊ahl [7] for examples); (2) other expressions than determiners can involve CE
quantification; (3) some determiners like many and few have a strongly context-dependent
or intensional meaning — they are not considered here. For our purposes in this paper
the present restricted notion of an NL quantifier suffices.
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binary relation between sets, but which failed to satisfy Conservativity, or
Extension, or Isomorphism closure. For example, there could be a quanti-
fier sovery, which meant some on universes with less than 10 elements, and
every on other universes; this would be Isom and Cons, but not Ext. Or,
there could be a determiner denoting the Härtig quantifier I, one of the first
to be studied in the theory of generalized quantifiers, defined by

IM (A, B) ⇐⇒ A, B have the same cardinality;

this is Isom and Ext, but not Cons. There is no problem in constructing an
artificial (formal) language with such quantifiers. But it seems that there
are no such languages in nature.

Of course, even better than a true generalization is an account of why
it holds, and indeed a lot has been written on this theme concerning (U1),
which seems fairly well explained.4 We have nothing to add here, but we
shall formulate in this introductory section two other universals, both con-
cerned with monotonicity, that appear to be less familiar.

The notion of an NL quantifier is not intended to be precise. But some
CE quantifiers are clearly NL ones, and others are clearly not. In the first
category we have, to begin, the quantifiers exemplified in (1) above. In
particular, we may take all quantifiers of the form at-least-m (as well as more-
than-m, at-most-m, exactly-m, etc.), and likewise all proportional quantifiers
of the form more-than-m/n′ths-of-the (and their variants with at least, at
most, etc.), to be NL quantifiers (for 0 ≤ m < n). A prominent example
here is the quantifier most, which (let us stipulate) is taken in the sense of
more than half of the, i.e.,

mostM (A, B) ⇐⇒ |A ∩ B| > 1/2 · |A|.

Furthermore, in view of English determiners like some but not all, between
five and eight, etc., we may as well idealize a bit and take the class of NL
quantifiers to be closed under Boolean operations. This already gives us
a sizeable stock of NL quantifiers; some additional examples will appear
below.

Since any binary relation on numbers corresponds to a CE quantifier,
one may expect that many such relations belong to mathematics but have
nothing to do with natural languages, at least not in the sense of being
denoted by determiners. Here are two examples:

DivM (A, B) ⇐⇒ |A ∩ B| divides |A|.(2)

4See, for example, Barwise and Cooper [1], Keenan and Stavi [6], van Benthem [2],
Westerst̊ahl [11], Keenan and Westerst̊ahl [7].
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SqrtM (A, B) ⇐⇒ |A ∩ B| >
√
|A|.

These are mathematically natural CE quantifiers but apparently not NL
quantifiers, and of course lots of similar examples can be given.

Now, it was noticed early on that most NL quantifiers have some sort of
monotonicity properties. Barwise and Cooper [1] proposed a universal to the
effect that all quantifiers denoted by non-complex determiners are monotone,
or negations of monotone ones (like no = ¬some), and it might appear
reasonable to conjecture that all NL quantifiers are Boolean combinations
of monotone ones. Indeed, one easily checks that this is true of all the NL
quantifiers mentioned so far. However, the following quantifier (and Boolean
combinations from it) is a clear counterexample:

an-even-number-of M (A, B) ⇐⇒ |A ∩ B| is even.

But could it not be that an-even-number-of, though not a Boolean com-
bination of monotone quantifiers, is nevertheless definable in some other way
from such quantifiers? In order to discuss this issue, we need to introduce
one more class of quantifiers.

1.2 Simple unary quantifiers

A simple unary quantifier Q associates with each universe M a unary rela-
tion QM between subsets of M (i.e., a set of subsets of M), and satisfies the
version of isomorphism closure appropriate for the unary case:

(Isom) If (M, A) ∼= (M ′, A′), then QM (A) ⇔ QM ′(A′).5

Examples are the quantifiers ∀ and ∃ from FO logic (where ∀M (A) ⇔ A = M
and ∃M (A) ⇔ A 
= ∅), as well as ∃≥n, and the Rescher quantifier QR defined
by

QR
M (A) ⇐⇒ |A| > 1/2 · |M |.

There is a very close link between the class of simple unary quantifiers
and the class of CE quantifiers. As will be explained in Section 2.1, the
operation ·rel of relativization is a bijection from the first to the second
which preserves various properties, in particular monotonicity. (A simple

5In the logical literature (where isomorphism closure is part of the concept of a quan-
tifier), simple unary quantifiers are also called quantifiers of type 〈1〉 (or of type (1; 1)),
and CE quantifiers are quantifiers of type 〈1, 1〉 (or (1; 2)) satisfying Conservativity and
Extension.
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unary Q is monotone if QM (A) and A ⊆ A′ ⊆ M imply QM (A′).) For
example, ∀rel = all, ∃rel

≥n = at-least-n, and (QR)rel = most. Moreover, a
simple unary Q also corresponds to a binary relation between numbers, in
fact, the same relation that corresponds to the CE quantifier Qrel.

The latter fact should not lead one to believe, however, that simple unary
quantifiers and CE quantifiers are equally expressive. In fact, much more can
be expressed by CE quantifiers than by simple unary ones. A simple unary
Q allows us to relate the size of one set to the size of the universe, whereas
with the corresponding CE quantifier Qrel we can express the same relation
between (the sizes of) two arbitrary sets, provided the first is a subset of
the latter. An instance of the added expressive power of CE quantifiers
was proved already in Barwise and Cooper [1], namely, that most is not
definable in FO(QR): FO logic with QR as an added generalized quantifier.
(The notions of definability and of logics with generalized quantifiers are
explained in Section 3.1 below.) This is an instance of the result, proved
in Westerst̊ahl [12] and Kolaitis and Väänänen [8], that for Q simple unary
and monotone, Qrel is definable in FO(Q) if and only if Q is already FO
definable. The result about most was generalized further in Kolaitis and
Väänänen [8] by showing that most is not definable in terms of any finite
number of simple unary quantifiers.

Now, an-even-number-of is the relativization of the simple unary Qeven,
where

(Qeven)M (A) ⇐⇒ |A| is even.

These two quantifiers are equally expressive, since

(Qeven)M (A) ⇐⇒ an-even-number-of M (M, A)

and

an-even-number-of M (A, B) ⇐⇒ (Qeven)M (A ∩ B).

But are they definable from monotone quantifiers? The following is a con-
sequence of the Bounded Oscillation Theorem (Theorem 14 below), which
was proved in Väänänen [10]:

(3) an-even-number-of is not definable in terms of any (finite number of)
monotone simple unary quantifiers.
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1.3 Definability from monotone CE quantifiers

However, our starting-point in the present paper is the, perhaps surprising,
observation (Section 4) that

(4) an-even-number-of is nevertheless definable in terms of a monotone
CE quantifier.

(In fact, this is an instance of the more general observation that all inter-
sective quantifiers are so definable, cf. Section 4.1.) Since the CE quantifiers
are the proper ones to focus on in a natural language context, it becomes of
interest to know precisely which quantifiers are FO definable from monotone
CE quantifiers. Our main result in Section 4, Theorem 17, provides a char-
acterization of these. It generalizes the Bounded Oscillation Theorem from
simple unary to CE quantifiers. In the former case, the necessary and suffi-
cient condition was for a quantifier to have bounded oscillation, a property
which is easily visualizable when quantifiers are represented in the number
triangle (as binary relations between natural numbers, cf. Section 2.2). In
the CE case there is a corresponding property, which we call bounded color
oscillation.

Our Theorem 17 gives a way, in principle, to find quantifiers that are not
definable from monotone CE quantifiers. It turns out to be rather difficult,
however, to provide examples. We conjecture, but we do not prove, that the
divisibility quantifier Div, defined in (2) above, is such an example. But we
do construct another quantifier, with a regular if somewhat complex pattern
in the number triangle, and show that it does not have bounded color oscil-
lation. This proof makes use of van der Waerden’s Theorem, and it seems
to us that any such example would hinge on similar mathematical facts,
and in any case be rather far removed from natural languages. Therefore,
we propose the following, as a linguistic universal concerning NL quantifiers
and monotonicity:

(U2) All NL quantifiers are FO definable from monotone CE quantifiers.

(U2) is perhaps not a very bold statement, and one may wonder if it
can be strengthened. One way would be to put constraints on which kind
of defining sentences are allowed; we noted that Boolean combinations are
not enough but will not pursue this further here. But another strengthening
that might seem natural is to replace ‘CE’ by ‘NL’ in (U2). That would
single out monotone NL quantifiers as ‘building blocks’ from which all other
NL quantifiers are constructed.
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However, such a strengthened form of (U2) does not seem to be true.
Our main motivation for this claim does not take the form of a direct ar-
gument that some particular NL quantifier, say, an-even-number-of, is not
definable from monotone NL quantifiers.6 Rather, it follows from an analy-
sis of the kind of monotonicity which occurs in natural languages. It seems
that monotone NL quantifiers actually have a much stronger property than
monotonicity, which we call smoothness. Think of the monotonicity of Q
as saying that QM (A, B) holds whenever B is sufficiently ‘big’, compared
to A. So if you add an element to B, the result is still ‘big’, compared to
A. Smoothness means, roughly, that the result is still ‘big’ if you also add
an element to A and compare to that set. I.e., the standard of ‘bigness’
does not change drastically if we make a small change in the size of the
comparison set.

In Section 5 we look at some properties of smooth quantifiers. In par-
ticular, we give a necessary condition for a quantifier to be FO definable
from smooth CE quantifiers. It follows from this that an-even-number-of is
not so definable. Now, as noted, it does seem probable that the following
universal is true:

(U3) All monotone NL quantifiers are smooth.

It follows that the suggested strengthening of (U2) is not valid. If an-even-
number-of is an NL quantifier — and we see no reason to doubt that it is
— then (U2) is best possible in this respect.

1.4 Plan

The results of the paper are presented and proved in Sections 4 and 5, as
outlined above. In Section 2 we state precisely the properties and facts
about simple unary and CE quantifiers that are used. In particular, we
recall how to think about such quantifiers visually in the number triangle.
Section 3 presents the machinery we use to prove facts of definability and
undefinability in this paper. Some conclusions and questions are listed in
section 6.

The paper is essentially self-contained, with all definitions and proofs in
place, except that we in Section 3 state without proof a characterization
of FO(Q)-equivalence up to quantifier rank r (Proposition 9), that is quite

6Although this seems indeed to be the case. an-even-number-of is definable from a
monotone CE quantifier (Proposition 18), but that quantifier appears not to be NL. We
discuss this issue further at the end of Section 4.1.
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familiar from the literature. Also, we use van der Waerden’s Theorem at
one point in section 4.

Finally, why finite models? One reason is that some NL quantifiers, like
the proportional ones, only make sense for finite sets. On the other hand,
others work for all sets, and a few (e.g. a-finite-number-of ) even presuppose
infinite models. Another reason could be that finite structures is the ap-
propriate context for the study of computational complexity, for which the
theory of generalized quantifiers on finite models is quite relevant. However,
that is not our topic here. Rather, our main motivation for restricting at-
tention to finite sets is that this allows a simple and visual representation of
CE and simple unary quantifiers in the ‘number triangle’, a representation
which goes back to van Benthem [2], and which suggested several of the
notions and results in this paper.

2 Representation and properties of simple unary
and CE quantifiers

2.1 Quantifiers as binary relations in N

CE quantifiers are relativizations of simple unary quantifiers, and can be
viewed as the same relations between numbers. We now recapitulate these
facts.

Definition 1 If Q is simple unary, its relativization Qrel is defined by

(Qrel)M (A, B) ⇐⇒ QA(A ∩ B),

for all M and all A, B ⊆ M . (The operation of relativization can be ap-
plied to quantifiers of any type: one adds a new set argument and consid-
ers the behavior of the given quantifier with that set as universe and the
arguments restricted to it. In particular, if Q is CE, Qrel is defined by
(Qrel)M (A, B, C) ⇔ QA(A ∩ B, A ∩ C).)

We allow that A = ∅ here, and in general that M = ∅ for quantifiers QM

over M . So, for example, ∀∅(∅) holds, but not ∃∅(∅) or QR
∅ (∅).

Definition 2 (a) Let Q be simple unary. We define a binary relation,
also denoted Q, over the set N of natural numbers as follows:

Q(k, m) ⇐⇒ there is M and A ⊆ M such that
|M − A| = k, |A| = m, and QM (A).
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(b) Let Q be CE. Define a binary relation, also denoted Q, over N by:

Q(k, m) ⇐⇒ there is M and A, B ⊆ M such that
|A − B| = k, |A ∩ B| = m, and QM (A, B).

Fact 3 (a) If Q is simple unary, then for all M and all A ⊆ M ,

QM (A) ⇐⇒ Q(|M − A|, |A|).

(b) If Q is CE, then for all M and all A, B ⊆ M ,

QM (A, B) ⇐⇒ Q(|A − B|, |A ∩ B|).

(c) Q is CE iff Q = Qrel
0 for some simple unary Q0.

(d) If Q is simple unary, then, for all k, m ∈ N,

Q(k, m) ⇐⇒ Qrel(k, m).

Proof. (a): The left to right direction is immediate by Definition 2 (a). The
other direction follows from isomorphism closure, since if |M−A| = |M ′−A′|
and |A| = |A′|, then (M, A) ∼= (M ′, A′).

(b): Similar to (a), but here ones uses Conservativity, Extension, and
isomorphism closure to verify that if |A − B| = |A′ − B′| and |A ∩ B| =
|A′ ∩ B′|, then QM (A, B) ⇔ QM ′(A′, B′).

(c): One checks directly from Definition 1 that Qrel is always a CE
quantifier. In the other direction, suppose Q is CE, and define Q0 by
(Q0)M (A) ⇔ QM (M, A). By Conservativity and Extension it follows that
Q = Qrel

0 .
(d): Immediate from Definitions 1 and 2. �

So, for example,

∀(k, m) ⇔ k = 0 ⇔ all(k, m),

∃≥3(k, m) ⇔ m ≥ 3 ⇔ at-least-3 (k, m),

QR(k, m) ⇔ m > 1/2 · (k + m) ⇔ m > k ⇔ most(k, m),

Qeven(k, m) ⇔ m is even ⇔ an-even-number-of (k, m).
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Figure 1: Some quantifiers in the number triangle.
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Figure 2: A point at level n

2.2 Quantifiers in the number triangle

The number triangle is simply N×N, placed as a triangle with (0, 0) at the
top. So a simple unary or CE quantifier Q is a subset of N × N, which we
represent by putting a “+” at those (k, m) which belong to Q, and a “−”
elsewhere, as in Figure 1.

The n′th level of the number triangle (Figure 2) is the ‘diagonal’

(n, 0), (n − 1, 1), . . . , (n − j, j), . . . , (0, n).

Here n is the size of the universe for simple unary quantifiers, and of the
first (set) argument for CE quantifiers.
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Figure 3: A monotone quantifier.

2.3 Monotonicity

Consider first a simple unary quantifier Q. Clearly, Q is monotone iff on
each level n, there is a smallest size, say f(n), such that if |M | = n and
B ⊆ M ,

QM (B) ⇐⇒ |B| ≥ f(n).(5)

If QM (B) happens to be false for all B ⊆ M we stipulate that f(n) = n+1;
then (5) still holds. This motivates the following

Definition 4 If f : N → N is a function such that for all n ∈ N, f(n) ≤ n+1,
define the simple unary quantifier Qf by

(Qf )M (B) ⇐⇒ |B| ≥ f(|M |),

or, in other words,

Qf (n − j, j) ⇐⇒ j ≥ f(n).

Fact 5 (a) A simple unary quantifier is monotone iff it is equal to Qf for
some f as in Definition 4.

(b) A CE quantifier is monotone iff it is of the form Qrel
f . We have

(Qrel
f )M (A, B) ⇐⇒ |A ∩ B| ≥ f(|A|).

Thus, a monotone quantifier (simple unary or CE) has the characteristic
pattern that if there is a + on some level, then all points to the right on the
same level have a + too (Figure 3).

12



2.4 Duals

The dual Qd of a simple unary quantifier Q is defined by

Qd
M (A) ⇐⇒ ¬QM (M − A).

Likewise, if Q is CE,

Qd
M (A, B) ⇐⇒ ¬QM (A, A − B).

Then

(Qd)rel = (Qrel)d,

and we have examples like the following: alld = some, more-than-nd = all-
but-at-most-n, mostd = at-least-half. In the number triangle, we obtain the
Qd from Q by first changing all +′s to −′s and vice versa, and then rotating
the triangle 180◦ along the vertical axis through (0, 0):

Qd(k, j) ⇐⇒ ¬Q(j, k).(6)

Furthermore, we have the following

Fact 6 A quantifier is monotone iff its dual is monotone. In fact,

(Qf )d = Qfd ,

where

fd(n) = n − f(n) + 1.

Likewise,

(Qrel
f )d = (Qd

f )rel = (Qfd)rel.

3 Definability, logics, and FO(Q)-equivalence

3.1 Expressive power

To formalize the notion of a property (of models) expressible by means of Q
and standard first-order machinery, one constructs the logical language, or
simply the logic, FO(Q), as follows: Add a variable-binding operator, also
denoted ‘Q’, to FO logic with the new formation rule

13



(Q-syn) If ϕ and ψ are formulas, so is

Qx(ϕ, ψ)

(or ‘Qxϕ’ in the simple unary case),

and with the corresponding semantic rule

(Q-sem) If M is a model with universe M ,

M |= Qx(ϕ, ψ)[a] ⇐⇒ QM (ϕx,M,a, ψx,M,a)

(and similarly in the simple unary case),

where, if ϕ = ϕ(x,y), ψ = ψ(x,y) have free variables among x,y and a is a
sequence of elements of M corresponding to y,

ϕ(x,y)x,M,a = {a ∈ M : M |= ϕ(a,a)}.

Similarly for logics FO(Q), where Q = {Q0, . . . , Qu−1} is a set of (simple
unary or CE) quantifiers. If FO(Q) and FO(Q′) are two such logics we say
that FO(Q) ≤ FO(Q′) if every FO(Q)-sentence is logically equivalent to
a FO(Q′)-sentence, and that FO(Q) ≡ FO(Q′) if FO(Q) ≤ FO(Q′) and
FO(Q′) ≤ FO(Q), i.e., if the two logics have the same expressive power.

Expressive power can also be formulated in terms of definability of quan-
tifiers. Q is definable in FO(Q) if there is a sentence ϕ in this logic, with
two unary predicates as the only non-logical symbols, such that

QM (A, B) ⇐⇒ (M, A, B) |= ϕ.

Similarly for simple unary Q. Then it holds that

FO(Q) ≤ FO(Q′) iff each quantifier in Q is definable in FO(Q′).(7)

In the rest of this paper we will be concerned with the question

(*) When is Q definable in FO(Q)?

for certain choices of Q and Q. Since Qd is definable from Q, by

Qd
M (A, B) ⇐⇒ (M, A, B) |= ¬Qx(Ax,¬Bx),

we can always assume, when asking (*), that Q is closed under duals, and
also that it contains some (or ∃). This in fact simplifies certain things that
follow.
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Next, a simple unary Q is always definable from Qrel:

QM (A) ⇐⇒ (M, A) |= Qrelx(x = x, Ax).(8)

So if Q is definable in FO(Q), it is definable in FO(Qrel), where Qrel =
{Qrel

0 , . . . , Qrel
u−1} and the Qt are simple unary. But (as we noted in Section

1.2) a quantifier might be definable in FO(Qrel) without being definable in
FO(Q).

A final observation in connection with (*) is that, when the logic is of the
form FO(Qrel), we can restrict attention to the case when Q, the quantifier
about which we ask whether it is definable, is simple unary. This follows
from

Lemma 7 The following are equivalent, for a simple unary quantifier Q:7

(a) Q is definable in FO(Qrel).

(b) Qrel is definable in FO(Qrel).

Proof. That (b) implies (a) is clear from (8). In the other direction, assume
(a). It is a general (and not hard to prove, using induction on the defining
formula) fact about relativization that

(9) If Q is definable in FO(Q) then Qrel is definable in FO(Qrel).

But also,

(10) (Qrel)rel is definable from Qrel.

This is because relativizing first to B and then to A is the same as relativizing
once to A ∩ B. From these observations, (b) follows. �

3.2 Criteria for FOr(Q)-equivalence

In proving results about expressive power, it is normally undefinability that
requires most work, since, in principle, you have to go through the whole lan-
guage and verify that no definition does the job. Various methods have been
employed, for example, quantifier elimination (starting with Mostowski), or
counting arguments (cf. Hella, Luosto and Väänänen [5]). A straightfor-
ward yet powerful and very general method (which goes back to R. Fräıssé
and A. Ehrenfeucht) is based on the following idea: To prove that one logic

7In fact, it holds for quantifiers of arbitrary types.
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is more powerful than another, find two models which are close in the sense
that they cannot be distinguished in the second logic (at least by sentences
of a certain complexity), but so that they can be distinguished in the first.
This is the method we shall employ here, so we have to begin by defining a
suitable notion of closeness.

3.2.1 Closeness in terms of partial isomorphisms

By the remarks in the previous subsection, it will be enough for our purposes
to consider models of the form M = (M, A) with A ⊆ M , and logics of the
form FO(Q), where Q contains only CE quantifiers, among them some, and
is closed under duals.8 M partitions M into the 2 sets M − A and A, from
which we can form the 4 ‘unions’

U1,M = ∅, U2,M = A, U3,M = M − A, U4,M = M.

We let B�C = (B −C)∪ (C −B) be the symmetric difference between
B and C, and we say that C is an X-variant of B if B�C ⊆ X. If X is
small, this means that B and C are ‘almost’ the same.

If M = (M, A), M′ = (M ′, A′), a1, . . . , an ∈ M , and a′1, . . . , a′n ∈ M ,
then

(a1, . . . , an) � (a′1, . . . , a′n)

means that {(ai, bi) : 1 ≤ i ≤ n} is a partial isomorphism, i.e., that

ai = aj ⇐⇒ a′i = a′j ,

and

ai ∈ A ⇐⇒ a′i ∈ A′.

Now we can give one formulation of the notion of closeness. Let r > 0.

Definition 8

M ≈r,Q M′

holds iff whenever Qt ∈ Q, (a1, . . . , ar−1) � (a′1, . . . , a′r−1), X1, X2 are
{a1, . . . , ar−1}-variants of unions Ui1,M, Ui2,M, respectively, and X ′

1, X
′
2 are

8But what follows in this subsection generalizes easily to the case of models of the form
(M, A1, . . . , An), and arbitrary monadic quantifiers.
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the corresponding9 {a′1, . . . , a′r−1}-variants of Ui1,M′ , Ui2,M′ , it holds that

(Qt)M (X1, X2) ⇐⇒ (Qt)M ′(X ′
1, X

′
2),(11)

or, equivalently, that

Qt(|X1 − X2|, |X1 ∩ X2|) ⇐⇒ Qt(|X ′
1 − X ′

2|, |X ′
1 ∩ X ′

2|).

Roughly, M ≈r,Q M′ iff whenever a Qt ∈ Q relates two unions of par-
tition sets in M, it also relates the corresponding unions in M′, and vice
versa, even after at most r − 1 elements have been ‘moved around’ in M,
and at most r − 1 elements in M′, provided they were ‘moved around’ in
the same way.

When r increases, with fixed (finite) M and M′, ≈r,Q eventually becomes
the relation of isomorphism, since

(12) If M ≈r,Q M′ then either |A|, |A′| ≥ r or |A| = |A′|, and similarly for
M − A and M ′ − A′.

(12) follows from our assumption that some (or ∃) is in Q: If, for example,
|A| < r but |A′| > |A|, then removing |A| elements from A, and the same
number of elements from A′, we obtain X1 = X2 = ∅ in M, but X ′

1 = X ′
2 
= ∅

in M′, contradicting (11) when Qt = some.

Now to connect this to the truth or falsity of sentences in models, we
need to recall the notion of quantifier rank of an FO(Q)-formula ϕ; i.e, the
maximum number of nestings of quantifiers from Q that occur in ϕ. We
use FOr ro denote the fragment of FO consisting of formulas with quantifier
rank ≤ r. M and M′ are FO(Q)-equivalent, in symbols,

M ≡FO(Q) M′,

if the same FO(Q)-sentences are true in each.

M ≡FOr(Q) M′

means that this holds for sentences of quantifier rank at most r.
A proof of the following proposition can be found in Westerst̊ahl [11],

where some easy applications to undefinability results are also made. A thor-
oughgoing overview of definability among monadic quantifiers, in particular
simple unary ones, is given in Väänänen [10].

9If C is an {a1, . . . , ar−1}-variant of B, then the corresponding {a′
1, . . . , a′

r−1}-variant
of B′ is (B′ − {a′

i : ai /∈ C}) ∪ {a′
i : ai ∈ C}.
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Proposition 9 Let Q be a finite set of CE quantifiers containing some.10

Then the following are equivalent:

(a) M ≈r,Q M′

(b) M ≡FOr(Q) M′

3.2.2 Closeness in terms of colors

It will be convenient to give a slightly different formulation of closeness, this
time in terms of colors. By a coloring of a set X we mean simply a function
c from X to some finite set C. The elements of C are called colors but can
be any objects, as long as there are a finite number of them.

We shall color structures of the form M = (M, A), relative to r and Q.
The coloring might seem slightly unintuitive at first blush, but the sole point
is that the color of M must contain information about how each Qt ∈ Q
behaves on pairs (X1, X2), where the Xi come from ∅, A, M−A, M by adding
or deleting at most r − 1 elements (in all) from M . In general there would
be 16 forms of such pairs to consider, but since Q is closed under duals and
contains only CE quantifiers, it turns out we can restrict attention to the
following 5 (modulo addition or removal of at most r − 1 elements):

(M, A), (M, ∅), (A, ∅), (M − A, ∅), (∅, ∅)

and only the first 4 of these depend on M. Thus, there are 4 cases to consider
(s = 0, . . . , 3 below). We give the definition and then illustrate how it works
by means of an example.

Definition 10 Given M, r, and Q = {Q0, . . . , Qu−1} as above, let11

cr,Q(M) =(13)
{(s, t, j, m) : t ∈ [0, u) & j, m ∈ (−r, r) & |j + m| < r &

((s = 0 & Qt(|M − A| + m, |A| + j) & j + m ≤ 0)
or (s = 1 & Qt(|M | + m, j) & j + m ≤ 0)
or (s = 2 & Qt(|A| + m, j) & j + m ≤ |M − A|)
or (s = 3 & Qt(|M − A| + m, j) & j + m ≤ |A|))}.

Cr,Q is the set of colors of the form cr,Q(M). Clearly Cr,Q is finite.
10Actually, type 〈1, 1〉 quantifiers satisfying Isom will do. Closure under duals is not

used in this result.
11[0, u) is the interval 0, 1, . . . , u− 1, and (−r, r) is −(r− 1), . . . ,−1, 0, 1, . . . , r− 1, etc.

If j is an integer, |j| is its absolute value.
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The side conditions on j + m in each case reflect the fact that we are
only allowed to ‘move around’ elements inside the universe M , not to add
elements to it. In the case s = 0, for example, we add (if m > 0) or delete
(if m < 0) m elements to M −A, and we add or delete j elements to A. As
long as j + m ≤ 0, this can be done by moving around elements inside M .

To look at another case in more detail, consider the 4-tuple (2, 3,−2, 4)
(assuming r > 4). It concerns the behavior of Q3 on a pair of sets, where
the first is obtained by removing 2 elements, say a1, a2, from A, and the
second by adding 4 elements to ∅. Of these, two can be the ones removed
from A, and two, say b1, b2, in general would have to come from M − A.
Thus, it is necessary that −2 + 4 = 2 ≤ |M −A|. Letting X1 = A ∪ {b1, b2}
and X2 = {a1, a2, b1, b2}, we then have

(2, 3,−2, 4) ∈ cr,Q(M) ⇐⇒ Q3(|A| − 2, 4)
⇐⇒ Q3(|X1 − X2|, |X1 ∩ X2|)
⇐⇒ (Q3)M (X1, X2).

Next, we observe that all these colors are describable by FOr(Q)-sentences.

Lemma 11 For each c ∈ Cr,Q there is a sentence ϕc in FOr(Q) such that
for all M,

M |= ϕc ⇐⇒ cr,Q(M) = c.

Proof. It will suffice to find FOr(Q)-sentences ψstjm satisfying

M |= ψ0tjm ⇐⇒ Qt(|M − A| + m, |A| + j) & j + m ≤ 0(14)
M |= ψ1tjm ⇐⇒ Qt(|M | + m, j) & j + m ≤ 0(15)
M |= ψ2tjm ⇐⇒ Qt(|A| + m, j) & j + m ≤ |M − A|(16)
M |= ψ3tjm ⇐⇒ Qt(|M − A| + m, j) & j + m ≤ |A|.(17)

For then, if Z is the (finite) set {(s, t, j, m) : s ∈ [0, 3] & t ∈ [0, u) & j, m ∈
(−r, r) & |j + m| < r}, we can let

ϕc =
∧

(s,t,j,m)∈c

ψstjm ∧
∧

(s,t,j,m)∈Z−c

¬ψstjm.

Let us look at (16) as an example; the others are similar. In this case
we may assume j ≥ 0.

Case 1. m ≥ 0. Let ψ2tjm say

∃ distinct x1, . . . , xj+m ∈ M − A such that
(Qt)M (A ∪ {x1, . . . , xj+m}, {x1, . . . , xj}).
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Then (16) holds. Since j + m < r, this can be expressed in FOr(Q).

Case 2. m < 0. Let m′ = −m.

Case 2.1. j ≤ m′. Now |M − A| ≥ j holds trivially. Let ψ2tjm say

∃ distinct x1, . . . , xm′ ∈ A such that
(Qt)M (A − {xj+1, . . . , xm′}, {x1, . . . , xj}).

Then (16) holds.

Case 2.2. j > m′. (Cf. the example discussed after Definition 10.) This
time, let ψ2tjm say

∃ distinct x1, . . . , xj−m′ ∈ M − A and distinct y1, . . . , ym′ ∈ A s.t.
(Qt)M (A ∪ {x1, . . . , xj−m′}, {x1, . . . , xj−m′ , y1, . . . , ym′}).

Again it is clear that (16) holds. �

Now we get our second characterization of the ‘closeness’ relation ≡FOr(Q):

Proposition 12 Let Q be a finite set of CE quantifiers containing some
and closed under duals. The following are equivalent, for r > 0:

(a) cr,Q(M) = cr,Q(M′)

(b) M ≡FOr(Q) M′

Proof. (b) ⇒ (a): This is a consequence of Lemma 11.

(a) ⇒ (b): Assume cr,Q(M) = cr,Q(M′), with M = (M, A) and M′ =
(M ′, A′). Suppose (a1, . . . , ar−1) � (a′1, . . . , a′r−1), let X1, X2 be {a1, . . . , ar−1}-
variants of two of ∅, A, M − A, M , and let X ′

1, X
′
2 be the corresponding

{a′1, . . . , a′r−1}-variants of the same two sets. As an example, suppose X1

and X2 are both {a1, . . . , ar−1}-variants of A; the other cases are simi-
lar. It is easy to see that there are j, m ∈ (−r, r) such that |j + m| < r,
j + m ≤ |M −A|, |M ′ −A′|, and |X1 ∩X2| = |A|+ m, |X ′

1 ∩X ′
2| = |A′|+ m,

|X1 − X2| = |X ′
1 − X ′

2| = j. Take any t ∈ [0, u) and let Qd
t = Qt′ . We now
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Figure 4: A boundedly oscillating quantifier.

have (cf. (6) in Section 2.4)

(Qt)M (X1, X2) ⇐⇒ Qt(j, |A| + m)
⇐⇒ ¬Qt′(|A| + m, j)
⇐⇒ (2, t′, j, m) 
∈ cr,Q(M)
⇐⇒ (2, t′, j, m) 
∈ cr,Q(M′)
⇐⇒ ¬Qt′(|A′| + m, j)
⇐⇒ Qt(j, |A′| + m)
⇐⇒ (Qt)M ′(X ′

1, X
′
2).

By definition, this means that M ≈r,Q M′, so (b) follows from Proposition 9.
�

4 Definability from monotone quantifiers

4.1 Definability from Qf vs. from Qrel
f

Consider first the question of when (a simple unary) Q is definable from
monotone simple unary quantifiers, i.e., from quantifiers of the form Qf .
This question has an answer which is easily representable in the number
triangle. The following definition and result are from Väänänen [10].

Definition 13 The oscillation of a simple unary or CE quantifier Q at level
n in the number triangle is the number of times Q switches from + to − or
vice versa at that level. Q has bounded oscillation if there is a finite bound
m on the oscillation of Q (at any level). See Figure 4.

For example, any monotone quantifier has bounded oscillation (with
m = 1). The quantifier either-between-3-and-5-or-more-than-8 has bounded
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oscillation (with m = 3). an-even-number-of is a typical quantifier with un-
bounded oscillation.

Theorem 14 (Bounded Oscillation Theorem [10]) Q is definable in
terms of quantifiers of the form Qf if and only if Q has bounded oscillation.

This is no longer true if we consider definability in terms of quantifiers
of the form Qrel

f instead. Indeed, an-even-number-of is definable from one
such quantifier. This is a consequence of the next observation.

In the linguistic literature a CE quantifier Q is often called intersective
if the relation QM (A, B) only depends on (the size of) A ∩ B, i.e., if

|A ∩ B| = |A′ ∩ B′| implies (QM (A, B) ⇔ QM ′(A′, B′))

(for A, B ⊆ M and A′, B′ ⊆ M ′).12 When Q is CE, this condition is easily
seen to be equivalent to the symmetry of Q, i.e.,

QM (A, B) =⇒ QM (B, A).

Examples are some, between-three-and-six, and an-even-number-of, but not
e.g. most or all.13

Another equivalent characterization of intersectivity is the following:

There is a set S ⊆ N such that for all M and all A, B ⊆ M ,
QM (A, B) ⇐⇒ |A ∩ B| ∈ S.

From this we also see that if Qrel is intersective then Qrel is definable in
terms of Q, and that

QM (A) ⇐⇒ |A| ∈ S.(18)

Proposition 15 If a CE quantifier is intersective, then it is definable in
FO(Qrel

f ) for some function f .

Proof. We may assume (cf. the remarks above, or Lemma 7) that the quan-
tifier Q in question is simple unary and as in (18). Define

f(n) =
{

1 if n ∈ S
2 if n 
∈ S.

12Intersectivity has been invoked in the context of various natural language phenomena;
cf. Keenan and Westerst̊ahl [7].

13On the other hand, all and all-but-four (but not most) are co-intersective, in that
QM (A, B) only depends on A − B, or in other words that the dual is intersective. So
Proposition 15 below holds for co-intersective quantifiers as well.
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Then

QM (A) ⇐⇒ 1 ≥ f(|A|)
⇐⇒ A = ∅ or ∃a ∈ A(|{a}| ≥ f(|A|))
⇐⇒ (M, A) |= ¬∃xAx ∨ ∃x(Ax ∧ Qrel

f y(Ay, y = x))(19)

(assuming 0 ∈ S; otherwise delete the first disjunct). �

Looking at the proof of this proposition, can we conclude anything about
the expressibility in English of an-even-number-of in terms of monotone
quantifiers? The question is vague but appears to split into two parts:
whether Qrel

f in the proof (when S is the set of even numbers) is an NL
quantifier, and whether the form of the definition itself (the sentence used
in (19)) is ‘natural’ in English.

As to the first issue, note that Qrel
f is defined by

(20) (some(A, B) ∧ an-even-number-of(A, A))
∨ (at-least-two(A, B) ∧ an-odd-number-of(A, A)).

This condition is readily expressed in English as

Either some A’s are B and there is an even number of A’s, or at least
two A’s are B and there is an odd number of A’s.

However, the issue at hand is not whether the condition is easily expressible
in English, but whether it can be seen as the denotation of an English
determiner. And it seems to us that this is not the case — note that (20) is
not a Boolean combination of determiner denotations.

Irrespective of this, it also seems to us that the defining sentence used in
(19), though quite natural in FO(Qrel

f ), is not so easily expressed in English,
the main problem being the unit set occurring as the second argument of
Qrel

f .14 We conclude, then, that although an-even-number-of is logically
definable from a monotone CE quantifier, it does not seem to be expressible
by an English determiner phrase involving a monotone NL quantifier.

4.2 Color oscillation

To generalize Theorem 14 to the case of definability in terms of monotone
CE quantifiers we first need to generalize the notion of bounded oscillation.

14This second argument should correspond to an English VP. One might try, relative
to some A introduced in the first part of the sentence, the VP “is identical to it”. But
this seems strained. The use of the identity relation in English appears to be much more
restricted than its use in FO languages — it would be interesting to know exactly how.
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Let α be any coloring of the set N of natural numbers. α induces a
coloring of the number triangle N

2 as follows:

α(i, j) = (α(i), α(j)).

The color class of a point in the number triangle is the equivalence class
of that point under the relation of having the same (induced) color. On
each level of the triangle, the points are partitioned into the color classes
restricted to that level.

Definition 16 A (simple unary or CE) quantifier Q has bounded color os-
cillation if there is a coloring α of N and a finite bound m such that, at
each level n, Q oscillates (i.e., changes from + to − or vice versa) at most
m times inside each color class.

Note first that it is crucial that we consider only induced colorings of
N

2 — otherwise every CE quantifier would have bounded color oscillation
(with 2 colors: one for the +′s and one for the −′s).

If Q has bounded oscillation — in particular, if it is monotone — then
Q trivially has bounded color oscillation, with just one color. Now let α(n)
= red, if n is even, and α(n) = green otherwise. There are 4 induced colors
(ordered pairs of red and green). If Q is the quantifier an-even-number-of
then, at each level, and inside each color class, Q does not oscillate at all.
Thus Q has bounded color oscillation.

Here is a slightly more complex example of a CE quantifier with bounded
color oscillation (same colors as above, m = 2):

QM (A, B) ⇔ |A ∩ B| is even and 1/2 · |A| ≤ |A ∩ B| ≤ 3/4 · |A|,
or |A ∩ B| is odd and 1/3 · |A| ≤ |A ∩ B| ≤ 2/3 · |A|.

One might think this is far removed from things we say in natural languages.
However, according to our somewhat idealized notion of an NL quantifier in
Section 1.1, this is an NL quantifier, since it is a Boolean combination of
some simple proportional quantifiers and an-even-number-of.

The next theorem is our main result, of which Theorem 14 is a special
case.

Theorem 17 Q is definable in terms of quantifiers of the form Qrel
f if and

only if Q has bounded color oscillation.

Proof. From right to left: This is the easier direction. Suppose Q has
bounded color oscillation, relative to a coloring α of N and with the bound
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m. Inside each color class, Q divides the number triangle into at most m+1
sectors, containing alternately only +′s or only −′s. These sectors can be
described using certain functions gi such that each interval [gi(n), gi+1(n)),
restricted to points in the color class, constitutes one sector at level n. More-
over, each color c can be represented by its characteristic function fc. Then
(n− j, j) is in Q iff there are colors c, d such that (n− j, j) is in one of the +
sectors with the induced color (c, d). The number of colors is finite, and the
number of sectors is bounded by m + 1. This means that Q can be defined
in terms of quantifiers of the form Qrel

fc
and Qrel

gi
, as follows.

For each α-color c, define

fc(n) =
{

0 if α(n) = c
1 otherwise.

Next, given n and α-colors c, d, let C = {j ∈ [0, n] : α(n−j) = c and α(j) =
d}. We select numbers Jn(s, c, d) for 0 ≤ s ≤ m + 2 which enumerate in
order of magnitude the oscillation points of Q at level n inside C:

If C = ∅, let each Jn(s, c, d) = 0. Otherwise, if

C = {x0, . . . , xp} with x0 < . . . < xp,

call xi a + point if (n − xi, xi) ∈ Q, and a − point otherwise. Define

• Jn(0, c, d) = x0 and Jn(m + 2, c, d) = xp + 1.

• Jn(1, c, d) is the first − point in C if it exists; otherwise Jn(1, c, d) =
xp + 1.

• For s ∈ [1, m], let Jn(s + 1, c, d) be the first point in C whose sign
is different from Jn(s, c, d) if there is such a point; otherwise we let
Jn(s + 1, c, d) = xp + 1.

From this we see that, for j ∈ C,

Q(n − j, j) ⇐⇒ ∃t (Jn(2t, c, d) ≤ j < Jn(2t + 1, c, d)).

Now let gs
c,d(n) = Jn(s, c, d). Then, Q(n− j, j) iff there are α-colors c, d and

a number t such that 0 ≤ 2t ≤ m + 1 and

(i) fc(n − j) = 0

(ii) fd(j) = 0

(iii) g2t
c,d(n) ≤ j < g2t+1

c,d (n).
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Now (i) is expressed by the sentence

ψc = Q
rel

fc
x(Ax ∧ ¬Bx, x 
= x),

(ii) by

θd = Q
rel

fd
x(Ax ∧ Bx, x 
= x),

and (iii) by

ϕcdt = Q
rel

g2t
c,d

x(Ax, Bx) ∧ ¬Q
rel

g2t+1
c,d

x(Ax, Bx).

That is, Q is definable as the finite disjunction
∨

c,d∈range(α)
0≤2t≤m+1

(ψc ∧ θd ∧ ϕcdt).

Now, for the other direction, suppose Q is FOr(Q)-definable, where Q =
{Q0, . . . , Qu−1} is closed under duals, contains some, and Qt = Qrel

ft
for

t ∈ [0, u). Define a coloring α by

α(j) = {(t, z, s) : ft(j + z) = s, t ∈ [0, u), z ∈ (−r, r), s ∈ [0, r)},

and let m = u(2r−1)2. That is, j1 and j2 have the same α-color iff ft(j1+z)
and ft(j2 + z) (t ∈ [0, u), z ∈ (−r, r)) agree on small (< r) values. We shall
use Proposition 12 to show that within each of the induced color classes
there are at most m oscillations at every level.

First note that since some ∈ Q, we may assume f0 is the constant
function defined by f0(n) = 1 for all n ≥ 0. This means that for z ∈ [0, r),
(0,−z, 1) ∈ α(n) ⇔ n ≥ z, and so

For z ∈ [0, r), α(n1) = α(n2) implies n1 ≥ z ⇔ n2 ≥ z.(21)

Now we make the following

Claim: For any (n − j1, j1) and (n − j2, j2) in the same color class, if

ft(n+ y)+ z ≤ j1 ⇔ ft(n+ y)+ z ≤ j2 for t ∈ [0, u) and y, z ∈ (−r, r),

then Q(n − j1, j1) ⇔ Q(n − j2, j2).
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Note that m = u(2r − 1)2 is the variation of (t, y, z) in the Claim. So if
Q changes sign at some level inside some color class, there must be t, y, z
violating the condition of the Claim, and this can happen at most m times.

To prove the Claim, it suffices by Proposition 12 to show that, under the
given assumptions,

c1 = cr,Q((n − j1, j1)) = cr,Q((n − j2, j2)) = c2

(where (n − j1, j1) is a structure (M, A) such that |M | = n and |A| = j1,
etc.). We have

(0, t, y, z) ∈ c1 ⇒ y, z ∈ (−r, r), |y + z| < r, Qt(n − j1 + z, j1 + y)
⇒ j1 ≥ ft(n + y + z) − y (since Qt = Qrel

ft
)

⇒ j2 ≥ ft(n + y + z) − y (by assumption in Claim)
⇒ Qt(n − j2 + z, j2 + y)
⇒ (0, t, y, z) ∈ c2.

The next case uses only the fact that the two points are at the same
level:

(1, t, y, z) ∈ c1 ⇒ y, z ∈ (−r, r), |y + z| < r, Qt(n + z, y)
⇒ (1, t, y, z) ∈ c2.

Next,

(2, t, y, z) ∈ c1 ⇒ y, z ∈ (−r, r), |y + z| < r, y + z ≤ n − j1,

and Qt(j1 + z, y)
⇒ y ≥ s = ft(j1 + y + z) and y + z ≤ n − j1

⇒ y ≥ s = ft(j2 + y + z) (since α(j1) = α(j2)) and
y + z ≤ n − j2 (by (21), since α(n − j1) = α(n − j2))

⇒ Qt(j2 + z, y) and y + z ≤ n − j2

⇒ (2, t, y, z) ∈ c2.

The case when (3, t, y, z) ∈ c1 is similar. By symmetry, we can conclude
that c1 = c2. �

4.3 An example

We now give an example of a CE quantifier Qu which is not of bounded
color oscillation, hence not definable in terms of monotone CE quantifiers.
Qu is best described by its pattern in the number triangle (Figure 5).
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−
− −

n1 − + −
− − + +

n2 − + − + −
− − − − + +

− − − + + + −
− − + + − − + +

n3 − + − + − + − + −
− − − − − − − − + +

− − − − − − − + + + +
− − − − − − + + + + + +

− − − − − + + + + + − − −
− − − − + + + + − − − − + +

− − − + + + − − − + + + − − −
− − + + − − + + − − + + − − + +

n4 − + − + − + − + − + − + − + − + −
− − − − − − − − − − − − − − − − + +

− − − − − − − − − − − − − − − + + + +
− − − − − − − − − − − − − − + + + + + +

− − − − − − − − − − − − − + + + + + + + +
− − − − − − − − − − − − + + + + + + + + + +

− − − − − − − − − − − + + + + + + + + + + + −
− − − − − − − − − − + + + + + + + + + + − − − −

− − − − − − − − − + + + + + + + + + − − − − − − −
− − − − − − − − + + + + + + + + − − − − − − − − + +

− − − − − − − + + + + + + + − − − − − − − + + + + + +
− − − − − − + + + + + + − − − − − − + + + + + + − − − −

− − − − − + + + + + − − − − − + + + + + − − − − − + + + +
− − − − + + + + − − − − + + + + − − − − + + + + − − − − + +

− − − + + + − − − + + + − − − + + + − − − + + + − − − + + + −
− − + + − − + + − − + + − − + + − − + + − − + + − − + + − − + +

n5 − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + −

Figure 5: The quantifier Qu.

Let nj = 2j , j = 1, 2, . . . . At level nj , Qu switches between − and + at
every step. One level up, at nj − 1, there are two −′s, then two +′s, then
two −′s, etc. At level nj −2, there are three −′s, then three +′s, etc. And so
on, until we reach level nj−1, where the same pattern begins all over again.

To show that Qu does not have bounded color oscillation we use van
der Waerden’s Theorem. This theorem is a generalization of the Pigeon
Hole Principle: Suppose you are putting objects in boxes. If there are more
objects than boxes, at least one box is going to contain more than one object.
If there are many more objects than boxes, chances are at least one box will
contain a lot of objects. Instead of boxes we use colors. Suppose the objects
are the numbers 0, 1, . . . , n, for some n. If there are many more numbers
than colors, chances are many numbers will get the same color, and you can
ask questions about what kinds of numbers get the same color. Van der
Waerden’s Theorem is about when numbers of the form

a + d, a + 2d, . . . , a + md,

i.e., arithmetic progressions of finite length, all get the same color. It says
that for any finite number of colors, if you take enough numbers you will get
arithmetic progressions of arbitrary length in some color class (box). More
precisely:
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Van der Waerden’s Theorem (cf. Graham, Rotschild and Spencer
[4]) For any k and any m there is a number Wk(m) such that if the
numbers 0, 1, . . . , Wk(m) are colored with k colors, then one color class
contains an arithmetic progression of length m.

Now suppose Qu had bounded color oscillation, relative to some coloring
χ : N −→ {0, 1, . . . , k − 1}, and with bound m − 1. To contradict this we
need to find a large enough level n such that in some induced color class at
level n, Qu changes sign at least m times.

Take nj ≥ Wk2(m + 2). Color each number i in the set

I = {0, 1, . . . , nj}

with the color β(i) = (χ(nj + 1 − i), χ(i)). By van der Waerden’s Theorem
there are a and d such that the numbers

a + d, a + 2d, . . . , a + (m + 2)d

are in I and have the same β-color. Now look at the level n = nj − (d − 1)
of Qu (Figure 6).15 The pairs

(nj − (d − 1) − (a + ld), a + ld), l = 1, . . . , m + 1,

at that level all have the same induced χ-color, since it follows from the fact
that the elements of the arithmetic progression have the same β-color that

χ(a + ld) = χ(a + l′d)

and

χ(nj − (d − 1) − (a + ld)) = χ(nj − (d − 1) − (a + l′d))

for 1 ≤ l, l′ ≤ m + 1. Thus, Qu changes sign at least m times inside one
color class at level n, a contradiction. We have proved

Proposition 18 The CE quantifier Qu does not have bounded color oscil-
lation.

15Note that 2d < nj , whence nj − (d − 1) > nj/2 = nj−1.
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. . . − −
a+d
↓
− . . . −︸ ︷︷ ︸
d

+ +
a+2d
↓
+ . . . +︸ ︷︷ ︸
d

− −
a+3d
↓
− . . . −︸ ︷︷ ︸
d

+ + . . .

Figure 6: Level nj − (d − 1) of Qu.

5 Smooth quantifiers

Mere monotonicity of a CE quantifier is a rather weak constraint: it is easy
to find monotone CE quantifiers which are not NL quantifiers, for example,

QM (A, B) ⇐⇒ |A| is even.

From a natural language perspective one would like to find a strengthening
of monotonicity. Requiring monotonicity in the left argument is too strong;
and in any case all such left monotone quantifiers are FO definable (cf.
Westerst̊ahl [11]). Rather, what one would like is a property, say P, which
implies monotonicity and is such that

(+) If Q is a monotone NL quantifier, then Q has P.

We now propose such a property; it was introduced by van Benthem
and applied by him to various aspects of the computational behavior of
quantifiers (cf. van Benthem [3]), but not as far as we know in the present
context.16

Definition 19 A function f : N −→ N such that f(n) ≤ n + 1 is smooth if,
for all n,

f(n) ≤ f(n + 1) ≤ f(n) + 1.

Also, Qf and Qrel
f are called smooth if f is smooth.

As we stated in the universal (U3) (Section 1.3), it appears that all
monotone NL quantifiers are indeed smooth. A typical example would be
at-least-m/n′ths-of. Smooth quantifiers have a characteristic pattern in the
number triangle. Since they are monotone, each level consists of a sequence
of −′s followed by a sequence of +′s. But smoothness also means that if

16Van Benthem called the property continuity. This term has, however, been used in
various senses in the literature on NL quantifiers; cf. Westerst̊ahl [11], sections 3.6 and
4.2, for an overview (there the present property was called ‘SUPER CONT’).
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(n − j, j) is the leftmost + at level n (i.e., if f(n) = j), then the leftmost
+ at the next level n + 1 is one of the two ‘successors’ (n + 1 − j, j) and
(n − j, j + 1).

The next fact, which can easily be established by looking in the number
triangle, gives alternative characterizations of smoothness.

Fact 20 If Q is a CE quantifier, the following are equivalent:

(a) Q is smooth, i.e. Q = Qrel
f for some smooth f .

(b) Q = Qrel
f for some f such that both f and fd are non-decreasing.17

(c) For all M and all A, A′, B ⊆ M ,

(c1) QAB, A′ ⊆ A, A′ ∩ B = A ∩ B ⇒ QA′B

(c2) QAB, A ⊆ A′, A′ − B = A − B ⇒ QA′B.

Smoothness of f also means that, except in trivial cases, it eventually
leaves the edges of the number triangle. To make this precise, let us call f
trivial if either f or fd is eventually constant. It was noted in Westerst̊ahl
[12] and Kolaitis and Väänänen [8] that f is trivial if and only if Qf is FO
definable.

Lemma 21 If f is non-trivial and smooth, then

∀r ∃N ∀n > N (r < f(n) < n − r).

Proof. Suppose f is smooth and non-trivial but that for some r,

∀N ∃n > N(f(n) ≤ r or n − f(n) ≤ r).

Case 1. ∃n0 < n1 < . . . such that f(ni) ≤ r for all i. Since f is non-
decreasing there must be an I such that f(ni) = c ≤ r for i > I. Then f(n)
is eventually c, contradicting our assumption.

Case 2. Not Case 1. Then, by assumption, ∃n0 < n1 < . . . such that
ni − f(ni) ≤ r for all i. Since n − f(n) is also non-decreasing, the same
argument as in Case 1 shows that n − f(n) is eventually constant, which
also contradicts the assumption. �

17I.e. f(n) ≤ f(n + 1) for all n.
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We showed in Section 4.1 that an-even-number-of is definable in terms
of monotone CE quantifiers. In fact, it is definable in terms of a quantifier
of the form Qrel

g with an non-decreasing g: Let

g(n) =
{

n if n is even
n − 1 if n is odd.

g is a function which is non-decreasing but not smooth. We have

|A| is even ⇐⇒ g(|A|) 
≤ |A| − 1
⇐⇒ ¬[∃a ∈ A (Qrel

g )M (A, A − {a})]

(as before, it suffices to show that Qeven, i.e., the simple unary quantifier
‘|A| is even’, is definable in this way).

However, an-even-number-of is not definable in terms of smooth quan-
tifiers. This is a consequence of our next result.

Theorem 22 Suppose Q is definable in terms of smooth quantifiers. Then
Q has bounded oscillation (without colors).

Proof. Start as in the second half of the proof of Theorem 17, with Q
definable in FOr({Qrel

f0
, . . . , Qrel

fu−1
}), and the coloring α defined there, which

was shown to be such that m = u(2r−1)2 bounds the oscillation of Q inside
each induced color class at any level. This time we may assume that the ft

are smooth, and clearly also that they are non-trivial. For t ∈ [0, u), let Nt

be as in Lemma 21, and let N = max{N0, . . . , Nu−1}. Thus,

∀t ∈ [0, u) ∀n > N (r < ft(n) < n − r).

But this means that, for large enough n, with z ∈ (−r, r) and s ∈ [0, r),
ft(n + z) 
= s. That is, if the functions leave the edges, no values are small,
so trivially the functions eventually agree for small values. Hence,

∃n0 ∀n, n′ ≥ n0(α(n) = α(n′)).

It follows that there is n1 such that at any level n ≥ n1, all the points
between (n − n0, n0) and (n0, n − n0) are in the same induced color class.
Hence on those points, Q oscillates at most m times. It may oscillate on the
other points at level n, but at most 2n0 times, and it may oscillate differently
at levels before n1, but at most n1 times. Thus, if m′ = max{m + 2n0, n1},
then m′ bounds the total oscillation of Q. �

32



Finally, we observe that the converse of Theorem 22 fails: there is a
quantifier Q which has bounded oscillation but is not definable in terms of
smooth quantifiers. Such a quantifier has already been mentioned, namely,

QM (A, B) ⇐⇒ |A| is even,

or, since we might as well take the corresponding simple unary quantifier,

QM (A) ⇐⇒ |M | is even.

Clearly this quantifier has bounded oscillation: each level consists either
entirely of +′s or entirely of −′s, so it doesn’t oscillate at all (indeed it is
monotone).

Proposition 23 ‘|M | is even’ is not definable in terms of smooth quanti-
fiers.

Proof. We use Proposition 9. To simplify, think of the quantifier in question
as having the empty vocabulary, noting that Proposition 9 holds for the
empty vocabulary as well. Thus it suffices to find, for each r, two sets M
and M ′, where one has even and the other has odd cardinality, such that
M ≈r,Q M ′. Here we may again assume that Q = {Qrel

f1
, . . . , Qrel

fk
} is as in

the proof of Theorem 22, and that N is as in that proof, so that

∀t ∈ [0, u) ∀n > N (r < ft(n) < n − r).

Now take M and M ′ such that |M | > N +r and |M ′| = |M |+1. Let X1, X2

be variants of ∅ or M obtained by ‘moving’ at most r − 1 elements of M ,
and let X ′

1, X
′
2 be the corresponding variants in M ′. We must check that

Xj 
= ∅ ⇐⇒ X ′
j 
= ∅ j = 1, 2,(22)

Xj = M ⇐⇒ X ′
j = M ′ j = 1, 2,(23)

|X1 ∩ X2| ≥ ft(|X1|) ⇐⇒ |X ′
1 ∩ X ′

2| ≥ ft(|X ′
1|) t ∈ [0, u).(24)

Call a subset X of M (M ′) small if |X| < r, and big if |M − X| < r
(|M ′ − X| < r). The Xj and X ′

j are either big or small, so (22) and (23)
are immediate. As to (24), if X1 is small, so is X1 ∩X2, so |X1| = |X ′

1| and
|X1 ∩ X2| = |X ′

1 ∩ X ′
2|, and thus (24) holds. If X1 is big, so is X ′

1, and

r < ft(|X1|), ft(|X ′
1|) < n − r.

Thus, (24) holds whether X1 ∩ X2 is big or small. �
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6 Concluding remarks

Hopefully, some light has now been shed on the question of when a quantifier
is definable in terms of monotone CE quantifiers. We end with a list of
questions, some logical and some linguistic, that arose during the course of
this paper:

(1) Does the divisibility quantifier Div (Section 1.1) have bounded color
oscillation? We conjecture that it doesn’t.

(2) Theorem 22 gave a necessary condition for definability in terms of
smooth quantifiers. What would a necessary and sufficient condition
look like?

(3) Is universal (U2) true, i.e., is it really the case that all NL quantifiers
are definable in terms of monotone CE ones? Also, is it true that an-
even-number-of is not definable in terms of monotone NL quantifiers?

(4) Our example of a CE quantifier with unbounded color oscillation used
van der Waerden’s Theorem; the size of the model needed in the
proof of Proposition 18 grows as fast as the van der Waerden func-
tion Wk(m). Is this necessary? If it is, one might even be able to
prove that the existence of quantifiers with unbounded color oscilla-
tion implies van der Waerden’s Theorem, along the lines of Luosto [9].

(5) Is universal (U3) true?
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