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Abstract

We characterize the generalized quantifiers Q which satisfy the
scheme QxQyφ ↔ QyQxφ, the so-called self-commuting quantifiers,
or quantifiers with the Fubini property.

1 Introduction

Let Q be a type 〈1〉 generalized quantifier on a domain M , Q ⊆ P(M). Q is
self-commuting (on M) if the scheme

QxQyφ↔ QyQxφ

is valid. Put differently, Q is self-commuting if, for all R ⊆M2,

QQR⇔ QQR−1,(1)

where, for type 〈1〉 quantifiers Q1, Q2 on M ,

Q1Q2R⇔ Q1{a ∈M : Q2Ra}(2)

(Ra = {b ∈M : Rab}).
Familar examples are ∀ = {M} and ∃ = {A ⊆ M : A 6= ∅}, as well as,

for a ∈ M , Fa = {A ⊆ M : a ∈ A}. The quantifiers Fa, which we will call

∗This work was initiated during my visit in October 1993 to the Mathematics Dept.
at Helsinki University. I am grateful to Jouko Väänänen and the Logic Group at the
department for inviting me during their Logic Year and to him and Lauri Hella for very
helpful comments on the paper (cf. the beginning of section 4).

1



the atoms on M , have the stronger property of scopelessness: Q is scopeless
if for all Q′ and all R ⊆M2,

QQ′R⇔ Q′QR−1

Zimmermann has shown (cf. [5]) that the scopeless quantifiers on M are
precisely the atoms. In Montague style semantics for natural language, atoms
serve as interpretations of proper names— [[John]] = FJohn— which indeed
lack scope with respect to quantified phrases: John saw most of the films
means the same as Most of the films were seen by John, but the equivalence
fails if John is replaced by, say, most students.

If Q is almost all in the measure-theoretic sense, so that Q consists of the
subsets of M of measure 1, then self-commutativity is reminiscent of Fubini’s
theorem, by which (1) holds for all measurable R. By this analogy, self-
commutativity has been called the Fubini property. To require that (1) holds
for all R is much stronger, and van Lambalgen shows in [2] that under AC
(which we assume here) there can be no self-commutative non-principal filters
on M . The present characterization of self-commutativity is a generalization
of this result.

In the next section we give more examples of self-commuting quantifiers.
The characterization of self-commutativity is given in section 3, together with
some corollaries. Section 4 is devoted to the main part of the proof of the
result, and section 5 considers generalizations.

2 Examples

Fact 2.1 All unions and intersections of atoms are self-commuting.

Proof: We have, for B ⊆M ,

(
⋃
a∈B

Fa)(
⋃
a∈B

Fa)R⇐⇒
∨
a∈B

(
∨
b∈B

Rab)⇐⇒
∨

a,b∈B
Rab⇐⇒

∨
a,b∈B

R−1ab

and similarly for intersection. 2

This includes the trivial quantifiers 0 = ∅ =
⋃ ∅ and 1 = P(M) =⋂ ∅. Among the unions of atoms we find interpretations of disjunctive noun

phrases like John or Bill or Mary (FJohn ∪ FBill ∪ FMary), and noun phrases
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like some books ({A ⊆ M : A ∩ B 6= ∅} =
⋃
a∈B Fa, where B is the set of

books), as well as
∃ =

⋃
a∈M

Fa

The intersections of atoms are precisely the principal filters on M ,

FB = {A ⊆M : B ⊆ A} =
⋂
a∈B

Fa

such as the interpretation of John and Bill and Mary, or the men (
⋂
a∈B Fa,

where B is the set of men), or John’s ten bikes (when B is the set of bikes
that John owns:

⋂
a∈B Fa if |B| = 10, and 0 otherwise). Also, ∀ = FM .

The outer and inner negation, and the dual of Q are defined as usual:

¬Q = P(M)−Q

Q¬ = {A ⊆M : M − A ∈ Q}

Qd = ¬(Q¬) = (¬Q)¬

Q is self-dual if Qd = Q (so the self-dual filters are just the ultrafilters).

Fact 2.2 If Q is self-commuting, so is Qd.

Proof: By elementary quantifier manipulations: QdQdR⇔ ¬Q¬¬Q¬R⇔
¬QQ¬R⇔ ¬QQ¬R−1(since Q is self-commuting)⇔ QdQdR−1. 2

Lemma 2.3
⋃
a∈B Fa (

⋂
a∈B Fa) is self-dual iff |B| = 1.

Proof: Each Fa is clearly self-dual. For B = ∅, note that ∅ and P(M)
are not self-dual: ∅d = P(M). If |B| > 1 then for each b ∈ B, {b} ∈⋃
a∈B Fa − (

⋃
a∈B Fa)

d, and M − {b} ∈ (
⋂
a∈B Fa)

d − ⋂
a∈B Fa. 2

If Q is both self-commuting and self-dual, then ¬Q is also self-commuting
(¬Q¬Q = QdQ = QQ). So each ¬Fa (= Fa¬ = the principal ideal generated
by a) is self-commuting. This is an example of a downward monotone self-
commuting quantifier—note that the quantifiers from Fact 2.1 are all upward
monotone. In fact, we will see that it is the only example. In particular,
when |B| > 1, ¬(

⋃
a∈B Fa) and ¬(

⋂
a∈B Fa) are not self-commuting.

3



Our next examples of self-commuting quantifiers are neither upward nor
downward monotone.

The symmetric difference operation on two sets,

A⊕B = (A−B) ∪ (B − A)

is (commutative and) associative, so the notation
n⊕
i=1

Bi

makes sense (for n ≥ 1; if n = 1,
⊕n
i=1Bi = B1).

Fact 2.4 a ∈⊕n
i=1Bi ⇐⇒ |{i : a ∈ Bi}| is odd.

Now consider quantifiers
⊕n

i=1 Fai . From Fact 2.4 we see that

X ∈
n⊕
i=1

Fai ⇐⇒ |X ∩ {a1, . . . , an}| is odd(3)

Fact 2.5
⊕n
i=1 Fai is self-commuting.

Proof: Let Q =
⊕n
i=1 Fai and A = {a1, . . . , an}.

QQR ⇐⇒ Q{a : |Ra ∩ A| is odd}
⇐⇒ |{a ∈ A : |Ra ∩ A| is odd}| is odd

⇐⇒ |R ∩ (A× A)| is odd

The last equivalence is seen to hold since

|R ∩ (A× A)| = |Ra1 ∩ A|+ . . .+ |Ran ∩ A|
It is now clear that QQR⇔ QQR−1. 2

An example from natural language might be John or Mary but not both
(FJohn ⊕ FMary).

1

The following is an easy consequence of Fact 2.4.

1Or either John or Mary, if one accepts (but this is doubtful) a reading of this with
exclusive disjunction. Then, an instance of the self-commutativity of this quantifier is the
perhaps not immediately obvious equivalence of the two sentences Either John or Mary
criticized either John or Mary and Either John or Mary was criticized by either John
or Mary. Note that the equivalence continues to hold if one of the two noun phrases is
replaced by either Bill or Sue; this generalization is taken up in section 5. But note also
that phrases with three or more disjuncts, say either John or Mary or Sue, do not have
interpretations as exclusive disjunctions (symmetric differences).
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Fact 2.6 Let Q =
⊕n

i=1 Fai and A = {a1, . . . , an}. If |A| is odd, then Q¬ =
¬Q and Qd = Q. If |A| is even, then Q¬ = Q and Qd = ¬Q.

This gives us our last examples of self-commuting quantifiers.

Corollary 2.7 ¬⊕n
i=1 Fai is self-commuting.

Proof: With Q =
⊕n
i=1 Fai and A = {a1, . . . , an} we have: If |A| is odd,

then ¬Q¬Q = QdQ = QQ, and if |A| is even, then ¬Q¬Q = QdQd, so the
result follows from Facts 2.2 and 2.5. 2

3 Characterization

The main result of this paper shows that the examples of self-commuting
quantifiers in the previous section are in fact the only ones.

Theorem 3.1 Q is self-commuting iff Q is either a union or an intersection
of atoms, or a finite symmetric difference of atoms, or a negation of such a
symmetric difference.

We now derive this theorem from the following Main Lemma, which is
proved in the next section.

Lemma 3.2 (Main Lemma) If Q is self-commuting and ∅ 6∈ Q, then Q is
either a union or an intersection of atoms, or a finite symmetric difference
of atoms.

Proof of Theorem 3.1: ‘If’: This follows from the results in section 2.
‘Only if’: If ∅ 6∈ Q we can use the Main Lemma, so suppose ∅ ∈ Q. Assume
first that M ∈ Q. Then ∅ 6∈ Qd, so the Main Lemma applied to Qd gives

Qd =
⋃
a∈B Fa

or Qd =
⋂
a∈B Fa

or Qd =
⊕n

i=1 Fai
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It follows that

Q = (
⋃
a∈B Fa)

d =
⋂
a∈B(Fa)

d =
⋂
a∈B Fa

or Q = (
⋂
a∈B Fa)

d =
⋃
a∈B(Fa)

d =
⋃
a∈B Fa

or Q = (
⊕n
i=1 Fai)

d

and, by Fact 2.6, in the latter case Q is either
⊕n

i=1 Fai or ¬⊕n
i=1 Fai .

Now suppose that M 6∈ Q.

CLAIM: Q is self-dual.

Proof of Claim: Suppose, for contradiction, that there is a set A such that
either A ∈ Q and M − A ∈ Q, or A 6∈ Q and M − A 6∈ Q. By assumption,
A 6= ∅ and A 6= M . Define the relation R by the following condition:

Ra =

{
∅ if a ∈ A
M if a ∈M − A

If A,M − A ∈ Q, then {a : QRa} = A ∈ Q, but {a : Q(R−1)a} = M 6∈
Q. This contradicts the self-commutativity of Q. If A,M − A 6∈ Q, then
{a : QRa} = A 6∈ Q, but {a : Q(R−1)a} = ∅ ∈ Q, again contradicting
self-commutativity. This proves the Claim.

Now since Q is self-commuting and self-dual, ¬Q is also self-commuting.
Since ∅ 6∈ ¬Q we can apply the Main Lemma:

¬Q =
⋃
a∈B Fa

or ¬Q =
⋂
a∈B Fa

or ¬Q =
⊕n

i=1 Fai

But ¬Q is also self-dual, so it follows from Lemma 2.3 that in the first two
cases, |B| = 1, i.e., Q = ¬Fa for some a ∈ M . And in the third case,
Q = ¬⊕n

i=1 Fai . 2

The theorem generalizes results about self-commutativity in van Benthem
[1] and van Lambalgen [2]. Indeed, van Lambalgen’s result is used in the proof
of the Main Lemma.

We now consider a few corollaries to the theorem. First note the asymme-
try between upward and downward monotone self-commutative quantifiers:
the unions and intersections of atoms are upward monotone, but
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Corollary 3.3 The only non-trivial and downward monotone self-commuting
quantifiers are the principal ideals ¬Fa for a ∈M .

As the proof above shows, the reason is that when ∅ ∈ Q ∩ Qd, self-
commutativity forces Q to be self-dual.

Call Q ISOM if it is a quantifier in the logical sense, i.e., if (M,A) ∼=
(M ′, A′) and A ∈ QM implies A′ ∈ QM ′ (where Q is now a functional relation
assigning to each domain M a quantifier QM on M). Also, let Qodd be the
quantifier defined by A ∈ Qodd iff |A| is odd, and similarly for Qeven.

Corollary 3.4 The only ISOM and self-commuting quantifiers, except the
trivial ones, are ∀ and ∃, and, on finite domains, Qodd and Qeven. 2

Proof: If Q is
⋃
a∈B Fa or

⋂
a∈B Fa, it is rather clear that Q can only be

ISOM if B is either ∅ or M . The first case gives the trivial quantifiers, and
the second ∀ and ∃. Similarly,

⊕n
i=1 Fai and ¬⊕n

i=1 Fai can only be ISOM if
{a1, . . . , an} = M , and then

X ∈
⊕
a∈M

Fa ⇐⇒ |X| is odd

(Note, by the way, that QoddxQoddyRxy always says that |R| is odd, whereas
QevenxQevenyRxy says that |R| is odd if |M | is odd, and that |R| is even if
|M | is even.) 2

If Q1 and Q2 are type 〈1〉 quantifiers, the quantifier Q1Q2 is of type 〈2〉,
i.e., it is (on M) a set of binary relations on M . Call a type 〈2〉 quantifier
convertible if whenever R belongs to it, so does R−1. The next corollary
generalizes a result in [4].

Corollary 3.5 Let Q = Q1Q2, where Q is non-trivial and ∅ 6∈ Q2. Q is
convertible iff Q1 = Q2 or ¬Q1 = Q2, where Q2 in both cases is as in the
Main Lemma.

2Theorem 3.1 in fact stems from my attempt to explain what Qodd and Qeven were
doing in this result, which was proved in [4] for finite universes. As it turned out, neither
ISOM nor the restriction to finite models is needed in the general result.
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Proof: Observe that the requirement ∅ 6∈ Q2 is not really a restriction,
since Q1Q2 = Q1¬¬Q2. Assume first that ∅ 6∈ Q1. It is shown in [4] (us-
ing Keenan’s so-called Prefix and Product Theorems) how the convertibility
of Q then implies that Q1 = Q2. But then convertibility reduces to self-
commutativity, and so the Main Lemma applies. If instead ∅ ∈ Q1, we apply
the same argument to ¬Q. 2

The corollary gives a complete characterization of the quantifier pairs
(Q1, Q2) which satisfy, for all R ⊆M2,

Q1Q2R⇔ Q1Q2R
−1,(4)

a condition which in a natural way generalizes the self-commutativity condi-
tion (1). Another obvious generalization of (1) to pairs of quantifiers is

Q1Q2R⇔ Q2Q1R
−1(5)

We will consider this condition in section 5.

4 Proof of the Main Lemma

The proof of the Main Lemma to be given below is a substantial simplifi-
cation, due to Lauri Hella, of my considerably more involved original proof,
and is presented here with his permission.

Assume, for this section, that Q is self-commutative and that ∅ 6∈ Q. We
first present four preliminary lemmas. The proof of the first lemma is in fact
(as Hella pointed out) a standard argument (due to Sierpinski) from measure
theory that there can be no Borel well-ordering of the reals. This uses the
fact that Borel relations are Lebesgue measurable, and the Fubini theorem.
But the argument does not use any other properties of the reals, and so goes
through in the present abstract setting.

Definition 4.1 Q is splittable if A ∈ Q and B ⊆ A implies that either B ∈ Q
or A−B ∈ Q.

For example,
⋃
a∈B Fa and

⊕n
i=1 Fai are splittable, but not

⋂
a∈B Fa (when

|B| > 1).
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Lemma 4.1 If Q is splittable, then A ∈ Q implies {a} ∈ Q for some a ∈ A.

Proof: Clearly it is enough to prove that for infinite A, A ∈ Q implies
B ∈ Q for some B ⊆ A with |B| < |A|. Suppose this fails for some infinite
A ∈ Q. Let R be a well-ordering of A with order type |A|, so that all
proper initial segments have cardinality < |A|. Thus, B 6∈ Q for all proper
initial segments B. By splittability, C ∈ Q for all proper end segments C.
But this means that QQR is true but QQR−1 is false, contradicting self-
commutativity. 2

Lemma 4.2 If Q is not splittable, it is closed under finite intersections.

Proof: Suppose there are A ∈ Q, B ⊆ A, such that B 6∈ Q and A−B 6∈ Q.
If C,D ∈ Q, define R as follows:

Ra =

{
C if a ∈ A−B
D if a ∈ B

Here and in what follows, this is taken to mean that Ra = ∅ for all a not
explicitly mentioned in the defining condition. So R ⊆ A× (C ∪D), and we
can draw a simple picture of R as follows:

A−B

B
R

D−C C∩D C−D

Then {a : QRa} = A ∈ Q. Also, we see (looking at the figure) that {a :
Q(R−1)a} = C ∩ D. Thus, by self-commutativity, C ∩ D ∈ Q. (Similar
pictures are helpful for some of the proofs below.) 2

The next lemma says that Q must be ‘almost’ upward monotone.
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Lemma 4.3 If B ∈ Q, B ⊆ A, and A−B 6∈ Q, then A ∈ Q.

Proof: Assume, for contradiction, that B ∈ Q, B ⊆ A, and A − B 6∈ Q,
but A 6∈ Q. Define R by

Ra =

{
A−B if a ∈ A−B
A if a ∈ B

Then {a : QRa} = ∅ 6∈ Q. On the other hand, {a : Q(R−1)a} = B ∈ Q,
which contradicts the fact that Q is self-commuting. 2

The final lemma says roughly that if Q is not upward monotone, it must
be ‘alternating’.

Lemma 4.4 Suppose Q is not upward monotone. Then B ∈ Q, B ⊆ A, and
A−B ∈ Q implies that A 6∈ Q.

Proof: If Q is not upward monotone, it follows from Lemma 4.3 that there
are C,D such that C ∈ Q, C ⊆ D, D 6∈ Q, and D − C ∈ Q. Take any A,B
with B ∈ Q, B ⊆ A, and A−B ∈ Q. Let R be defined by

Ra =

{
B if a ∈ C
A−B if a ∈ D − C

Then {a : QRa} = D 6∈ Q. But {a : Q(R)−1a } = A, so, by self-commutativity,
A 6∈ Q. 2

We can now start proving the Main Lemma.

Case 1: Q is closed under finite intersections.

By Lemma 4.3, and since ∅ 6∈ Q, it then follows that Q is upward mono-
tone. Thus, Q is a filter. It now follows from a result in [2] that Q is closed
under arbitrary intersections, and hence that Q = F∩Q. However, for com-
pleteness we give a proof of this. Let Q = {Bα : α < κ}. For α < κ,
define

Cα =
⋂
β≤α

Bβ
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Also, let Cκ =
⋂
α<κBα. Thus,

β < α ≤ κ =⇒ Cβ ⊇ Cα

CLAIM: Cα ∈ Q for α ≤ κ.

The Claim is proved by induction on α. Clearly it holds for α = 0. For
α = β + 1 it follows from the induction hypothesis and closure under finite
intersections. Let α be a limit ordinal, and suppose that Cα 6∈ Q. Define R
by the following stipulations.

(i) If a ∈ Cα, then Ra = C0 ∈ Q.

(ii) If a ∈ C0 − Cα, then there is γ + 1 < α such that a ∈ Cγ − Cγ+1. Let
Ra = Cγ. Thus Ra ∈ Q, by induction hypothesis.

R may be pictured as the following subset of C0 × C0:

l
l
l
l
l
l

l
l
l

l
l
l

l
l
ll

C0

C1

aCγ

Cγ+1

Cα

b

C0 Cα

R

Ra

Rb

It follows that {a : QRa} = C0 ∈ Q. Further, if a ∈ Cα, then (R−1)a = C0 ∈
Q. And if a ∈ C0 − Cα, with γ as in (ii) above,

(R−1)a = Cα ∪ (C0 − Cγ+1) = C ′
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If C ′ ∈ Q, it follows by closure under finite intersections that C ′ ∩ Cγ+1 =
Cα ∈ Q, contradicting our assumption. Thus, we have C ′ 6∈ Q. But then,
{a : Q(R−1)a} = Cα 6∈ Q, contradicting self-commutativity. This proves the
Claim.

Case 2: Q is not closed under intersections.

By Lemma 4.2, Q is splittable. Thus, by Lemma 4.1,

A ∈ Q =⇒ {a} ∈ Q for some a ∈ A(6)

Case 2A: Q is upward monotone.

Let B = {a : {a} ∈ Q}. Then, from monotonicity and (6),

A ∈ Q⇐⇒ A ∩B 6= ∅

i.e., Q =
⋃
a∈B Fa.

Case 2B: Q is not upward monotone.

Again, let B = {a : {a} ∈ Q}. We first note that

a, b ∈ B, a 6= b =⇒ {a, b} 6∈ Q(7)

This follows, since otherwise we would have {a} ∈ Q, {a, b} ∈ Q, but also
{a, b} − {a} ∈ Q, which contradicts Lemma 4.4.

Next, we make the

CLAIM: Q is finite.

To see this, suppose B is infinite. Take a0, a1, a2, . . . ∈ B and define R by

Ran = {an, an+1}, n = 0, 1, . . .

By (7), {a : QRa} = ∅ 6∈ Q. But also, {a : Q(R−1)a} = {a0} ∈ Q, a
contradiction, and the Claim is proved.

Finally, applying Lemmas 4.3 and 4.4 it is easy to prove by induction
that

∀B′ ⊆ B : B′ ∈ Q⇔ |B′| is odd(8)

Thus, if |A ∩ B| is odd, A ∩ B ∈ Q. But A − (A ∩ B) 6∈ Q by (6), since
a ∈ A−B implies {a} 6∈ Q. So by Lemma 4.3, A ∈ Q. Conversely, if |A∩B|
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is even, A∩B 6∈ Q. Again, A− (A∩B) 6∈ Q. Hence, by splittability, A 6∈ Q.
We have shown that

A ∈ Q⇐⇒ |A ∩B| is odd,

i.e., that Q =
⊕
a∈B Fa. This concludes the proof. 2

5 Generalizations

We remarked earlier that the notion of self-commutativity has at least two
natural generalizations to pairs (Q1, Q2) of type 〈1〉 quantifiers. One is con-
vertibility of the type 〈2〉 quantifier Q1Q2. The other is the following notion
of independence:

Definition 5.1 (Q1, Q2) is independent if, for all R ⊆M2,

Q1Q2R⇔ Q2Q1R
−1

Thus, Q is self-commuting iff (Q,Q) is independent. I don’t know the
full answer to the following

Problem: Characterize the independent pairs.

In [3] it was shown that if Q1 and Q2 are upward monotone, non-trivial,
and ISOM, (Q1, Q2) is independent iff Q1 = Q2 = ∀ or Q1 = Q2 = ∃.
But without these constraints there are lots of other independent pairs. By
arguments similar to those used in establishing Facts 2.1 and 2.5 one verifies

Fact 5.1 If both Q1 and Q2 are unions of atoms, or both intersections of
atoms, or both finite symmetric differences of atoms, then (Q1, Q2) is inde-
pendent.

As to negations of symmetric differences, one can show using Fact 2.6
that the independent pairs are the following.
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Fact 5.2 Let Q1 =
⊕n
i=1 Fai and Q2 =

⊕m
j=1 Fbj , n,m ≥ 1. Then

a. (Q1,¬Q2) is independent iff n is odd.

b. (¬Q1, Q2) is independent iff m is odd.

c. (¬Q1,¬Q2) is independent iff n,m are both odd or both even.

One might hope that Facts 5.1–2 give the only examples of independent
pairs, but that is not so. The next proposition provides some further infor-
mation.

Let us say that Q preserves unions of length κ if, for all Ai ⊆ M, i ∈ I
with |I| ≤ κ,

Q(
⋃
i∈I
Ai)⇐⇒

∨
i∈I
QAi

Likewise, Q preserves intersections of length κ if

Q(
⋂
i∈I
Ai)⇐⇒

∧
i∈I
QAi

Note first that if Q preserves finite unions or intersections, then Q is upward
monotone. (In particular, Q preserves finite intersections iff Q is a filter.)
Using this, it is not hard to verify that if |M |, |Q| > 1, then

Q preserves unions of length |M | ⇐⇒ ∃B ⊆M(Q =
⋃
a∈B

Fa)(9)

Q preserves intersections of length |Q| ⇐⇒ ∃B ⊆M(Q =
⋂
a∈B

Fa)(10)

Proposition 5.3 If one of Q1, Q2 is
⋃
a∈B Fa (

⋂
a∈B Fa), then (Q1, Q2) is

independent iff the other quantifier preserves unions (intersections) of length
|B|.

Proof: Suppose Q1 =
⋃
a∈B Fa. We have

Q1Q2R⇐⇒
∨
a∈B

Q2Ra

Q2Q1R
−1 ⇐⇒ Q2(

⋃
a∈B

Ra)

So the ‘if’ direction is clear. For the other direction, suppose there are
Ai ⊆ M, i ∈ I with |I| ≤ |B| such that either Q2(

⋃
i∈I Ai) and for all i ∈ I,
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¬Q2Ai, or ¬Q2(
⋃
i∈I Ai) and for some i ∈ I, Q2Ai. Since |I| ≤ |B| we can

define R such that for all i ∈ I, Ai = Ra for some a ∈ B, and for all a ∈ B,
Ra = Ai for some i ∈ I. Thus

⋃
i∈I Ai =

⋃
a∈B Ra, and it follows that (Q1, Q2)

is not independent. The case of intersection is similar. 2

Note the special case when |B| = 1, i.e., when one of Q1, Q2 is Fa. Then
there is no constraint on the other quantifier, which is precisely to say that
Fa is scope-independent.

The proposition provides examples of independent pairs not covered by
Fact 5.1. For example, if Q1 is a principal filter FB with B finite and Q2 is
any filter, (Q1, Q2) is independent.

We end by looking at another generalization, namely, to type 〈1, 1〉 quan-
tifiers. These quantifiers are ubiquitous in natural language semantics, as
denotations of determiners like every, no, most, between three and six, all
but seven, every . . . except John, several of Mary’s. The first argument of
such a quantifier is then called the noun argument, and the second the verb
argument.

Fixing the noun argument of a determiner denotation gives a noun phrase
denotation. Formally:

Definition 5.2 If Q is a type 〈1, 1〉 quantifier on M and A ⊆ M , the type
〈1〉 quantifier QA on M is defined by

QAB ⇔ QAB

for all B ⊆M .

Using this we can combine (iterate) two type 〈1, 1〉 quantifiers by reduc-
tion to the type 〈1〉 case (section 1 (2)).

Definition 5.3 If Q1, Q2 are of type 〈1, 1〉 we define the type 〈1, 1, 2〉 quan-
tifier Q1Q2 by

Q1Q2ABR⇐⇒ QA
1Q

B
2 R

for A,B ⊆M and R ⊆M2.

Q1Q2ABR interprets standard sentences with a transitive verb and quan-
tified subject and object, like Most critics reviewed five films and Every pro-
fessor except John read Mary’s book.
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We now say that a type 〈1, 1〉 quantifier Q is self-commuting (on M) if,
for all A,B ⊆M and R ⊆M2,

QAQBR⇐⇒ QBQAR−1(11)

Thus, Q is self-commuting iff each pair (QA, QB) is independent. We can
obtain a characterization of the self-commuting type 〈1, 1〉 quantifiers as a
corollary to our theorem. To simplify the statement, let us say that Q is
good if whenever QA and QB are one of 0,1,

⊕n
i=1 Fai , or ¬⊕n

i=1 Fai , then
(QA, QB) is independent. The necessary and sufficient conditions for this are
easily described explicitly, without reference to independence, using Facts
5.1–2.

Corollary 5.4 A type 〈1, 1〉 quantifier Q is self-commuting iff Q is good, and
either each QA is 1 or a union of atoms, or each QA is 0 or an intersection
of atoms, or each QA is 0 or 1 or a finite symmetric difference of atoms or
the negation of such a symmetric difference.

Proof: The ‘if’ direction follows from Facts 5.1–2. For the other direction,
we use the fact that if Q is self-commuting then each QA is self-commuting,
hence by the theorem a union or intersection of atoms, or (the negation of) a
finite symmetric difference of atoms. It now suffices to go through the various
possible cases.

Case 1: ∃A(QA =
⋃
a∈D Fa), for some D with |D| > 1.

Take any B. (QA, QB) is independent, so by Proposition 5.3, QB preserves fi-
nite unions; in particular it is upward monotone. Also, QB is self-commuting.
But it cannot be an intersection of at least two atoms, since such intersec-
tions do not preserve finite unions. It cannot be a finite symmetric difference
of at least two atoms, since such symmetric differences are not upward mono-
tone. For the same reason, it cannot be the negation of a finite symmetric
difference of atoms. Thus, it has to be a union of atoms (possibly an empty
union, or a single atom), or 1.

Case 2: ∃A(QA =
⋂
a∈D Fa), for some D with |D| > 1.

By a similar argument, every QB must then be an intersection of atoms, or
0.

Case 3: ∃A(QA =
⊕n
i=1 Fai), for some n > 1.
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Consider again any QB. By the reasoning in Cases 1 and 2, QB cannot be
a union or intersection of at least two atoms. Hence, it must be 0 or 1 or
a finite symmetric difference of atoms, or the negation of such a symmetric
difference (provided n is odd, by Fact 5.2).

Case 4: ∃A(QA = ¬⊕n
i=1 Fai), for some n ≥ 1.

Similar to Case 3.

Case 5: Not Case 1–4.

Since each QA is self-commuting, the only possibility left is that every QA is
0 or 1 or an atom. This finishes the proof. 2

Returning to type 〈1, 1〉 quantifiers as denotations of English determiners,
there don’t seem to be any whose corresponding noun phrase denotations are
(negations of) symmetric differences. So disregarding these, the corollary
says basically that if Q is self-commuting then either for every A there is D
such that QA = someD (=

⋃
a∈D Fa), or for every A there is D such that

QA = allD (=
⋂
a∈D Fa).

Examples of English determiners denoting self-commuting quantifiers are
some, all, John’s, the ten students’. Of course, many other type 〈1, 1〉 quan-
tifiers fulfill the requirement, for example, a Q such that QA is John’s books
when A is the set of books (so D is the set of books that John owns), and
QA is Mary’s bikes when A is the set of bikes (then D is the set of bikes that
Mary owns).

Type 〈1, 1〉 quantifiers denoted by determiners in natural languages obey
certain constraints, most typically conservativity: for all A,B ⊆M ,

QAB ⇔ QAA ∩B

The effect of conservativity here is that D ⊆ A in the condition above. This
does not rule out the example with John’s books and Mary’s bikes, however.
But if we also assume ISOM, one can show (cf. [4]) that it follows that D = A.
Then, self-commutativity implies that Q is either (the denotation of) some
or all on M .
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