
FLEXIBLE VARIABLE-BINDING AND MONTAGUE
GRAMMAR

Peter Pagin and Dag Westerst̊ahl

Department of Philosophy, Stockholm University

1 Introduction

In [5] we introduced a version of predicate logic (PFO), with a new method of
variable-binding, designed to handle some familiar anaphoric constructions in
natural language compositionally. The idea to adapt a classical logical formalism
to obtain a compositional account of certain linguistic binding phenomena is also
the basis of Groenendijk and Stokhof’s DPL [3], but their adaptation is different.
DPL preserves the formulas of predicate logic, but changes the variable-binding
mechanism and uses a dynamic semantics in the sense that the semantic value
of a formula is a relation between assignments rather than a set of assignments.
PFO on the other hand employs a new kind of formulas, with yet another
variable-binding mechanism, but keeps essentially the standard semantics. The
switch to a dynamic semantics is a substantial departure from classical predicate
logic (PL), and we argued in [5] that whereas PFO is just a variant of PL, DPL
is not.

The main interest of PFO, we feel, is that it is so simple and departs so little
from PL. We will not here discuss the need for or the implications of a dynamic
semantics (cf. [4] for a recent discussion). Regardless of this it is of interest to
see how far one can handle the relevant anaphoric phenomena with a very slight
change in the formal language.

PFO and DPL stop at sentence level. To obtain full compositionality à la
Montague, one needs to extend the formalism to something like (intensional)
type theory—Montague’s IL. In this paper we present such an extension of
PFO, called TFO. Here the difference with DPL becomes more drastic. The
extension of the latter to Dynamic Montague Grammar (DMG) in [2] is not
straightforward, since the dynamics and the DPL style variable-binding do not
extend to the λ operator. Instead, explicit dynamic mechanisms are added to
the formalism, via devices that were formerly used to handle intensions but
now take on this further role. The extension of PFO to TFO, on the other
hand, proceeds smoothly once one realizes how to do it. The basic PFO recipe
for variable-binding works in the type theory too. The intensional apparatus
has the same role as in IL. The expressive power is the same. The only thing
that needs to be reviewed with some care is conversion—this is a syntactic
phenomenon and TFO does have a different syntax than IL.

After some background on PFO style variable-binding we present the syntax
and semantics of TFO, and then discuss conversion, in particular the Church-
Rosser property and normalization. Finally we show how a standard Montague

style translation into TFO handles familiar examples of donkey anaphora and
cross sentence anaphora in a compositional way.

The paper is to be regarded as an extended abstract of a more detailed
presentation. In particular, some definitions and all proofs have been omitted.

2 Background

The characteristics of PFO style variable-binding are that it is unselective and
reverses the binding order: from the outside in, rather than the usual order
from the inside out. Instead of standard connectives and quantifiers two binary
variable-binding operators [·, ·] and (·, ·) are used, corresponding to universal
quantification (implication) and existential quantification (conjunction), respec-
tively. These bind (unselectively) all common variables of the two arguments,
whether these variables were already bound in the arguments or not—such bind-
ings are thus ‘cancelled’ (binding from the outside in). Details are given in [5],
but a few sample formulas and their PL counterparts suffice to convey the idea:

[Ax,By] Ax→ By
[Ax,Bx] ∀x(Ax→ Bx)
(Axy,Bxyz) ∃x∃y(Axy ∧Bxyz)
[(Axy,Bx), Czu] ∃x(Axy ∧Bx) → Czu
[(Axy,Bx), Dzx] ∀x(Axy ∧Bx→ Dzx)

In PFO the sentence

(1) If a man encounters a lion he runs from it

can be translated as

(1′) [(Mx, (Ly,Exy)), Rxy]

and

(2) A man walks. He talks.

as

(2′) ((Mx,Wx), Tx)

Both translations are compositional at sentence level.
The reverse binding order of PFO necessitates an adjustment of the usual

inductive definition of satisfaction. One way to do this is to let a set of variables
X be an argument of the satisfaction relation. When you start evaluating a
formula this set is usually empty, but quantified variables are successively put

in the set as subformulas, subformulas of subformulas, etc., are evaluated, to
prevent variables from being quantified again. That is, the satisfaction relation

M, X |=
f
φ

between an assignment f , a formula φ, a model M, and a set X of variables is
defined so that the variables in X are never quantified. The ordinary ternary
satisfaction relation is then obtained by letting X = ∅.

Before moving on to TFO we make two brief comments. The first is that it
is primarily the reverse variable-binding of PFO, rather than the unselectivity,
that makes anaphoric sentences come out right. To see this, consider a formalism
which is exactly as PL except that variable-binding goes from the outside in. In
such a system (1) could be translated

(1′′) ∀x∀y(∃x(Mx ∧ ∃y(Ly ∧ Exy)) → Rxy)

This has as subformulas the translations of a man encounters a lion and he
runs from it, so it is compositional at sentence level. And, because of the
reverse variable-binding, it gets the correct meaning—the existential quantifiers
are ‘cancelled’ because they are within the scope of corresponding universal
quantifiers.

Still, (1′′) is rather ugly, and it is not quite obvious what the rule for ‘if-then’
would look like. The unselective PFO operators yield a more elegant system
and more natural translation rules, and we will continue to use them in TFO.

Our second comment is that whereas with universal and existential quan-
tification, selectivity vs. unselectivity is mere matter of style, this is not so
with other quantifiers. In effect, unselective variable-binding allows quantifi-
cation over finite sequences of individuals, which is an increase of expressive
power with many generalized quantifiers. For example, suppose we add to PFO
an operator [m·, ·]m corresponding to the determiner most. To evaluate a sen-
tence [mφ, ψ]m relative to a model M, we find the variables common to φ and
ψ, say x1, . . . , xn. Let R (S) be the set of n-tuples (a1, . . . , an) such that the
assignment of ai to xi satisfies φ (ψ) in M. Then [mφ, ψ]m is true in M iff
|R∩S| > |R−S|. This PFO style generalized quantifier is stronger than the or-
dinary selective quantifier most which binds one variable only in each formula.1

In the terminology of generalized quantifier theory, if you add a monadic gener-
alized quantifier to PFO, you also obtain all the resumptions of that quantifier,
because of the unselective variable-binding.

3 TFO

The terms of TFO are the same as those in IL, except that we use the two PFO
operators instead of connectives and quantifiers. The types are the usual ones:
basic types e and t, and complex types (a, b) and (s, a). So the terms Ta of type
a are defined inductively as follows.

1A proof of this fact can be found in [6].

Definition 3.1 (TFO syntax)

(a) Variables and constants of type a are in Ta.

(b) ⊥∈ Tt.
(c) If t, u ∈ Ta then (t = u) ∈ Tt
(d) If φ, ψ ∈ Tt then [φ, ψ], (φ, ψ) ∈ Tt.
(e) If t ∈ T(a,b) and u ∈ Ta then tu ∈ Tb.
(f) If t ∈ Tb and x is a variable of type a then (λx.t) ∈ T(a,b).

(g) If t ∈ Ta then ∧t ∈ T(s,a).

(h) If t ∈ T(s,a) then ∨t ∈ Ta.
(i) If φ ∈ Tt then 2φ ∈ Tt.

Thus, we use the unselective PFO operators as well as the selective λ operator
in the syntax. However, for both operators, the binding direction is from the
outside in. Roughly: let an x-binder, for a variable x of any type, be a term of
the form (λx.u), or of the form [φ, ψ] or (φ, ψ) where x occurs in both φ and
ψ. Then an occurrence of x in t is bound by the outermost x-binder in t within
whose scope it occurs. For example, the term

(Ax,Bx)

(with A and B constants of type (e, t)) expresses, as in PFO, that A ∩ B 6= ∅.
But in

λ.x(Ax,Bx)

the PFO binding is not in force, and the term denotes the set A ∩ B. And the
λ binding can in turn be ‘cancelled’ by a PFO binding further out, as in

((λ.x(Ax,Bx))y , Cx)

which expresses that A ∩ B ∩ C 6= ∅. Note that since the λ binding is not in
force here, the application of the λ term to y has no (semantic) effect.

A precise syntactic definition of binding in TFO is easily given, but the
above examples should make the idea clear. The meaning of TFO terms is
given by the next definition, which with each term t, model M, possible word
w, M-assignment f , and set of variables X associates a denotation [[t]]M,w,f,X .
As usual, M consists of a domain D = De, a set of possible worlds W and an
interpretation function I. Dt = {0, 1}, and the domain is lifted to a function
domain Da for each type a in the usual way. I assigns functions from W to
Da to constants of type a, and an M-assignment assigns a value in Da to each
variable of type a. If t is of type a, [[t]]M,w,f,X ∈ Da.

Modulo the variable-set X, the clauses in the definition below are exactly the
same as for IL, except the two clauses (d) and (f) dealing with variable-binding
operators.

Definition 3.2 (TFO semantics)

(a) If x is a variable and C a constant of type a, then [[x]]M,w,f,X = f(x) and
[[C]]M,w,f,X = I(C)(w).

(b) [[⊥]]M,w,f,X = 0.

(c) [[t = u]]M,w,f,X = 1 iff [[t]]M,w,f,X = [[u]]M,w,f,X .

(d) Suppose (Varφ ∩Varψ)−X = {x1, . . . , xn}, where xi is of type ai. Then

[[(φ, ψ)]]M,w,f,X = 1 iff there are d1 ∈ Da1 , . . . , dn ∈ Dan
such that

[[φ]]M,w,f(xi/di),X∪{x1,...,xn} = [[ψ]]M,w,f(xi/di),X∪{x1,...,xn} = 1.

Similarly for [φ, ψ], except that universal quantification and implication is used.

(e) [[tu]]M,w,f,X = [[t]]M,w,f,X([[u]]M,w,f,X).

(f) If (λx.t) is of type (a, b), then, for all d ∈ Da,

[[(λx.t)]]M,w,f,X(d) =
{

[[t]]M,w,f,X if x ∈ X
[[t]]M,w,f(x/d),X∪{x} if x 6∈ X

(g) If w′ ∈W , then [[∧t]]M,w,f,X(w′) = [[t]]M,w′,f,X .

(h) [[∨t]]M,w,f,X = [[t]]M,w,f,X(w).

(i) [[2φ]]M,w,f,X = 1 iff for all w′ ∈W , [[φ]]M,w′,f,X = 1

We also define
[[t]]M,w,f = [[t]]M,w,f,∅

It is rather clear that TFO has the same expressive power as IL. To translate
from TFO to IL, define for each TFO term t and each set X of variables an IL
term t+,X inductively following Definition 3.1, distributing over the operators
except in clauses (d) and (e) which read, respectively,

[φ, ψ]+,X = ∀x1 . . .∀xn(φ+,X∪{x1,...,xn} → ψ+,X∪{x1,...,xn})

(with x1, . . . , xn as in Definition 3.2 (d); (φ, ψ)+,X is similar),

(λx.t)+,X = (λx.t+,X∪{x})

It then follows that [[t]]M,w,f,X = [[t+,X]]M,w,f , so in particular

[[t]]M,w,f = [[t+,∅]]M,w,f

To translate in the other direction simply note, first, that logical symbols ∀,
∧, etc. can be eliminated in IL, second, that every IL term is equivalent to a
strict term, i.e., one where no variable is both free and bound, nor quantified
more than once, and third, that strict IL terms without logical symbols are also
TFO terms and moreover mean the same in both systems.

4 Conversion

The fact that TFO has both selectively and unselectively binding operators
makes conversion a little more complex than in IL. Also, the reverse binding
direction means that we should keep track of the set of variablesX in conversion.
Let ;X be the conversion relation relative to X between a redex and the result
of performing β conversion. Here are some case where β conversion can not be
performed: Unless y ∈ X,

(λx.[Ax,Bx])y 6;X [Ay,By]

(λx.[Ax,By])y 6;X [Ay,By]

(λx.[Az, (λy.(By,Cx))z])y 6;X [Az, (λy.(By,Cy))z]

The reason, of course, is that the usual constraint that no new bindings must be
created by the substitution is violated. It is just that such bindings can arise in
more ways than one in TFO. In fact, they may arise in three ways, illustrated by
the above examples. Therefore, the most straightforward approach to conversion
in TFO is to formulate explicitly the variable constraints on conversion and then
verify that conversion under these constraints is sound.

Of course, there is another kind of constraint on β conversion, due to the
presence of intensional operators. But these constraints are exactly as in IL.
They lead to the failure of the Church-Rosser property—a failure which can be
overcome by treating s as a regular type of possible words (cf., for example, [1],
ch. 5). Thus, for simplicity, and to bring out the characteristic binding features
of TFO, we restrict attention in this section to the extensional part of TFO.
That is, we only consider terms as defined by Definition 3.1 (a)–(f). Hence
possible worlds are not needed, and the denotation of a term t can be written
[[t]]M,f,X .

If t and u are terms and x is a variable, let

[x/u]t

be the result of replacing all occurrences of x in t by u.2

The next definition gives the condition for this substitution to be permissible.

Definition 4.1 P (x, t, u,X) is the conjunction of (a)–(c) below:

(a) if x is PFO-bound in t then Varu ⊆ X

(b) if x occurs in one component of a subterm (φ, ψ) or [φ, ψ] of t and y ∈ Varu
in the other, then y ∈ X

(c) if x occurs in a subterm (λy.v) of t where y ∈ Varu then y ∈ X.

2Here “occurrence” is to be taken in its literal sense, except that x is not taken to occur in
‘λx’.

Now we say that
t⇒X t′

if t′ results from t by performing one β conversion: replacing an occurrence of
a subterm (λx.u)v of t for which P (x, u, v, Z) holds by [x/v]u, where Z results
by adding to X the variables which become bound in the semantic evaluation
process from t to the subterm (λx.u)v. The following can now be proved.

Proposition 4.1 If t⇒X t′, then [[t]]M,f,X = [[t′]]M,f,X .

This approach to β conversion is a quite simple extension of the ordinary one,
but it has one problem: the Church-Rosser property fails. Here is an example.
We have

(λz.((λx.(Ax,Bz))z))y ⇒∅ (λz.(Az,Bz))y

and
(λz.((λx.(Ax,Bz))z))y ⇒∅ (λx.(Ax,By))y

but there is no way to continue the reduction to a common term. Note that
changing bound variables (α conversion) will not help. In fact, whereas in
ordinary λ calculus bound variables can always be chosen so that the variable
constraint on substitution is satisfied, this is not so for TFO and the constraint
P (x, t, u,X).

In view of this one may try the following alternative approach. First, require,
for t ⇒X t′, that the free variables of t are elements of X. This can always be
achieved. More precisely, if Y is the set of free variables of t, one can α convert
t to a term t0 such that

[[t]]M,f,X = [[t0]]M,f,X∪Y

for all M and f .3 Second, for such terms one may redefine substitution, in-
corporating α conversions in a way that always makes substitution permissible.
Then there is no need for the condition P .

In the example above, both (λz.(Az,Bz))y and (λx.(Ax,By))y convert to
(Ay,By) relative to a set of variables containing y. In general, it seems to us
that the Church-Rosser property would hold with this approach to conversions.
We hope to present the details in the full version of the paper.

Even if Church-Rosser fails on our first approach to conversion, normal forms
always exist. This follows from the

Theorem 4.2 (Strong Normalization Theorem)
For every term t and every set of variables X: Every ⇒X-chain starting with t
is finite.

3In PFO, this holds without any α conversion, since no variable can occur both free and
bound in a PFO formula. But TFO does not have the latter property.

5 Montague grammar

A few examples will suffice to illustrate how a fragment of English, containing
sentences with donkey anaphora, can be compositionally translated into TFO.
To begin we again skip intensions, since they are unimportant for the first ex-
amples, and are handled in exactly the same way as in IL. Also, the analysis
trees will be implicit—they are just as in ordinary Montague grammar, except
that we shall use indexing to indicate anaphoric links. Let ? be the transla-
tion function. Also, let ‘⇒’ stand for (repeated) applications of ⇒∅ as well as
standard meaning postulates and intension-extension cancellations.

a?i = λY.λX.(Y xi, Xxi)

man? = M

walk? = W

(ai man)? = a?iman? = (λY.λX.(Y xi, Xxi))M ⇒ λX.(Mxi, Xxi)

(ai man walks)? = (a?iman?)walk? ⇒ (Mxi,Wxi)

he?i = λX.Xxi

The next example, a donkey sentence, also illustrates a global constraint
that the translation must satisfy: Always choose distinct bound variables in
the translations. Otherwise unwanted binding may occur, due to the reverse
binding order.

(if ai man walks hei sings)? = [(ai man)?walk?, (hei sings)?]

⇒ [(λX.(Mxi, Xxi))W , (λY.Y xi)S] ⇒ [(Mxi,Wxi), Sxi]

The following examples use the PTQ meaning postulates and notation for
extensional transitive verbs.

(a1 man encounters a2 lion)? = (a1 man)?(encounters?(a2 lion)?)

⇒ (λX.(Mx1, Xx1))(E(λY.(Lx2, Y x2))) ⇒ (Mx1, (Lx2, E∗(x1, x2)))

(if a1 man encounters a2 lion he1 runs from it2)?

⇒ [(Mx1, (Lx2, E∗(x1, x2))) , R∗(x1, x2)]

Finally, we point out that we will also get donkey sentences with attitude
verbs. For example,

(if a1 man believes he1 owns a2 donkey he1 wants to beat it2)?

⇒ [(Mx1, BEL(x1,
∧ (Dx2, O∗(x1, x2)))) , WANT (x1,

∧B∗(x1, x2))]

Again we get universal quantification over (men and) donkeys. The intuitive
de dicto reading of this sentence certainly appears to universally quantify over
something. The best candidate seems to be so called objects of thought. The
reading can hardly be captured by any informal analysis that would give wide
scope to an attitude verb. Hence examples such as this present a rather strong
case for a quantificational treatment and for an ontology of objects of thought.

References

[1] Gamut, L.T.F., 1991, Logic, Language and Meaning, vol. 2, U Chicago Press,
Chicago.

[2] Groenendijk, J., and Stokhof, M.: 1990, Dynamic Montague grammar, in L.
Kálmán and L. Pólos (eds.), Papers from the Second Symposium on Logic
and Language, Akadémiai Kiadó, Budapest, 3–48.

[3] Groenendijk, J., and Stokhof, M.: 1991, Dynamic predicate logic, Linguistics
and Philosophy 14, 39–100.

[4] Israel, D.: 1994, The very idea of a dynamic semantics: an overview from
the underground, this volume.

[5] Pagin, P., and Westerst̊ahl, D.: 1993, Predicate logic with flexibly binding
operators and natural language semantics, Journal of Logic, Language and
Information 2, 89–128.

[6] Westerst̊ahl, D.: 1989, Quantifiers in formal and natural languages, in D.
Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, vol. IV,
Reidel, Dordrecht, 1–131.

