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1 Routes to quantifiers

There are two main routes to a concept of (generalized) quantifier. The first
starts from first-order logic, FO, and generalizes from the familiar ∀ and
∃ occurring there. The second route begins with real languages, and notes
that many so called noun phrases, a kind of phrase which occurs abundantly
in most languages, can be interpreted in a natural and uniform way using
quantifiers.

In this chapter I take the first route. One reason is that it leads most
directly to a most general notion of a quantifier, subsuming those one finds in
natural languages. Another reason is that FO is so familiar, and in any case
presented in the chapter [Hodges 1999] in this book. Indeed, I will assume
acquaintance with [Hodges 1999] and (with few exceptions) use the notation
introduced there. At end of the chapter I will indicate what quantifiers have
to do with natural languages.

The actual historical development of the concept of a quantifier is slightly
complicated. The expressions all, some, no, not all from Aristotelian syl-
logistics are readily seen as (generalized) quantifiers of type 〈1, 1〉: they are
definable from ∀ and ∃ but not the same as these; all of this will be explained
shortly. Frege, who if anyone must be regarded as the inventor of FO, actu-
ally had in his posession essentially the concept of a generalized quantifier
that we shall encounter here (the main difference being that he quantified
over a fixed universe of all objects, whereas our quantifiers are relativized
to arbitrary (sub)universes). However, since he could express all the math-
ematics he needed with ∀ and ∃, he was content to have only these (in fact
only ∀) in his Begriffsschrift. Much later, when first [Mostowski 1957] and
then [Lindström 1966] introduced generalized quantifiers into mathematical
logic, opening up the study of so called model-theoretic logics, they were ap-
parently unaware of Frege’s notion. Later still, linguists noted the relevance
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of quantifiers to natural languages, for example, [Barwise and Cooper 1981]
and [Keenan and Stavi 1986]. They found, of course, that the four Aris-
totelian quantifiers were prime examples of ‘natural language quantifiers’,
but also that there were many more, not definable from these.

I will not dwell further on history here; the interested reader can find
more in [Westerst̊ahl 1989], which also has a much more detailed presenta-
tion of the logical and linguistic properties of quantifiers. Another survey,
emphasizing the link to natural languages, is [Keenan and Westerst̊ahl 1997].

2 First-order logic revisited

From [Hodges 1999] we first recall that a first-order language has a signature
σ which is a set of non-logical symbols: relations symbols P,R, . . . of various
arities, function symbols F,G, . . . of various arities, and individual constants
c, d, . . .. A structure (or model) for σ, or simply a σ-structure, consists of
a universe A and an appropriate interpretation ·A of the symbols in σ, so
that if P is an n-ary relation symbol in σ then PA is an n-ary relation over
A; if F is an n-ary function symbol in σ then FA is an n-ary operation on
A; and if c is an individual constant in σ then cA is an element of A. So we
may write

A = (A,PA, RA, . . . , FA, GA, . . . , cA, dA, . . . , )

Note that I use A,B, . . . for structures where [Hodges 1999] uses I, J, . . .
instead, and moreover that I often use, to save notation, the very same
letters for the universes of those structures.

The signature and its symbols can often be left implicit. For example, if
we write

N = (N,<,+, ·, S, 0),

where N = {0, 1, 2, . . .}, it is understood that this is a structure for a signa-
ture with one binary relation symbol denoting the usual order of the natural
numbers, two binary function symbols denoting addition and multiplication
respectively, one unary function symbol denoting the successor operation,
and one individual constant denoting 0. In fact, one often uses ‘<’, ‘+’, etc.
for both the symbols and their denotations in such a case.

I will call a structure relational if its signature contains only relation
symbols.

We now have the fundamental relation

A |= ψ[a1, . . . , an],(1)
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meaning that ψ is true in A under a valuation v such that v(xi) = ai for

1 ≤ i ≤ n, where ψ = ψ(x1, . . . , xn) is a σ-formula with at most x1, . . . , xn
free, A is a σ-structure, and a1, . . . , an ∈ A. When ψ is a sentence, i.e., a
formula without free variables, A |= ψ is often read ‘ψ is true in A’, or ‘A is
a model of ψ’.

We may abbreviate a sequence 〈a1, . . . , an〉 as a. Then, with an obvious
extension (or, if you will, abuse) of the above notation, we can write the
standard explications of the universal and existential quantifiers as follows,
where ϕ = ϕ(x, x1, . . . , xn):

(2) A |= (∀x)ϕ[x,a] iff for every a ∈ A, A |= ϕ[a,a]

(3) A |= (∃x)ϕ[x,a] iff for some a ∈ A, A |= ϕ[a,a].

3 What do quantifier symbols denote?

(2) and (3) tell us what ‘∀’ and ‘∃’ mean, but they do so in an indirect way:
they do not tell us what, if anything, they denote. On the other hand, the
structure A does tell us what the symbols in σ denote: P denotes PA, etc.
With a medieval term, the σ-symbols are given categorematically, whereas
∀ and ∃ are defined syncategorematically. Can we give a categorematic
definition of the quantifiers?

This has been a vexed question in the history of logic. Informally, one
might try to think of something like a man denoting some particular man.
What then about every man — it would seem to have to denote the set of
all men. But matters get worse if we consider no men; does this denote the
empty set? If so, it has the same denotation as no dogs — this seems wrong.
Considerations like these may lead one to suppose that there is no coherent
and uniform way of assigning denotations to quantified phrases. But in fact
there is, and the theory of generalized quantifiers provides the solution.

Consider first the corresponding question for the propositional opera-
tors, say, conjunction. Everyone knows that ‘ & ’ can be taken to denote
a binary truth function. The corresponding clause in the usual truth def-
inition does not mention this truth function explicitly, however; it is still
syncategorematic:

A |= (ϕ&ψ)[a] iff A |= ϕ[a] and A |= ψ[a].(4)

To reformulate this, we begin by noting that in a structure A, a formula

with k free variables denotes a k-ary relation over A: the set of k-tuples
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of elements of A satisfying the formula. Thus define, for any σ-formula
ϕ = ϕ(x1, . . . , xn), any σ-structure A, and any n-tuple a of elements in A,

ϕA,a =

{
T if A |= ϕ[a]
F otherwise.

(5)

Then we can rewrite (4) as

A |= (ϕ&ψ)[a] iff & (ϕA,a, ψA,a) = T

(or even more compactly as (ϕ&ψ)A,a = & (ϕA,a, ψA,a)), where the last ‘ & ’
denotes the truth function given by the usual truth table for conjunction.

To do something similar for ∀ and ∃ we extend the notation in (5) as
follows. Let A be a σ-structure, ϕ = ϕ(x, x1, . . . , xn) a σ-formula with at
most the free variables shown, and 〈a1, . . . , an〉 = a an n-tuple of elements
of A. Then

ϕA,x,a = {a ∈ A : A |= ϕ[a,a]}.

In a structure A, a formula with one free variable denotes a set: the set
of objects in A satisfying the formula. If ϕ has additional free variables
x1, . . . , xn, but these are interpreted as a1, . . . , an, respectively, then, relative
to this interpretation, ϕ still denotes a set, and this set is ϕA,x,a. Now we
may rewrite (2) and (3) as

(6) A |= (∀x)ϕ[x,a] iff ϕA,x,a = A

(7) A |= (∃x)ϕ[x,a] iff ϕA,x,a 6= ∅.

Just one small further step is needed. Let, on each universe A, ∃A be
the set of non-empty subsets of A. And let ∀A be simply {A}. Then (6) and
(7) become

(8) A |= (∀x)ϕ[x,a] iff ϕA,x,a ∈ ∀A

(9) A |= (∃x)ϕ[x,a] iff ϕA,x,a ∈ ∃A.

That is, we may think of ∀ and ∃ as denoting, on a universe A, a set of
subsets of A. But then, we can call any such set of subsets a (generalized)
quantifier on A.

For example, suppose we want a quantifier that says “there exist at least
n objects such that”. Introduce a symbol ‘∃≥n’ and define, for each universe
A,

(∃≥n)A = {X ⊆ A : |X| ≥ n}

(|X| is the cardinality of X). Then the clause
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(10) A |= (∃≥nx)ϕ[x,a] iff ϕA,x,a ∈ (∃≥n)A iff |ϕA,x,a| ≥ n

gives us just what we want.
The pattern is clear, and completely general. That is, a quantifier Q on

A is a set of subsets of A. We can also think of ‘Q’ as a new symbol, such
that whenever ϕ is a formula, so is

(Qx)ϕ.

(Qx) binds free occurrences of x in ϕ just as usual, and its meaning is given
by the clause

A |= (Qx)ϕ[x,a] iff ϕA,x,a ∈ QA.

Here are some more examples:

(11) ∃=n = {X ⊆ A : |X| = n} (“there are exactly n objects such that”)

(12) Q0 = {X ⊆ A : X is infinite} (“there are infinitely many objects
such that”; the name ‘Q0’ is standard and is due to the fact that the
quantifier means ‘at least ℵ0’)

(13) QC = {X ⊆ A : |X| = |A|} (the ‘Chang quantifier’; it means ∀ on
finite sets but not on infinite sets)

(14) QR = {X ⊆ A : |X| > |A − X|} (the ‘Rescher quantifier’; on finite
sets it means ‘for more than half the elements of the universe’).

To see the use of such quantifiers, here is a prime example of how we can
express new things with them. Consider again the structure N from section
2. It is a fact about this structure that every element has a finite number of
predecessors. There is no way to express this in FO — we will see a proof
of this later. But using Q0, the sentence

(∀x) ∼ (Q0y)(y < x)

says exactly this.

4 Monadic quantifiers

Now that we have considered quantifiers which are sets of subsets on a
universe A, it is natural to go further and consider relations between subsets
of A. It is here that we find, to begin, the four Aristotelian quantifiers:
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allAXY iff X ⊆ Y (i.e. if all X are Y , where X,Y ⊆ A)

someAXY iff X ∩ Y 6= ∅

noAXY iff X ∩ Y = ∅

not allAXY iff X 6⊆ Y .

But there are many more binary relations between subsets of A, for example:

(15) IAXY iff |X| = |Y | (the Härtig quantifier)

(16) moreAXY iff |X| > |Y |

(17) mostAXY iff |X ∩ Y | > |X − Y | (on finite universes this means ‘more
than half of the X are Y ’)

(18) at least m/nAXY iff |X ∩ Y | ≥ m/n · |X| (0 < m < n; the properly
proportional quantifiers — they only make sense if X is finite).

These are just examples: if A has n elements, there are 2n subsets of A,
and 24

n
binary relations between subsets of A. So over a universe with just

2 elements, there are 216 = 65536 such relations!
We shall say that the quantifiers from section 3 are of type 〈1〉, and

those considered so far in this section of type 〈1, 1〉. We can go on to
consider quantifiers of type 〈1, 1, 1〉, i.e., ternary relations between subsets
of the universe, for example,

(19) more thanAXY Z iff |X ∩ Z| > |Y ∩ Z| (more X’s than Y ’s are Z).

In general, a monadic quantifier of type 〈1, . . . , 1〉 on A (with k 1’s) is
a k-ary relation between subsets of A, for some k ≥ 1. This terminology
indicates that there are also polyadic quantifiers, for example of type 〈2, 1, 3〉,
but we will leave those until section 11.

Finally, we note that the meaning of a quantifier like some or most is not
dependent on a particular universe; rather it associates with each universe a
corresponding quantifier on that universe. So we have the following general
definition:

A (monadic) quantifier of type 〈1, . . . , 1〉 (with k 1’s) is a function Q
which associates with each universe A a quantifier QA of type 〈1, . . . , 1〉
on A, in other words, a k-ary relation between subsets of A.

Such a quantifier Q can also be considered as a variable-binding operator,
but now it operates on k formulas and binds one variable in each. That is;
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(Q-syn) if ϕ1, . . . , ϕk are formulas, then (Qx)(ϕ1, . . . , ϕk) is a formula
(where all free occurrences of x in each ϕi are bound by (Qx)),

whose meaning is given by the clause

(Q-sem) A |= (Qx)(ϕ1, . . . , ϕk)[a] iff (ϕA,x,a
1 , . . . , ϕA,x,a

k ) ∈ QA.

5 Quantifiers and quantities

The quantifiers considered so far have an important feature: they deal only
with quantities. By contrast, here is an example of a type 〈1〉 quantifier that
does not deal with quantities. Let John be an individual and define

(QJohn)AX iff John ∈ X.

That is, if John ∈ A then (QJohn)A consists of all those subsets of A contain-
ing John; otherwise (QJohn)A is empty. This is not an unreasonable object
(when John ∈ A). In mathematics, it is called the principal filter (over A)
generated by John. In linguistics, it has been used to interpret the proper
name John. But clearly, it says nothing about quantities.

To explain this we need the concept of isomorphism between structures.
Intuitively, isomorphic structures ‘have the same structure’ and can for many
purposes be identified. Let A and B be structures for the same signature σ,
which we, for simplicity, can take to be relational. An isomorphism between
A and B is a bijection f from the universe A to the universe B (a one-one
mapping from one onto the other) such that if P is an n-ary relation symbol
in σ and a1, . . . , an ∈ A, then

〈a1, . . . , an〉 ∈ PA ⇐⇒ 〈f(a1), . . . , f(an)〉 ∈ PB.

We write this f : A ∼= B, and we write A ∼= B to say that A and B are
isomorphic, i.e., that there is an isomorphism between A and B.

First-order logic cannot distinguish between isomorphic structures:

(Isomorphism closure) If A ∼= B then every FO sentence which is true
in A is true in B, and vice versa.

(The converse of this is far from true in general, though it does hold for
finite structures.) In fact, isomorphism closure is usually a requirement on
any logic, as we shall see.

For the moment, however, I want to bring out the connection between
isomorphism and quantity. First, note that if A ∼= B then |A| = |B|, since
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the latter means by definition that there is a bijection between A and B. But
in the special case of monadic structures, i.e., structures with only unary
relations, we can say more. Let us consider a signature with two unary
relation symbols. A structure A = (A,X, Y ) for this signature partitions
the universe into 4 parts:

&%
'$

&%
'$
X∩YX−Y

Y−X

A−(X∪Y )

A
Figure 1.

Now if f : (A,X, Y ) ∼= (A′, X ′, Y ′) then the corresponding parts of the two
structures must have the same cardinality. For the restriction of the bijection
f to, say, X−Y becomes a bijection betweenX−Y andX ′−Y ′, and similarly
for the other parts. But the converse holds too: if the corresponding parts
have the same cardinality, then there are four bijections, whose union is an
isomorphism between the two structures. That is, we have the following

5.1 Fact. (A,X, Y ) ∼= (A′, X ′, Y ′) iff |X − Y | = |X ′ − Y ′|, |X ∩ Y | =
|X ′ ∩ Y ′|, |Y −X| = |Y ′ −X ′|, and |A− (X ∪ Y )| = |A′ − (X ′ ∪ Y ′)|.

This generalizes to all monadic structures: if there are k unary relation
symbols in the signature, the universe is partitioned into 2k parts, and the
number of elements in these is, up to isomorphism, all there is to say about
the structure.

Now consider the following property of a type 〈1, 1〉 quantifier Q:

(ISOM) If (A,X, Y ) ∼= (A′, X ′, Y ′) then [QAXY ⇔ QA′X ′Y ′].

This is what I mean by saying that Q deals only with quantities. If Q
satisfies ISOM then, by the above Fact, only the number of elements in
X − Y , X ∩ Y , Y −X, and A− (X ∪ Y ) determines whether QAXY holds
or not. Now look at our examples of type 〈1, 1〉 quantifiers from section 4:
each one is given by a condition on one or more of these quantities; hence
they all satisfy ISOM. For example,

allAXY ⇐⇒ |X − Y | = 0

someAXY ⇐⇒ |X ∩ Y | > 0
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mostAXY ⇐⇒ |X ∩ Y | > |X − Y |

moreAXY ⇐⇒ |X − Y |+ |X ∩ Y | > |Y −X|+ |X ∩ Y |

etc.

ISOM is expressed similarly for other monadic types. In the type 〈1〉
case, it says that whether QAX holds or not is determined by the two
quantities |X| and |A−X|. Thus, all the type 〈1〉 quantifiers from section 3
satisfy ISOM, but the quantifier QJohn does not: we may have X,X ′ ⊆ A,
|X| = |X ′| and |A−X| = |A−X ′|, but John ∈ X −X ′.

It should come as no surprise that there is a tight connection between
ISOM and isomorphism closure. To state it, we first need to sharpen our
idea of what a logic is.

6 Logics with generalized quantifiers

In [Hodges 1999], first-order logic FO is characterized as a collection of
(artificial) languages: for each signature σ we have the set of σ-formulas,
defined inductively, starting with the atomic formulas, and then one clause
for each logical constant. Then, the relation |= between a σ-structure, a
σ-formula, and a valuation (of the variables in the universe of the structure)
is defined with a corresponding induction, with (2) and (3) (or (8) and (9))
as the inductive clauses corresponding to ∀ and ∃.

Now let Q be any (for the time being monadic) quantifier. The logic
FO(Q) is given, syntactically, by adding (Q-syn) (cf. section 4) as a defining
clause of the σ-formulas, and, semantically, (Q-sem) as a defining clause for
|=. Thus, FO(Q) has all the expressive machinery of first-order-logic, plus
the quantifier Q.

Similarly, we can define FO(Q1, . . . , Qn), or even FO(Q) where Q is any
set of quantifiers. By a logic I will mean a logic of this form (there are more
general notions of a logic but they will not concern us here).

For example, FO(Q0) is a logic, with atomic formulas, negations, con-
junctions, existential and universal quantifications as usual, and formulas of
the form

(Q0x)ϕ,

whose meaning is given by

A |= (Q0x)ϕ[x,a] ⇐⇒ ϕA,x,a is infinite.
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FO(Q0,∃=17) is another logic, where we in addition have formulas of the
form

(∃=17y)ϕ,

where
A |= (∃=17y)ϕ[y,a] ⇐⇒ |ϕA,y,a| = 17.

The notion of isomorphism closure makes sense for any logic, and it is
now easy to establish

6.1 Fact. If each quantifier in Q satsifies ISOM, then ismorphism closure
holds for FO(Q).

(To show this, one proves by induction over formulas something a little
more general, namely, that if f : A ∼= B and a1, . . . , an ∈ A then A |=
ϕ[a1, . . . , an]⇔ B |= ϕ[f(a1), . . . , f(an)] for all ϕ in FO(Q) of the relevant
signature. Fact 6.1 is the special case of this when ϕ is a sentence.)

One reason that ISOM is important is thus that we want Fact 6.1 to hold,
or, put differently, we want quantifiers to be logical constants. There has
been some discussion as to just what logicality means, but it is generally
agreed that isomorphism closure is at least a necessary condition: logic
should be indifferent to which universe of objects we are talking about.
It is ‘topic-neutral’, it cares only about structure. In the case of monadic
quantifiers there is a further reason, as we have seen: these particular logical
constants care only about quantities of things, not the things in themselves.
Hence the adequacy of the term quantifier.

Are logics with generalized quantifiers first-order or not? There is a
sense in which they are: they quantify only over individuals of the universe,
not, as in second-order logic, over sets of such individuals. Thus, the notion
of a signature, and the notion of a structure, are the same for these logics as
for FO. However, the term first-order logic has become synonymous with
FO, and in this sense many of the logics we have introduced here are not
first-order, since their expressive power exceeds that of FO.

7 Expressive power

Consider again the logic FO(Q0). Clearly this logic, and any logic of the
form FO(Q), extends FO: everything that can be said in FO can also be
said in them. Moreover, it is also clear that FO(Q0) is more expressive
than FO; for example, as mentioned in section 3 we can say in FO(Q0)
that every element of N has a finite number of predecessors, but we cannot
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say the same thing in FO. Or, to take a simpler example, we can say in
FO(Q0), but not in FO, that the universe is finite:

∼ (Q0x)(x = x)

[One proof of the last claim goes as follows. Suppose there were an FO-
sentence θ equivalent to ∼ (Q0x)(x = x). In FO we can write down, for
every natural number n, a sentence ϕn saying that the universe has at least
n elements. Consider the theory (set of sentences)

T = {θ} ∪ {ϕn : n = 1, 2, . . .}.

Now T has the property that every one of its finite subsets has a model
(why?). By the Compactness theorem (Corollary 3 in [Hodges 1999]), which
holds for FO, it then follows that T has a model. But that is impossible:
the universe of that model would be finite, yet have at least n elements for
every n. Hence, ∼ (Q0x)(x = x) is not equivalent to any FO-sentence. Also,
it follows that the Compactness theorem does not hold for FO(Q0).]

We take these intuitions as the way to compare the expressive power
of logics. By definition, a logic L′ extends a logic L, in symbols, L ≤ L′,
if each L-sentence is equivalent to — has the same models as — some L′-
sentence (of the same signature). Thus, every logic of the kind we consider
here extends FO. Moreover, L′ properly extends L, L < L′, if L ≤ L′ and
L′ 6≤ L. The latter condition means that there is some L′-sentence which is
not equivalent to any L′-sentence. For example,

FO < FO(Q0),(20)

as we just saw. Finally, we say that L and L′ are equivalent, L ≡ L′, if

L ≤ L′ and L′ ≤ L.
Note that equivalence between logics means same expressive power; it

does not mean identity. Consider FO and FO(∃=17). These logics are
equivalent: in FO we can say, for example, that a set has exactly 18 elements:

(∃x1) . . . (∃x18)(
∧

1≤i 6=j≤18
(P (xi) & (xi 6= xj)) & (∀y)(P (y) ⊃

∨
1≤i≤18

(y = xi)))

As we see, it takes 19 variables to say this. But in FO(∃=17) we manage to
say the same thing with just 2 variables:

(∃y)(P (y) & (∃=17x)(P (x) & (x 6= y))).

Indeed, everything that can be said in FO(∃=17) can also be said in FO,
only it sometimes takes more variables. The number of variables used is
important for certain applications of logic, but not for expressive power as
defined here.
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8 Definability

Showing that L ≤ L′ may seem like a substantial task: we must find for
each one of the infinitely many L-sentences an equivalent L′-sentence. But
when L is of the form FO(Q), the task is usually much simpler: it suffices
to show that each quantifier in Q is definable in L′. For example, once we
see that the quantifier ∃=17 is definable in FO, it is rather clear that any
FO(∃=17)-sentence can be rewritten as an FO-sentence. And that ∃=17 is
definable in FO just means that the single sentence

(∃=17x)P (x)

is equivalent to some FO-sentence, as of course it is.
Let us be precise. Suppose Q is a type 〈1, 1〉 quantifier, say. Q is said to

be definable in a logic L if the sentence

(Qx)(P1(x), P2(x))

is equivalent to some L-sentence of the same signature (in this case the
signature {P1, P2} consisting of two unary relation symbols). Similarly for
quantifiers of other types. Now it is not hard to show

8.1 Fact. FO(Q) ≤ L iff each quantifier in Q is definable in L.

Let us look at some examples. We saw that FO ≡ FO(∃=17), so clearly,
for example,

FO(Q0) ≡ FO(Q0,∃=17),(21)

since ∃=17, being definable in FO, is a fortiori definable in FO(Q0).

FO(Q0) ≤ FO(I) ≤ FO(more).(22)

The first part holds since a set is infinite iff it has the same cardinality as

some proper subset, so (Q0x)P (x) is equivalent to

(∃x)(P (x) & (Iy)(P (y), P (y) & (y 6= x))).

The second part holds because (Ix)(P1(x), P2(x)) is clearly equivalent to

∼ (more x)(P1(x), P2(x)) & ∼ (more x)(P2(x), P1(x)).

One can show that both of the inequalities in (22) are in fact strict. (These
are examples of undefinability results; more about that in the next section.)
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FO(most) ≤ FO(more),(23)

since (most x)(P1(x), P2(x)) is equivalent to

(more x)(P1(x) &P2(x) , P1(x) & ∼ P2(x)).

Again, this is a strict inequality in general. But note that if X ∩ Y is a
finite set, then we have |X| > |Y | ⇔ |X−Y | + |X∩Y | > |Y −X| + |X∩
Y | ⇔ |X−Y | > |Y −X|. So when (the interpretation of) P1 ∩ P2 is finite,
(more x)(P1(x), P2(x)) is equivalent to

(most x)((P1(x) & ∼ P2(x)) ∨ (P2(x) & ∼ P1(x)) , (P1(x) & ∼ P2(x)).

Let this last sentence be ψ1. Next, when X ∩ Y is an infinite set, then |X|
is the maximum of |X − Y | and |X ∩ Y |, and likewise |Y | is the maximum
of |Y −X| and |X ∩ Y |. (These are facts of cardinal arithmetic.) It follows
that, in this case, |X| > |Y | ⇔ [|X−Y | > |Y −X| and |X−Y | > |X∩Y |].1
That is, when P1 ∩ P2 is infinite, (more x)(P1(x), P2(x)) is equivalent to

ψ1 & (most x)(P1(x) , ∼ P2(x)).

Let the second conjunct above be ψ2. It now follows that, on any universe,
(more x)(P1(x), P2(x)) is equivalent to

(∼ (Q0x)(P1(x) &P2(x)) & ψ1) ∨ ((Q0x)(P1(x) &P2(x)) &ψ1 &ψ2).

Putting all of the above together, we have shown that

FO(more) ≡ FO(Q0,most).(24)

All type 〈1〉 quantifiers are definable in terms of type 〈1, 1〉 quantifiers
(but not vice versa); in fact there is a uniform way of strenghtening a type 〈1〉
quantifier Q to its so-called relativization, which is the type 〈1, 1〉 quantifier
Qrel defined by

(Rel) Qrel
A XY ⇐⇒ QX X∩Y .

1Proof: If |X−Y | > |Y−X| and |X−Y | > |X∩Y |, then |X| ≥ |X−Y | > max(|X∩Y |, |Y−
X|) = |Y |. On the other hand, if |X−Y | ≤ |Y−X|, then |X| = |X−Y |+ |X∩Y | ≤ |Y−X|+
|X∩Y | = |Y |. And if |X−Y | ≤ |X∩Y |, then |X| = |X−Y |+|X∩Y | ≤ |X∩Y |+|X∩Y | = |X∩Y |
(since X∩Y is infinite) ≤ |Y |. QED.
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Roughly, Qrel says (on any universe A) about X,Y what Q says on the uni-
verse X about X∩Y . In other words, the quantification domain is restricted
to the first argument of QA. We have QAX ⇔ Qrel

A AX, that is, the following
is logically valid:

(Qx)P (x)↔ (Qrelx)((x = x, P (x)),

which means that

FO(Q) ≤ FO(Qrel).(25)

Here are some examples of relativizations:

• ∀rel = all

• ∃rel = some

• (∃≥n)rel = at least n

• (QR)rel = most (QR was defined in (14).)

So we note that the Aristotelian quantifiers are relativizations of familiar
type 〈1〉 quantifiers. In the first three cases above, the relativizations are in
turn definable from the unrelativized quantifiers, for example

(all x)(P1(x), P2(x))↔ (∀x)(P1(x) ⊃ P2(x))

(some x)(P1(x), P2(x))↔ (∃x)(P1(x) &P2(x)).

In other words,

FO ≡ FO(all) ≡ FO(some) ≡ FO(∃≥n) ≡ FO(∃rel≥n).(26)

However, interestingly,

FO(QR) < FO(most).(27)

Even on finite universes, in fact, saying that X∩Y has more than half the

elements of X is not expressible in first-order logic plus the quantifier saying
that a set has more than half the elements of the whole universe.

14



9 Undefinability

To prove that a particular quantifier Q is definable in some logic L, you need
to provide a definition, that is, a defining L-sentence. This can be more or
less involved (cf. the case with more, most and Q0 in the previous section),
but is often straightforward. To prove that Q is not so definable, however,
is harder. Here you really need to verify that none of the infinitely many
L-sentences works as a definition.

Sometimes one can get by with showing that L has some property that
it would not have if Q were definable. This is how we saw that Q0 is not
definable in FO, using the fact that FO has the compactness property. But
this is more of an exception; most logics lack compactness, or other similarly
useful properties. There are, however, more elementary and direct methods
of showing undefinability, but a description of these falls outside the scope
of this chapter. A thorough survey of (un)definability issues for logics with
monadic quantifiers is given in [Väänänen 1997].

Using these methods, it can be shown, for example, that the seemingly
innocuous quantifier most = (QR)rel is essentially type 〈1, 1〉 in a very strong
sense: not only is it not definable from QR, but we have the following

9.1 Theorem. [Kolaitis and Väänänen 1995] most is not definable in any
logic of the form FO(Q1, . . . , Qn), where the Qi are of type 〈1〉. (In fact,
the same holds for all the properly proportional quantifiers.)

10 Monotonicity

Among the multitude of possibe quantifiers, the ones that actually turn up
in familiar logical or linguistic contexts often have characteristic proper-
ties. Logicians want to know if logics with generalized quantifiers are well-
behaved in various ways, for example if the compactness property holds for
them (cf. section 7), or if they are complete, i.e., if their sets of logically
valid sentences are recursively enumerable (can be axiomatized by a formal
system). Unfortunately, many logics fail to have either of these properties;
examples are FO(Q0) and FO(most) (proofs of these facts can be found in
[Westerst̊ahl 1989]).

But we may more simply just look at the properties of the quantifiers
themselves, and then the perhaps most conspicuous ones are the monotonic-
ity properties:

• A type 〈1〉 quantifier Q is upward monotone, MON↑, if for all A,
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QAX and X ⊆ Y ⊆ A implies QAY .

Downward monotonicity, MON↓, is defined correspondingly.

• Similarly, for type 〈1, 1〉 quantifiers we can talk about upward or down-
ward monotonicity in the first or second argument, and we can use
MON with up- or downarrows to the right and/or left to indicate this.
For example, a type 〈1, 1〉 Q is ↓MON if, for all A,

QAXY and X ′ ⊆ X implies QAX
′Y .

And it is, say, ↑MON↓ if it is upward monotone in the first argument
and downward monotone in the second argument.

Now, looking at our examples we see that ∀, ∃, ∃≥n, QR, Q0, QC are
all MON↑, whereas, say, ∃≤n is ↓MON. A typical quantifier which is neither
upward nor downward monotone is ∃=n, but note that it is the conjunction
of an upward and a downward one: ∃=n = ∃≥n &∃≤n. So monotonicity is
ubiquitous. Here, however, is an example of a thoroughly non-monotone
type 〈1〉 quantifier:

(Qeven)AX ⇐⇒ |X| is even.

As to our type 〈1, 1〉 quantifiers, some and at least n are ↑MON↑, no
is ↓MON↓, every is ↓MON↑, more is ↑MON↓, and most is MON↑ but, as
the reader can easily verify, not monotone (in either direction) in the first
argument. I is non-monotone, but as we saw in section 8 it is definable with
Boolean operations from the monotone more. And again, a thouroughly
non-monotone type 〈1, 1〉 quantifier is an even number of = (Qeven)rel.

11 Lindström quantifiers

Monadic quantifiers are, on a given universe, relations among subsets of that
universe. But the business of mathematics is generalization, and it is then
only natural to consider quantifiers that are relations between relations over
the universe. This concept was introduced in [Lindström 1966], and is the
official notion of a generalized quantifier in logic. Our earlier definitions
easily carry over to this polyadic case. Let us illustrate with an example.

A (generalized) quantifier of type 〈2, 1, 3〉 is a function Q which asso-
ciates with each universe A a quantifier QA of type 〈2, 1, 3〉 on A, that
is, a ternary relation between a binary relation over A, a subset of A,
and a ternary relation over A.
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Such a Q can again be seen as a variable-binding operator, such that

(Q-syn) if ϕ,ψ, θ are formulas, then

(Qxy, z, uvw)(ϕ,ψ, θ)

is a formula (where all free occurrences of x, y in ϕ are bound by the
quantifier prefix, and similarly for the other variables).

The meaning of this formula is given by the clause

(Q-sem) A |= (Qxy, z, uvw)(ϕ,ψ, θ)[a] iff
(ϕA,xy,a, ψA,z,a, θA,uvw,a) ∈ QA.

Here ϕA,xy,a = {(b, c) ∈ A2 : A |= ϕ[b, c,a]}, etc. So the logic FO(Q) is
defined as before by adding these new clauses to the definition of a formula
and of satisfaction, respectively. The reader can easily formulate all of this
for the general case of a quantifier of type 〈k1, . . . , kn〉.

The property ISOM is defined for such a Q in the same way as before
(below for the type 〈2, 1, 3〉 case, so R ⊆ A2, X ⊆ A, S ⊆ A3, etc.):

(ISOM) If (A,R,X, S) ∼= (A′, R′, X ′, S′) then [QARXS ⇔ QA′R′X ′S′].

Fact 6.1 generalizes too, so ISOM quantifiers earn the right to be called
logical constants. However, they no longer say anything about quantities,
so the name ‘quantifier’ should be taken with a grain of salt in the polyadic
case. Let us look at some examples.

(28) DAXR ⇐⇒ R is a dense total ordering of X (type 〈1, 2〉).

(29) WAR ⇐⇒ R is a well-ordering of the universe (type 〈2〉).

To express that R is a dense total ordering of a set X is easy in FO, so
FO ≡ FO(D). But the notion of a well-ordering is not expressible (as can be
seen by a simple application of the Compactness theorem): FO < FO(W ).

Let Q,Q1, Q2 be type 〈1〉 quantifiers. The next few examples illustrate
so-called lifts of monadic quantifiers to polyadic ones; in this version they
lift type 〈1〉 quantifiers to type 〈2〉 quantifiers.

(30) Ram(Q)AR ⇐⇒ ∃X ⊆ A(QAX &∀a, b ∈ X(a 6= b⇒ R(a, b)))

(31) Br(Q1, Q2)AR ⇐⇒ ∃X,Y ⊆ A((Q1)AX & (Q2)AY &X × Y ⊆ R)

(32) Res(Q)AR ⇐⇒ QA2R.
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In all of these cases we assume that the lifted type 〈1〉 quantifiers are MON↑.
The first lift is related to the statement of the so-called Ramsey Theorem

(cf. any textbook of model theory).
The lift Br is an example of branching quantification. This idea orig-

inally stems from [Henkin 1961], who noted that the linear order of the
quantifiers ∀ and ∃ in FO imposes certain restrictions that can be avoided if
a partial order is allowed as well. This is in fact another way of generalizing
FO quantification. Consider the formula

(∀x)(∃y)
(33) ϕ(x, y, z, u).

(∀z)(∃u)

This is read “for all x there exists y and for all z there exists u such that
ϕ(x, y, z, u)”, where the y depends on x but not on z, and the u depends
on z but not on x. Such dependencies cannot be expressed in FO. For
example, in

(∀x)(∃y)(∀z)(∃u)ϕ(x, y, z, u)(34)

u depends on x and z, and in

(∀x)(∀z)(∃y)(∃u)ϕ(x, y, z, u)(35)

y and u both depend on x and z. These dependencies appear clearly if

we rewrite (34) and (35) by means of so-called Skolem functions; then (34)
becomes

(∃F )(∃G)(∀x)(∀z)ϕ(x, F (x), z,G(x, z)),

and (35) is equivalent to

(∃F )(∃G)(∀x)(∀z)ϕ(x, F (x, z), z,G(x, z)).

The formula (33), on the other hand, has the intended meaning

(∃F )(∃G)(∀x)(∀z)ϕ(x, F (x), z,G(z)).

The quantifier prefix in (33) is called the Henkin quantifier. It can in fact
be subsumed under our notion of generalized quantifier: define the type 〈4〉
quantifier QH by

QH
AR ⇐⇒ there are functions f, g s.t. for all a, b ∈ A,R(a, f(a), b, g(b)),

where R ⊆ A4. Then (33) is equivalent to (QHxyzu)ϕ(x, y, z, u). Other
partially ordered quantifier prefixes with ∀ and ∃ can be defined similarly.
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Adding the Henkin quantifier already extends the expressive power of FO
considerably. For example, one may show thatQ0 and evenmore is definable
in FO(QH), so FO < FO(more) ≤ FO(QH).

[The proof of this observation (due to Ehrenfeucht) is too simple and too
pretty to be left out here: we will express “there exists a one-one function F
from P1 to P2”; this suffices since it means that ∼ (more x)(P2(x), P1(x)).
Consider the sentence

(∀x)(∃y)
(36) (((x = z) ≡ (y = u))) & (P1(x) ⊃ P2(y)).

(∀z)(∃u)

By definition, this means

(∃F )(∃G)(∀x)(∀z)(((x = z) ≡ (F (x) = G(z)))) & (P1(x) ⊃ P2(F (x))).

From the (universally quantified) first conjunct we get, first (letting z be
x) that F (x) = G(x) for all x, so F = G, and second, that if x 6= z then
F (x) 6= F (z), so F is one-one, and we are done!]

Now [Barwise 1979] suggested that one may also consider branching
of (certain) other quantifiers than ∀ and ∃, and the polyadic Br(Q1, Q2)
is an example of this, which we could emphasize by writing the formula
(Br(Q1, Q2)xy)ϕ(x, y) as

(Q1x)
ϕ(x, y).

(Q2y)

It thus says that there is a set X satisfying Q1 and a set Y satisfying Q2

such any pair (x, y) with x ∈ X and y ∈ Y satisfies ϕ(x, y). The ‘order-
independence’ of the lifted quantifiers here is witnessed by the fact that the
formula is equivalent to

(Q2y)
ϕ(x, y).

(Q1x)

So in fact we have two ways of generalizing FO quantification: one
is through the concept of a (Lindström) generalized quantifier (which, as
we noted, essentially occurs already with Frege), and the other is through
relaxing the linear left-right order of FO logic. As we saw, the latter can,
for the case of ∀ and ∃, be subsumed under the former. But there also arises
the question as to whether we can ‘branch’ arbitrary generalized quantifiers.
Barwise considered some cases of branching of MON↑ quantifiers, but he
explicitly stated that another definition is required for the branching of
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MON↓ quantifiers, and he also claimed that the branching of, say, a MON↑
and a MON↓ quantifier “makes no sense”. In spite of this, others have tried
to express the meaning of arbitrary partially ordered prefixes of arbitrary
generalized quantifiers, cf. [Sher 1997]. It remains to be seen, in my opinion,
whether these ideas yield a fruitful notion of (generalized) quantifier.

The lift Res(Q), finally, is called the resumption (sometimes vector-
ization) of Q. Looking at a binary relation R as a set of ordered pairs,
Res(Q)AR simply says about R what Q says about that set of pairs. For
example,

Res(∃≥n)A(R) ⇐⇒ |R| ≥ n,

i.e., Res(∃≥n)A(R) says that R has at least n pairs. Likewise,

Res(QR)A(R) ⇐⇒ |R| > |A2 −R|.

As one would expect, polyadic quantifiers have in general more expres-
sive power than monadic ones. As to the lifts, one can, for example, show
that (Br(Q1, Q2)xy)P (x, y) is usually stronger than the ‘linear versions’
(Q1x)(Q2y)P (x, y) and (Q2y)(Q1x)P (x, y). Indeed, [Hella, Väänänen and Westerst̊ahl 1997]
proves that these lifts are essentially polyadic:

11.1 Theorem. Br(QR, QR) is not definable in any logic of the form
FO(Q1, . . . , Qn) where the Qi are monadic, and the same holds for Ram(QR).

Undefinability results for polyadic quantifiers can be very hard to prove.
An example is the result in [Luosto 1996] that Res(QR) too is not definable
from any finite number of monadic quantifiers added to FO; this proof
requires quite advanced combinatorics.

12 Quantifiers and natural language

The most obvious connection between (generalized) quantifiers and natural
languages is that many of these languages have a fundamental sentence con-
struction of the form [[[Q]Det][X]N ]]NP ][Y]V P ]S , or, in diagrammatic form,

(37)
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That is, (declarative) sentences are often formed by a Noun Phrase and a
Verb Phrase, where the Noun Phrase consists of a Determiner and a Noun.2

Now, both nouns (man, teacher, hungry dog, student who likes a teacher,
. . . ) and verb phrases (runs, loved Billy, gave a flower to some shop owner,
. . . ) are naturally interpreted as sets, i.e., as subsets of the universe of
discourse. Therefore, the determiner (every, no, most, at least three, several
of John’s ten) can be taken as a relation between sets, that is, as a type 〈1, 1〉
quantifier (on the universe, but the Det gives a quantifier on each universe,
so it corresponds to a generalized quantifier in our sense). For example,

(38) No student likes Henry

(39) All but three teachers smoke

(40) Most yellow cats are friendly

(41) Two thirds of John’s friends are linguists

etc.

Other types as well turn up in connection with natural languages. The
expressions everything and something naturally correspond to the type 〈1〉
∀ and ∃. More generally, NP’s may be interpreted as type 〈1〉 quantifiers, so
that, for example, most students denotes the set of subsets X of the universe
whose intersection with the sets of students contains more than half of the
students, and all but three dogs denotes the set of those X such that the
complement of X with respect to the set of dogs has exactly three elements,
etc. We also saw that proper names like John can be taken as type 〈1〉

2All of these phrases may in turn have internal structure; in particular, noun phrases
can occur in many different positions in a sentence. Also, quantification can be effected
by other means than determiners, for example using adverbs — I am just looking at the
simplest case here.
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quantifiers (note that this example as well as the last two do not satisfy
ISOM).

In the sentence

(42) More students than teachers smoke,

we may see the type 〈1, 1, 1〉 more than ((4) from section 4) at work. But
also polyadic lifts appear in the context of natural language quantification;
a survey of this can be found in [Keenan and Westerst̊ahl 1997]. I will not
go further into these matters here, but end with a few more words about
the central type 〈1, 1〉 case, i.e., the determiner denotations.

Given the vast number of mathematically possible type 〈1, 1〉 quanti-
fiers, a reasonable question is whether there are constraints as to which of
these can be realized in natural languages. A prime observation is that the
noun argument X in (37) plays a special role: it restricts the domain of
quantification. This is borne out by looking at actual examples:

(43) Exactly three dogs barked

can be seen as quantifying over the subuniverse of dogs; the non-dogs of the
universe are irrelevant for the truth or falsity of this sentence. Also, a special
role of the noun argument is consistent with the syntactic structure of (37).
An early observation (in [Barwise and Cooper 1981] and [Keenan and Stavi 1986])
was that determiner denotations are conservative: they satisfy

(CONS) QAXY ⇔ QAX X∩Y , for all A and all X,Y ⊆ A.

This means, in effect, that the part Y −X in Figure 1 (section 5) plays no
role in the truth conditions of QAXY . This seems to hold for determiner
denotations, but it does not hold, for example, for the otherwise mathemati-
cally perfectly natural quantifiers I and more (section 4). And indeed, there
do not seem to be any determiner expressions in natural languages which
denote these quantifiers.

There is one more aspect of domain restriction, however: the part A −
(X ∪Y ) should not matter to the truth conditions either. This can be
expressed as the following condition of extension, first proposed by van Ben-
them (cf. [van Benthem 1986]):

(EXT) If X,Y ⊆ A ⊆ A′, then QAXY ⇔ QA′XY .

That is, what a determiner denotes on a given universe does not ‘change’ if
we go to a larger universe. So, for example, there could not be a determiner
blik, say, which meant some on universes with less than ten elements, but
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most on larger universes (note that this quantifier would still be conserva-
tive).

Now recall that the idea of domain or universe restriction was already
defined in section 8 in terms of the notion of relativization. And indeed,
conservativity and extension together capture exactly the same idea:

12.1 Fact. A type 〈1, 1〉 quantifier satisfies CONS and EXT iff it is the
relativization of some type 〈1〉 quantifier.

To see this, check first that Qrel always satisfies CONS and EXT. In the
other direction, any CONS and EXT Q′ has a type 〈1〉 ‘counterpart’ Q
defined by QAX ⇔ Q′AAX: then Qrel

A XY ⇔ QXX∩Y (by (Rel) in section
8) ⇔ Q′XX X∩Y (by definition) ⇔ Q′AX X∩Y (by EXT) ⇔ Q′AXY (by
CONS), so Q′ = Qrel.

So quantifiers that are denoted by determiners in natural languages sat-
isfy CONS and EXT. They also satisfy ISOM. The ISOM+CONS+EXT
quantifiers form a natural class, but there have been several attempts to
formulate further constraints or ‘linguistic universals’ that single out (im-
portant subclasses of) the ‘natural language quantifiers’. Prime examples
here are the various monotonicity properties discussed in section 10. It may
seem — and it has been suggested — that all (monadic) quantifiers occurring
in natural languages are Boolean combinations of monotone ones. However,
an apparent exception to this would be an even number of = (Qeven)rel. And
it is true that one can show (this follows from a result in [Väänänen 1997])
that Qeven is not definable from MON↑ type 〈1〉 quantifiers. Perhaps sur-
prisingly, however, it is definable from the relativization of such a quantifier,
in fact from a CONS, EXT, ISOM, and MON↑ type 〈1, 1〉 quantifier. Let
us see how. We have

an even number ofAXY ⇐⇒ |X ∩ Y | is even.

Now define Q by

QAXY ⇐⇒
{
|X ∩ Y | ≥ 1 if |X| is even
|X ∩ Y | ≥ 2 if |X| is odd.

Q is clearly CONS, EXT, ISOM, and upward monotone in the second argu-
ment. Notice then that if a ∈ X,

QAX{a} ⇐⇒ |X| is even.
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But then we have |X∩Y | is even ⇔ X∩Y = ∅ or ∃a ∈ X∩Y QAX∩Y {a}.
That is, (an even number of x)(P1(x), P2(x)) is equivalent to

∼ ∃x(P1(x) &P2(x)) ∨ ∃x(P1(x) &P2(x) & (Qy)((P1(y) &P2(y)), (y = x))).

Perhaps one could still argue that Q is ‘unnatural’ in some sense, but I will
leave the matter here.

In early days of linguistic semantics it was sometimes suggested that
first-order logic, FO, suffices for the formalization of natural languages. This
thesis can be refuted in many ways, I think, but perhaps the most convincing
rebuttal comes from the theory of quantifiers. Certainly most is a natural
language quantifier, but we have seen that, even if one restricts attention to
finite universes, it is not FO definable, indeed it is not definable from any
type 〈1〉 quantifiers (Theorem 9.1). Essentially stronger logics than FO are
needed to capture the intricacies of quantification in natural languages.

13 Suggested further reading

A detailed exposition of most of the aspects of quantification touched on
in this chapter can be found in [Westerst̊ahl 1989]. A more recent survey
article, emphasizing the conncection with natural languages, and in par-
ticular the occurrence of polyadic lifts, is [Keenan and Westerst̊ahl 1997].
There are several technical papers on the expressive power of various quan-
tifiers; I would suggest [Kolaitis and Väänänen 1995], [Väänänen 1997], and
[Hella, Väänänen and Westerst̊ahl 1997], where the details are spelled out in
an accessible way. The canonical collection of mathematical papers on log-
ics with generalized quantifiers, and more generally on logics defined in a
model-theoretic way, is [Barwise and Feferman 1985]. A more philosoph-
ical approach to the logic of quantifiers can be found in several of the
papers in the collection [van Benthem 1986]. All of the work cited so far
approaches quantification from a logical point of view. For those interested
in the various forms that quantification can take in the world’s languages,
[Bach et al. 1995] is an invaluable source. The connection between this more
empirical work and the logic of quantification still remains to be fully ex-
plored.
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