Does English Really Have

Resumptive Quantification
And Do ‘Donkey’ Sentences Really Express It?

STANLEY PETERS AND DAG WESTERSTAHL

(1) divide quantification in natural languages into D Quantification and
A Quantification. We note that if A Quantification is taken to be re-
sumptive, English ‘donkey’ sentences do not fit into that category. In-
deed, ‘donkey’ sentences with determiners are not counterexamples to
the claim, which appears to be correct, that determiners monoselectively
bind just one variable. We also observe that while the ‘proportion prob-
lem’ applies to a resumptive analysis of ‘donkey’ sentences, it does not
apply to proper instances of resumptive quantification in English.

1 Why would it matter if English has resumptive
quantification?

The University of Massachusetts project on Quantification in Natural
Languages (Bach et al. (1)) concluded that language employs two dif-
ferent kinds of quantification: A Quantification and D Quantification.

e A Quantifiers bind multiple variables unselectively, express re-
sumptive quantification, and often surface as adverbs.

e D Quantifiers bind one specified variable and usually surface as
determiners.

We show that while English adverbs can bind multiple variables si-
multaneously (though perhaps selectively) to express resumptive quan-
tification, English ‘donkey’ sentences are not instances of this phe-
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nomenon, nor are they as some have proposed counterexamples to the
claim that determiners bind only one variable.!

2 What is resumptive quantification?

Resumptive quantification is the meaning expressed by employing a
monadic quantifier to bind multiple variables simultaneously in order
to quantify over tuples of the entites the variables range over.

The monadic quantifier EVERY binds one variable to form the propo-
sition that each entity over which the variable ranges and which satisfies
the condition restricting the quantifier’s domain also satisfies the con-
dition expressed by the quantifier’s scope. Thus

(1) Every donkey limps.

uses the monadic quantifier EVERY to bind, say, the variable z in both
the domain restriction ‘z is a donkey’ and the scope ‘z limps’. In

(2) An environmentalist always despises a developer.

the resumption of EVERY binds, say, the two variables z and y, in the
domain restriction ‘z is an environmentalist and y is a developer’ as
well as in the scope ‘z despises y’.2 Thus (2) expresses the claim that
all pairs of an environmentalist and a developer satisfy the condition
that the former despises the latter.

Monadic quantification is quantification over individual entities.
Polyadic quantification is quantification over ordered pairs, triples,
or, in general, n-tuples of entities. Resumptive quantification is thus
a (very) special kind of polyadic quantification. While a polyadic quan-
tifier over pairs can be any of a wide range of properties of, or relations
between, sets of pairs of individuals, a resumptive pair quantifier is a
property (or relation) given by a monadic quantifier applied to pairs.

Thus, in (2), always can be taken to stand for the relation of inclu-
sion between the set F x D of pairs of environmentalists and developers
and the set R of pairs (z,y) such that z despises y, a relation given by
the monadic quantifier EVERY. Contrast this with

(3) Every environmentalist despises at least two developers.

! Chierchia (2) came to similar conclusions to our Claims I and II (v. Section 7
below). We extend the data and reeasoning with aid of concepts and results from
Kanazawa (6) and Westerstahl (14).

2We use small caps for the abstract variable-binding operators — quantifiers —
corresponding to certain English determiners and adverbs. We furthermore extend
this notation to the second-order relations — often called ‘quantifiers’ as well —
corresponding to such operators.
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This combines two monadic quantifiers, EVERY and AT LEAST TWO,
but from a logical point of view it can also be seen as polyadic quan-
tification, expressing another relation between F x D and R, namely,
(on the default scope reading) that each element in E stands in the
relation R to at least two elements of D. But this pair quantifier is not
a resumption; there is no single corresponding monadic quantifier in
this case.?

Therefore, while a claim that English A Quantification, in the case
where two variables are bound, always expresses quantification over
pairs would be trivially true, the claim that such quantification always
expresses resumptive quantification would be much stronger — and in
fact false (cf. section 7).

3 Does English have resumptive quantification?
Dorothy Parker quipped:
(4) Men seldom make passes at girls who wear glasses.

Following (9), the adverb seldom is commonly analyzed as expressing
a polyadic quantifier SELDOM which is the resumption of the monadic
quantifier FEW. Accordingly (4) is taken to mean

(5) Few pairs of a man and a girl who wears glasses are such that the
former makes passes at the latter.

Similarly,
(6) New cars are seldom incapable of climbing steep hills.
means

(7) Few pairs of a new car and a steep hill are such that the former
is incapable of climbing the latter.

3This can be shown as follows: Suppose (for reductio) that (3) expresses the
resumption of a monadic quantifier Q. Then, presumably, the following sentence
also involves the resumption of Q:

Every developer is despised by at least two environmentalists.

Now, assuming that Q, like monadic natural language quantifiers in general, is
invariant for permutations of objects in the domain, it follows that the resumption
of Q is invariant for permutations of pairs of such objects. But the function mapping
(a,b) to (b,a) is a permutation of pairs, which maps the relevant sets of pairs in
these two sentences to each other. For example, it maps the set of environmentalist—
developer pairs to the set of developer—environmentalist pairs. From this it follows
that the two sentences are logically equivalent. But clearly they are not equivalent.
Hence they are not resumptions (of the same Q).
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Lewis’s example was
(8) Politicians are usually willing to help constituents.

Under the hypothesis that the adverb usually here expresses a polyadic
quantifier USUALLY which is the resumption of the monadic quantifier
MOST, (8) means

(9) Most pairs of a politician and a constituent are such that the
former is willing to help the latter.

The hypotheses about the interpretation of the adverbs in sentences
such as these are widely though not universally accepted as being rea-
sonably well supported, and the predicted truth conditions for sentences
(2), (4), (6), and (8) are apparently correct.

4 Why would it matter whether ‘donkey’ sentences
really express resumptive quantification?

If English D Quantifiers show up as determiners and really bind one
specified variable, then quantificational determiners should always be
monadic. In point of fact, not only quantificational determiners but also
quantificational agreement affixes of verbs and quantificational focus
particles may well monoselectively bind just one variable.

Recall, however, that Kamp’s Discourse Representation Theory
(Kamp (5)) and Heim’s File Change Semantics (Heim (4)) were origi-
nally motivated in part by the fact that the meaning of sentences like

(10) Every farmer who owns a donkey beats it.

apparently involves universal quantification over pairs of a farmer and
a donkey he or she owns, and by the similarity of this sort of quantifi-
cation to the adverbial quantification studied in (9). This similarity is
re-emphasized in (1). If their analysis of this fact is correct, determiner
quantified ‘donkey’ sentences do express resumptive quantification and
thus are counterexamples to the claim that quantificational determiners
monoselectively bind just one variable and express monadic quantifica-
tion.

5 Do ‘donkey’ sentences really express resumptive
quantification?

Kamp’s and Heim’s rules for giving sentence (10) its meaning assign
no quantifier to the ‘donkey’ determiner a, thus keeping the ‘donkey’
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variable free to recur as the interpretation of the ‘donkey’ pronoun
it. Then they have the ‘farmer’ determiner every bind two variables,
expressing resumptive quantification.

Using these rules on sentences like (11) yields the wrong meaning
altogether, as Partee pointed out.

(11) At least two farmers who own a donkey are happy.

Statement (11) is false if Jones and Smith are the only existing farmers,

farmer Jones is unhappy, and farmer Smith is happy. However, the

resumptive quantification analysis Kamp’s and Heim’s rules give (11)

would make it true if farmer Smith owns at least two donkeys, despite

the obvious irrelevance of this fact to the truth value of statement (11).
Likewise, (6) pointed out that

(12) At least two farmers who own a donkey beat it.

is false if farmer Jones doesn’t beat the one donkey he owns while farmer
Smith beats both of his donkeys (again assuming no other farmers
exist).

(12) drew attention to the corresponding failure of Kamp’s and
Heim’s resumptive quantification analysis for

(13) Most farmers who own a donkey beat it.

These examples illustrate what has become known as the ‘propor-
tion problem’; cf. also section 7 below. Far from being an exception,
this problem arises for almost all quantifiers in the ‘farmer’ position of
‘donkey’ sentences.*

6 What do ‘donkey’ sentences really express?

(6) showed that regardless of what quantifier the ‘farmer’ determiner
expresses, a ‘donkey’ sentence such as
(14) Q farmer(s) who own(s) a donkey beat it.

expresses one (or sometimes, ambiguously, more) of the following three
propositions.®

4(3), who deals with several of the issues discussed in this note, gives a character-
ization of the quantifiers for which the ‘proportion problem’ for the corresponding
‘donkey’ sentences does not arise: essentially these are just the quantifiers ALL, NO,
SOME, and NOT ALL.

5 Actually, Kanazawa did not include (17) as an alternative, claiming that in all
clear cases, either (15) or (16) is meant. (17) was suggested in (12) as a possible
reading of (13). Intuitions about the precise meaning of (13) are notoriously unclear.
We include (17) here as a candidate reading of ‘donkey’ sentences, without taking
a stand on whether this reading actually occurs.
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(15) Q farmer(s) who own(s) at least one donkey beat(s) every donkey
he/she/they own(s).

(16) Q farmer(s) who own(s) at least one donkey beat(s) at least one
donkey he/she/they own(s).

(17) Q farmer(s) who own(s) at least one donkey beat(s) Q donkey(s)
he/she/they own(s).

Sentence (10) expresses (15) or equivalently (17), with Q = EVERY.
Sentence (12) expresses (16), with Q = AT LEAST TWO. Sentence (13)
expresses (16) or maybe (17), with Q = MOST.

As these examples illustrate, one or more of the three candidate
meanings may be unavailable for a given ‘donkey’ sentence. The main
point of Kanazawa’s paper was to present and justify a hypothesis ex-
plaining which reading is preferred and why. However, that hypothesis
is not important for us here. We observe merely that no counterexam-
ples have been adduced to the generalization that every meaning of a
‘donkey’ sentence of the form (14) is one of (15), (16), and (17).

Note that to assign these meanings one uses the ‘farmer’ quantifier
monadically; it binds just the ‘farmer’ variable. The ‘donkey’ deter-
miner a simply and straightforwardly expresses existential quantifica-
tion.

Only the ‘donkey’ pronoun it requires special treatment. We treat
the anaphoric dependency in this construction as introducing a quan-
tifier to bind a variable ranging over donkeys owned by farmer z. The
introduced quantifier is universal (15), existential (16), or may have the
same force as the ‘farmer’ quantifier (17). Introduction of this quanti-
fier is required not only when ‘donkey’ anaphora is expressed explicitly
by a pronoun, but as Kanazawa noted also in sentences such as

(18) Few politicians who run for an office win.
where it is implicit. Sentence (18) means (16), that is
(19) Few politicians who run for an office win an office they run for.

The fact that the meanings thus produced are, in the case of some
‘donkey’ sentences, equivalent with the resumptive quantification Kamp
and Heim postulate in those cases appears to be one explanation of why
some linguists have thought (erroneously) that English D Quantifica-
tion can bind more than one variable. But every case of resumptive
quantification giving correct truth conditions is equivalent to one (or
more) of (15), (16), and (17). Wherever resumptive quantification is
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not equivalent to one (or more) of (15), (16), and (17), it gives wrong
truth conditions for the ‘donkey’ sentence.

Kanazawa’s analysis of ‘donkey’ anaphora also gives correct truth
conditions for sentence (11), avoiding the problems associated with re-
sumptive quantification. Thus, we conclude, ‘donkey’ sentences do not
express resumptive quantification (except ‘accidentally’ when that is
equivalent to what they systematically express).

In fact, the ‘farmer’ quantifier in ‘donkey’ sentences binds only the
‘farmer’ variable, not also the ‘donkey’ variable, which is bound by
the ‘donkey’ determiner a. The following examples show that the final
quantifier in (15), (16) and (17) comes from the ‘donkey’ anaphoric
dependency within the scope of the ‘farmer’ quantifier.

(20) Every farmer who owns exactly one donkey beats it.
(21) Few politicians who run for exactly one office win.
(22) Q farmer(s) who own(s) at least two donkeys beat(s) them.

It is inescapable in these cases that the ‘donkey’ quantifier EXACTLY
ONE or AT LEAST TWO binds the ‘donkey’ variable inside the domain
restriction on the ‘farmer’ quantifier EVERY or Q. The option of leaving
the ‘donkey’ variable free to be bound by the ‘farmer’ quantifier does
not exist. So the last quantifier in (23), (24), and (25)

(23) Every farmer who owns exactly one donkey beats every/at least
one/the one donkey he owns.

(24) Few politicians who run for exactly one office win every/at least
one/the one office they run for.

(25) Q farmer(s) who own(s) at least two donkeys beat(s) every/at
least one/Q donkey(s) he/she/they own(s).

has to be introduced in association with the ‘donkey’ anaphoric depen-
dency in the scope of the ‘farmer’ quantifier.

7 Doesn’t the ‘proportion problem’ arise for re-
sumptive quantification in general?

It is noteworthy that the ‘proportion problem’ for a resumptive analysis
of ‘donkey’ sentences, illustrated above with (11), (12), and (13), does
not arise for proper resumptive quantification as in (4), (6), and (8).
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The problem for ‘donkey’ sentences was that among the farmer-donkey
pairs in which the farmer owns the donkey, the number or proportion of
pairs where the farmer also beats the donkey may differ drastically from
the number or proportion of farmers who beat donkeys that they own,
among the donkey-owning farmers in general. This can happen when
few farmers own many donkeys apiece, depending on how many of their
own donkeys these farmers beat. This possibility is one important fact
excluding a resumptive analysis of ‘donkey’ sentences. Why doesn’t it
also rule out a resumptive analysis of (2), (4), (6), and (8)?
Consider a simple A Quantification sentence like (26),

(26) Cats usually dislike dogs.

taken to mean that most (more than half of the) cat-dog pairs are such
that the cat dislikes the dog. Can this be true while at most half of the
cats dislike at least one dog? Clearly not. To see the general principle
at work here, we first need to introduce some notation.

Typically, a determiner denotes a quantifier @ (like EVERY, MOST,
AT LEAST TWO, etc.), which on each universe of discourse is a binary
relation between subsets of the universe. So the meaning of a simple
quantified sentence like

(27) Most cats purr.
can be rendered in a relational format (with @ = MOsT) as (27'),
(27") mosT(4,C)

where A is the set of cats and C the set of things that purr (we omit
reference to the universe). The resumption of @ to pairs, written @2, is
thus a binary relation between sets of pairs of individuals, i.e., between
binary relations among individuals. In rendering English resumptive
sentences like (26), the first argument usually has the form of a cartesian
product A x B. Thus, (26) becomes (26'),

(26') mosT?(A x B, R)

with B as the set of dogs and R as the relation of disliking.
Finally, consider a typical English sentence with a transitive verb
and quantified subject and object, like

(28) Most cats dislike some dogs.

This says that the MOST relation holds between the set of cats and
the set of things that dislike some dogs, i.e., the set of things a such
that the SOME relation holds between the set of dogs and the set of
things that a dislikes. Using the notation R, = {b: R(a,b)}, (28) thus
becomes (28').
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(28') M0ST(A,{a: SOME(B, R,)})

In general, given any two determiner denotations (); and @2, there is
in English a natural way of expressing their iteration, which is defined
by

Q1(A,{a: Q2(B,R,)})

for any sets A, B and any binary relation R. Notice that the inverse
scope reading of (28), i.e., the reading which says that there are some
dogs which most cats dislike, becomes in our relational notation

SOME(B, {b : MOST(A, (R™1),)})

(where for all a,b: R™1(b, a) iff R(a,b)).
Now we can state the following

Fact A: When @ is MOST, or more generally any proportional
quantifier like MORE THAN m/n™SOF THE, the resumptive sen-
tence

(29) Q*(A x B, R)

logically implies each of the iterations
(30) Q(A,{a: somME(B, R,)})

and

(31) Q(B, {b: SOME(A, (R"1),)}).6

So (26) logically implies that most cats dislike at least one dog,
and that most dogs are disliked by at least one cat, which is why no
‘proportion problem’ can arise.

On the other hand, the truth condition for a resumptive analysis of
a typical ‘donkey sentence’ is not (29) but (32),

SHere is a proof of Fact A: Let |X| be the cardinality of the set X. Suppose
|A| = p, |B| = q, say, A = {a1,...,ap}. Without loss of generality we may assume
R C A X B. Then, clearly,

B = [Ray|+ ...+ |Ray -

Now suppose that (30) is false, for Q = MORE THAN m/n™0OF THE. Then, for at
most m/n™ of the a;’s does it hold that |Rg;| # 0. Let k be the largest natural
number < m/n - p. It follows, since |Rq;| < ¢ for each i, that

IR| < k-q < m/n-p-q = m/n-|AXB|,

so (29) is false. Therefore, (30) follows from (29), and similarly for (31).



148 / STANLEY PETERS AND DAG WESTERSTAHL
(32) Q*((Ax B)NS,R)

where the relation S (OWNS) comes from the relative clause, and (33)
does not follow logically from (32).

(33) Q({a € A:soME(B, S,)},{a: SOME(B, (SN R),)})

That is, we can have a situation where (32) is true but (33) is false,
exemplifying a ‘proportion problem’.”

Let us also remark that the observation that a resumptive analysis
of ‘donkey’ sentences leads to the ‘proportion problem’ has nothing to
do with whether D or A Quantification is used. For

(34) Farmers who own donkeys/a donkey usually beat them/it.

is also a ‘donkey’ sentence, and a resumptive analysis would give a
truth condition of the form (32), leading to the ‘proportion problem’
again. Thus, (34) is not an instance of resumptive quantification, even
though it is an instance of A Quantification. So although (34) can
undoubtedly be construed as quantifying over pairs of individuals, that
quantification is not resumption, i.e., it cannot be construed as using
an ordinary monadic quantifier over a domain of pairs. Indeed, its truth
condition appears to be the one expressed in (15), with @ = MOST.
We are, in effect, making the following claims:

Claim I: English D Quantification is monadic; in particular, it
never expresses resumptive quantification.

Claim II: ‘Donkey’ sentences likewise do not express resumptive
quantification in English.

"The formal analogy between (30) and (33) can be brought out further as follows.
(29) and (32) are both of the form

*) Q*(s",R),
where S’ C A x B. If we assume B # 0 it furthermore follows (using also the fact
that Q is conservative, i.e., that Q(X,Y) & Q(X,X NY) for all X,Y) that (30)
and (33) can then be written

(**) Q({a € A:s0ME(B, S,)}, {a € A:50ME(B,(S'NR)4)}).

When §' = Ax B (so S}, = B for a € A), (**) follows from (*) by Fact A. But (**)

does not follow from (*) when S’ is a proper subset of A x B.
To put the same point less formally:
(i) If Ris ‘big’ relative to A X B then dom(R) is ‘big’ relative to A (and range(R)
relative to B), by Fact A.

(ii) But that R is ‘big’ relative to S C A x B says next to nothing about the
relative sizes of dom(R) and dom(S).
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Claim III: On the other hand, some simple forms of A Quantifi-
cation in English, like (26), and presumably (2), (4), (6), and (8),
do express resumptive quantification (and there is no ‘proportion
problem’ in this case).

8 Are there other examples of resumptive D Quan-
tification?

Enough has been said above about Claim II. Concerning Claim I, how-
ever, a putative counterinstance, which does not appeal to ‘donkey’
sentences, was put forward in (13) (and repeated in Keenan and West-
erstahl (8)), with an example originating from Hans Kamp:

(35) Most lovers will eventually hate each other.

This has the reading that most pairs of people who love each other
are pairs of people who will eventually hate each other, which, over a
universe of individuals, is precisely a resumptive reading. Furthermore,
since the same person may belong to different ‘loving pairs’, (35) is not
equivalent to monadic versions like

(36) Most persons who love and are loved by someone will eventually
hate someone/everyone they love.

However, in this and other similar cases, like (37),
(37) Few twins hate each other.

both the restricting (plural) noun and the (reciprocal) verb phrase in-
dicate that we here have a plural predicate of sets or groups, as in

(38) Most twins agree about resumptive quantification.

Thus, allowing plural entities in the universe, as it seems we must any-
way, (35) and (37) cease to be counterexamples, and Claim I stands.

9 How can we be certain that English has resump-
tive quantification?

Finally, we come back to Claim IIT in a little more detail. What does
it mean that English sentences of a certain form ezpress resumptive
quantification? Presumably, the following two things:

(i) There is a uniform syntactic and semantic analysis of sentences
of this form in terms of resumptive quantification.
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(ii) There is no plausible analysis without resumption.

We have indicated how (i) may be true (but note that such a uniform
analysis must find a way to exclude adverbial ‘donkey’ sentences like
(34)). However, this might still not be considered sufficient to establish
Claim IIT if (ii) were false, namely if it were the case that the truth
condition (29), repeated here as (39),

(39) Q*(A x B,R)

of a typical simple English A Quantification sentence is logically equiv-
alent to some simpler form of quantification. For example, suppose
(counterfactually, as we shall see) that for each @ there exist quanti-
fiers @ and Q> such that (39) is logically equivalent to the iteration
(40),

(40) Q1(A,{a: Q2(B, Ra)})
which corresponds to a sentence of the form of
(41) Q1 cats dislike Q2 dogs.

That is, suppose simple resumption were reducible in the sense of (7).
Then one could argue that Claim IIT was too strong.

Claim IIT says something about ezpressive power, and facts about
expressive power can sometimes be proved using only the logical tools
of model-theoretic semantics. Such facts may then constitute evidence
for linguistic claims. Here is an example:

Proposition B: The resumption of MOST is not reducible. That
is, for @ = MOST, (39) is not equivalent to (40), for any @; and

Q2.
8This follows from a result in (14) in the following way: If
(1) mosT?(Ax B,R) & Qi(4,{a: Q2(B,Ra)})
then, since M0OsT?(A x B, R) < M0sT2(B x A, R™1), it follows that
(1) Q1(A4,{a:Q2(B,Ra)}) & Q1(B,{a: Q2(A,(R™1)a)})
for all A, B, R. In particular, with B = A,
(1) Q1(A,{a:Q2(4,Ra)}) & Qu(A,{a: Qa2(4, (R™1)a)})

But by Theorem 4.12 in (14), (1t1) holds for very few quantifiers pairs (Q1, Q2),
and certainly not for any that would make () true. QED

Compare footnote 3 above: There we were given @1 and Q2, and our knowledge
of their meaning told us that (f{) was false in that case. Here, we need the stronger
result that ({f) is in fact only true for a few special cases (like Q1 = Q2 = SOME),
and this requires a proof.
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Proposition B clearly goes some way to establish Claim III. It says
that the resumption of a common quantifier is not definable in the
form (40), which corresponds to a widespread type of quantified English
sentence.

But couldn’t it be the case that there were some other way to ex-
press (39), which also used monadic quantification only, and which cor-
responded to some other form of English sentences? Theorem C below
gives us strong evidence that this is not so, thereby clinching, it would
seem, the case for Claim III.

To formulate this theorem we need to observe that (39) and (40),
expressing the form of truth conditions for certain English sentences,
can themselves be recast as sentences in a formal language, more pre-
cisely, the language of logics with generalized gquantifiers. We write
FO(Q1,--.,Qy) for first-order logic with added (generalized) quanti-
fiers @1, .., Qn. Then (39) would be written

(42) Q*zy(A(z) A B(y), R(z,y))

and (40) becomes the following.

(43) Quz(A(x), Q29(B(y), R(z,y)))

For details about the syntax and semantics of these formal languages
(logics), see, for example, (13).

Now it is most certainly not the case that every sentence in such a
logic is the truth condition of some form of English sentences. But the
relevance of results like Theorem C to linguistic claims depends on some
sort of converse of this being true. For then, if no sentence of such alogic
defines (39), a fortiori no corresponding English sentence will define it.
Of course, such a converse would have to be formulated with some
care, since the expressive power of logics of the form FO(Q1,...,Qy) is
very poor, except as regards quantification, so the claim would only be
that English ‘quantificational structure’ can be captured (up to truth
conditions) in such logics.

A final remark is that so far our only examples of monadic quan-
tifiers have been of the kind denoted by determiners like every, most,
all but five, etc., which (on each universe) can be taken as binary re-
lations between sets of individuals. In general, a monadic quantifier is
any n-place relation (n > 1) between such sets. One can show that
the expressive power increases with n, i.e., that for each n there are
(n+ 1)-ary monadic quantifiers which are not definable in terms of any
(finite number of) monadic quantifiers of arity at most n. Therefore,
the claim, as in the next result, that a certain quantifier is not definable
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in terms of any (finite number of) monadic quantifiers is a very strong
claim indeed.

Theorem C: (Luosto (11)) For @) = MOST, (42) is not equivalent
to any sentence in any logic of the form FO(Q1,...,Q,), where
Q1,---,Q, are monadic quantifiers.

Note that Proposition B is a special case of Theorem C. The proof
of Theorem C, which is due to Kerkko Luosto, is too complicated to be
even hinted at here.?

10 Conclusions

The generalization that English D Quantifiers really bind only the one
variable associated with the determiner’s own noun phrase is correct.
In fact, it appears to be true across languages, not only for quantifica-
tion expressed by determiners but also for quantification by agreement
affixes of verbs and by focus particles. These also monoselectively bind
just one variable.

In this note we have made some observations concerning ‘donkey’
sentences, A Quantification, and resumption, in English. It would be
interesting to investigate the phenomenon of resumption across natural
languages. Are Claims I-III valid for all of them? Furthermore, it is
suggested in (1) that some languages, notably Straits Salish, do not use
D Quantification at all but only have access to A Quantification. If so,
what are the consequences for the expressive power of such languages?

9Proofs of undefinability results can be quite complex. The proof of Proposition
B is on the simpler side. Also, using standard model-theoretic tools it is not too hard
to show that for Q = MOST, (42) is not equivalent to any sentence in FO(MOST).
But that is just a special case of Theorem C, the full proof of which essentially
uses advanced combinatorial mathematics (Ramsey theory), and is one of the most
complex undefinability proofs that we are aware of.

We further note that what Luosto actually proves is that the resumption (Qg)?
of the 1-place quantifier Qr (sometimes called the Rescher quantifier), which, on
a finite universe M, says of a set A C M that |A| > 1/2 - |M]|, is not definable
in FO(Q1,...,Qn) for any monadic Q1,...,Qn. This yields Theorem C, since if
the sentence MosT?zy(A(z) A B(y), R(z,y)) is expressible in some logic L, so is
mosT?zy(z = ¢ Ay = y, R(z,y)), and the latter is equivalent to (Qr)%zyR(z,y),
ie., to|R| >1/2-|M2|.

Is it really necessary to use Ramsey theory to obtain a linguistically significant
undefinability result concerning resumption? We don’t know, but it may be noted
that (10) shows that Ramsey theory is indispensable for Theorem C. (More precisely,
he shows that (a result similar to) Theorem C implies van der Waerden’s theorem.)
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