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Abstract

A new formalism for predicate logic is introduced, with a non-standard
method of binding variables, which allows a compositional formalization
of certain anaphoric constructions, including ‘donkey sentences’ and cross-
sentential anaphora. A proof system in natural deduction format is pro-
vided, and the formalism is compared with other accounts of this type of
anaphora, in particular Dynamic Predicate Logic.
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1 INTRODUCTION

There appears to be broad consensus about the view that certain natural lan-
guage constructions with anaphoric pronouns cannot be compositionally formal-
ized in predicate logic, at least not in any reasonable way. Prime examples are
so-called donkey sentences and simple cross-sentence anaphora. Accounting for
these phenomena was a main motivation behind the introduction of alternative
semantic frameworks such as Discourse Representation Theory (DRT, Kamp
1981) and Dynamic Predicate Logic (DPL, Groenendijk and Stokhof 1991).

We wish to challenge this received view, by presenting a new form of predi-
cate logic, called Predicate logic with Flexibly binding Operators (PFO), and by
showing that the aforementioned linguistic phenomena, as well as many other
familiar constructions with pronouns and quantifiers, can be straightforwardly
formalized in PFO in a perfectly compositional way.

The alternative formalisms replace the semantics of predicate logic with
some more or less dynamic semantics. As to syntax, DPL uses the formulas of
predicate logic, but employs a non-standard form of variable-binding. PFO, on
the other hand, retains essentially the standard semantics, but uses a slightly
different syntax, with yet another mode of binding variables. It will be seen
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that PFO, in contrast with the other formalisms, is really a version of predicate
logic.

We begin (section 2) by briefly delineating the notion of compositionality at
stake in the claim that donkey sentences etc. cannot be compositionally formal-
ized in predicate logic. Then we present PFO (section 3), and show, mainly by
means of examples, how it handles the relevant linguistic phenomena (section 4).
PFO is in fact a simple and natural system which may have some interest of
its own. We demonstrate its intertranslatability with standard predicate logic
(section 5), and we exhibit what logic looks like in this format (sections 6 and 7).
Then we are in a position to compare PFO, PL and DPL w.r.t. their respec-
tive logical consequence relations, the form of their truth definitions, and their
dynamic/non-dynamic properties (section 8). The paper ends with a compo-
sitional version of PFO semantics, and some general remarks on the idea of
compositionality and on the relative merits of PFO and DPL for natural lan-
guage semantics (section 9). An intuitionistic version of PFO is presented in an
appendix.

The variable-binding mechanism of standard predicate logic (PL) has at least
the following features: It uses unary variable-binding operators, it is selective in
the sense that the operators explicitly indicate the variable to be bound, and it
binds from the inside out, in that an occurrence of a variable is always bound
by the ‘nearest’ operator occurrence indicating that variable.

These features are, in fact, largely independent of each other. For example,
we could change the PL mechanism so that it binds from the outside in instead,
but otherwise remains the same. This variant of PL would have a simpler notion
of bound variable (an occurrence of z is bound by an operator occurrence Va
iff it is within the scope of that operator occurrence), but the truth definition
would be more complex than in PL.

Varying ‘binding priorities’ as in the previous paragraph is non-standard,
but certain other variations are familiar. Logic with generalized quantifiers uses
non-unary variable-binding operators, which apply to more than one formula
(and which may bind more than variable in each formula), but the mechanism
is still selective and works from the inside and out. In DPL, the usual selective
unary operators are used, but variable-binding is neither from the inside out
nor from the outside in; the ‘binding priorities’ are rather more complex.

PFO has the following variable-binding features:

(i) The variable-binding operators are binary. Besides being well suited to
natural language quantification, this allows exploitation of the analogy
between existential quantification and conjunction, and between universal
quantification and implication:' in fact, PFO fuses sentential and variable-
binding operators and permits a formulation where the only symbols used,
in addition to non-logical symbols, variables and identity, are

L0, 7.

IThe intuitionistic version of PFO (cf. the Appendix) also uses the analogy between
existential quantification and disjunction.



(ii) Binding in PFO is unselective, in that all variables which are common to
both immediate subformulas of a quantified formula, become bound in the
quantified formula.

(iii) The ‘binding priority’ of PFO is from the outside in: every occurrence
of a variable x occurring in both immediate subformulas ¢ and ¥ of a
quantified formula becomes bound, regardless of whether that occurrence
was free or already bound in ¢ (or ) taken by itself; previous bindings
are thus in a sense cancelled.

As a consequence, vacuous quantification cannot occur in PFO. Likewise, no
variable can occur both free and bound in a formula, nor be quantified more
than once in it.

Remark: We are not aware of any formalism that looks like PFO, although it
has features in common with other systems.? Binary quantification is the point
of departure for applications of generalized quantifiers to natural language, and
it is rather clear that the use of the binary existential and universal quantifier
eliminates the need for sentential operators (except L). The idea of unselective
quantification was used for so-called adverbs of quantification in Lewis (1975).

2 COMPOSITIONALITY AND ANAPHORA

In this section we state the principle of compositionality with enough precision
to be able to illustrate the force, and the limitation, of this requirement with
respect to the relevant linguistic constructions. The principle will be further
discussed in section 9.

The compositionality principle asserts that the meaning of a complex ex-
pression is a function of the meaning of its parts. If meanings are embodied as
expressions in a formal language, one can ensure compositionality by requiring
some structural similarity between the natural and the formal language. Mon-
tague gave precise conditions on translation functions between two languages,
the point being that if F' is a primitive syntactic rule in Lq, say with two argu-
ments of certain syntactic categories, there is a corresponding, possibly derived,
syntactic rule G in La, with corresponding categories for arguments and value,
such that the translation function h is a homomorphism w.r.t. these operations:

(H) h(F(e, 3)) = G(h(e), h(B))

(provided both languages are ‘disambiguated’).> The primitive syntactic rules
can be used to define the notion of a constituent of an expression in the language.
(H) will then imply a corresponding constituency principle:

(C) If a is a consituent of 8 in L1, h(a) is a constituent of h(B) in L.

2Cf., however, the Postscript.
3In “Universal grammar”, cf. Montague (1974), ch. 7, section 5.



For our purposes here it suffices to consider constituents of sentences which are
themselves sentences (formulas).? Consider the familiar examples

(1) If Pedro owns a donkey he is rich

(2) If Pedro owns a donkey he beats it

These sentences appear to have the same structure: a conditional with an
existential sentence as antecedent. The following translation of (1) into PL
preserves this structure:

(1) Jy(donkey(y) A owns(p,y)) — rich(p)

But no corresponding procedure works for (2): if we replace rich(p) by beats(p, y)
in (1), the result is not a sentence, and if we extend the scope of the existential
quantifier to beats(p,y), the resulting sentence has the wrong meaning. Of
course, every logic student can formalize (2) by

(2') Yy((donkey(y) A owns(p,y)) — beats(p,y))

but the problem is to do it compositionally; (2) does not have the formalizations
of the subsentences of (2) as subformulas.

The argument depends on two assumptions: (a) that the two sentences
should be translated by the same ‘if-then’-rule, and (b) that indefinite noun
phrases like a donkey should be rendered with the existential quantifier. Both
assumptions seem entirely reasonable.

Apparently, then, when we formalize (2) in PL, (C) is violated. Note, how-
ever, that the argument also relies on the actual syntactic rules (formation rules)
of PL. To see this, consider the following alternative version PL’: The formation
rules for atomic formulas, negations, conjunctions, disjunctions, existential and
universal quantifications are as usual, but there are two implication symbols —
and =, and an extra quantifier symbol ¥V, with the following new formation
rules:

Wr(go — ¢), if ¢ = Jxgo

¢ — Y, otherwise

¢ — 1, if ¢ =3rgg

¢ = 1, otherwise.

Gty = {

Ga(o,¢) = {

Semantically, ¥V is treated just as ordinary universal quantification, and —
and = both as ordinary material implication. Now, it is not hard too see that
the following holds. Flirst, this system is just a version of ordinary predicate
logic; the syntax is a bit akward but the semantics is the same. Second, the
syntax of PL/ is still ‘disambiguated’: each formula has a unique analysis (that is
why we introduced ¥V and =). Third, however, (1) and (2) can both be correctly

4However, in another paper we will show that PFO style variable binding can also be used
with a formalization which is fully compositional, i.e., also at the subsentential level.



formalized in this system using G, and the formalization is compositional in
the sense that (H) holds.

Examples like this illustrate the familiar notion that “it is always possible to
satisfy compositionality by simply adjusting the syntactic and /or semantic tools
one uses, unless that is, the latter are constrained on independent grounds”.®
The point is that it is not sufficient to merely claim one has a version of predicate
logic which handles donkey sentences compositionally. To be of interest, the
formalism must possess other virtues, unlike the ad hoc PL’. We hope it will be
clear that the PFO formalism, to be presented in the next section, indeed has
such additional virtues.

Besides donkey sentences, cross sentence anaphora creates problems for com-
positional translation into PL. For example,

(3) A farmer walks. He whistles.
(3") Fz((farmer(z) A walks(x)) A whistles(z))

Here we have a discourse or text, but the first sentence does not correspond to
a subformula of the formalization.

3 THE PFO FORMALISM

PFO has two binary operators [-,-] and (-,-) corresponding to universal quan-
tification (implication) and existential quantification (conjunction), respectively.
For example,

(Pz,Qy) translates as Pz A Qy,

[Pz, Qy] translates as Pz — Qy,
(Pz,Qx) translates as Jz(Pz A Qux),
[Pz, Qx] translates as Vo (Px — Q).

Likewise (cf. (ii) in section 1),

(Pzyz,Qyzuv) translates as Fy3Iz(Pryz A Qyzuv),
[Pz, (Qy, Rxy)] translates as Vo (Pz — Jy(Qy A Rzxy)).

However,

[Pz, (Qz,Rxy)] translates as Vz(Px — (Qy A Rxy)).

5Suppose a is Pedro owns a donkey, and (1) and (2) are construed as F(a, he 4s rich) and
F(a, he is beats it), respectively. Assuming that h(a) = Jy(donkey(y) A owns(p,y)), letting F
correspond to G1, and slurring over the treatment of the pronouns involved, we get, using
(H), the truth-functionally correct translations YWy((donkey(y) A owns(p,y)) — rich(p)) and
Wy ((donkey(y) A owns(p,y)) — beats(p,y)). The constituency principle (C) also holds: note,
for example, that Jy¢ is a constituent of YWy(¢ — 1) in PL'.

6Groenendijk and Stokhof (1991), p. 93. An example of an independent constraint might
be that the (formula) syntax, in contrast with the one for PL’, be context free and that the
notion of a constituent be standard (e.g., that a constituent of an expression is a substring of
that expression; cf. the previous footnote). PFO satisfies this constraint.



Quantification starts from the outside; since x is common to Pz and (Qz, Rzy)
it is quantified, but then it cannot be quantified again in (Qx, Rxy), so the latter
becomes a conjunction. We now give the formal definitions.

3.1 Syntax

Non-logical symbols, variables, the identity symbol = and the absurdity symbol
L are as usual. Terms and atomic formulas are defined in the ordinary way.
Formulas are defined inductively as follows:

DEFINITION 3.1
(a) Atomic formulas are formulas.
(b) If ¢ and ¢ are formulas then so are (¢,v) and [¢,].

The notion of a subformula of a formula is defined in the obvious way. Free
and bound variable occurrences are introduced by first giving an inductive def-
inition of what it means for an occurrence of a variable x to be surface bound

(depth bound) in ¢.

DEFINITION 3.2
(a) No occurrence of x is surface bound or depth bound in an atomic formula.

(b) An occurrence of x is surface bound in (¢,) if x occurs in both ¢ and 1.
Similarly for [¢, ¥].

(¢) An occurrence of x is depth bound in (¢, ) if it is not surface bound in (¢, 1)),
but is surface bound in a subformula of (¢, ). Similarly for [¢,1)].

DEFINITION 3.3 An occurrence of x is bound in ¢ if it is either surface or
depth bound in ¢, otherwise it is free in ¢. A formula is a sentence if no variable
occurs free in it.

The notions of free and bound variables in PFO differ from those of ordinary
predicate logic in the following respect:

PROPOSITION 3.1 If one occurrence of x is free (surface bound, depth
bound) in ¢, then so are all other occurrences of x in ¢.

Proof: By induction on formulas. The atomic case is clear. Now suppose xg
is an occurrence of x in (¢,v) (the case of [¢, )] is entirely similar).
Case I: xq is free in (¢,1). Then xq is free in ¢ but z does not occur at all in
¢ (or vice versa). By induction hypothesis, all occurrences of z are free in ¢,
and it follows that the same holds for (¢, ).
Case 2: xg is surface bound in (¢,%). Then z occurs in both ¢ and %, so, by
definition, all occurrences of x are surface bound in (¢, ).
Case 8 x¢ is depth bound in (¢,v). Then = does not occur at all in ¢ and
there is a subformula (¢g, 1o) or [¢o, %] of ¢ such that zq is in this subformula
and x occurs in both ¢g and ¥y (or vice versa with ¢ and v interchanged).



Assume (¢g,0) is the largest such subformula. If 7 is another occurrence of
x in (¢, 1)), hence in ¢, then x; has to be in ¢g or vy, for otherwise there would
be a larger subformula of ¢ with the above property. Hence, z; is depth bound

in (¢, 9). o

Given a formula ¢, we let Var, be the set of variables occurring in ¢, and
Freey (Sboundy, Dboundy) the set of free (surface bound, depth bound) variables
in ¢. By Proposition 3.1, the latter three sets form a partition of Vars. Also,
let Boundy = Sbound, U Dboundys. We have

Sbound .4y = Sboundg y) = Vary N Vary,

Sbound ) = Sboundyy ) = (Boundy \ Vary) U (Boundy \ Varg)
Free(y.) = Freegg ) = (Freeg \ Vary) U (Freey, \ Varg)

Call a variable x quantified at a subformula 1 of ¢, if = is surface bound in ¢
but does not occur in ¢ outside of . Every bound variable of ¢ is quantified at
a unique subformula of ¢ (for example, if x is surface bound in ¢, it is quantified
at ¢ in ¢). But if ¢ in turn is a subformula of 6, x may be quantified at 1 in ¢
although not quantified at ¢ in #. This is the sense in which quantifications in
subformulas can be cancelled in formulas of PFO.

3.2 Semantics

A model M consists, as usual, of a nonempty set M and an interpretation func-
tion assigning suitable denotations to non-logical symbols. Let Var be the set
of variables. An M-assignment is a function f from Var to M. We must define
what it means for f to satisfy a formula ¢ in M. As we saw, quantifications
in subformulas of ¢ may be cancelled in ¢. This means that the usual ternary
satisfaction relation cannot be defined directly by an induction going ‘from in-
side and out’. However, we can first define inductively a satisfaction relation
between four things: an assignment f, a formula ¢, a model M, and a subset X
of Var; X is to be a set of ‘marked’ variables, which cannot be quantified again
in subformulas of ¢.

Given M and an M-assignment f, the value t*/ of a term t is defined as
usual. If ay,...,ar € M then f(x;/a;)1<i<k is the assignment which is like
[ except that a; is assigned to z;, 1 < i < k. Also, {x;/a;}1<i<i stands for
any M-assignment which assigns a; to x;. (The subscript with the condition
1 <4 < k will usually be omitted.)

DEFINITION 3.4 Let M, f and X be as above.
(a) M, X }? Pty...t, < <tf"’f,,,,7t7fl\/l,f> e pM

(b) M, X |7 (ty = ty) >t} =)t

(c¢) Not M, X |7 1



Let (Vary N Vary) \ X = {x1,..., 2}
(d) M, X |7 (¢, 1) <= there are ay,...,ar € M such that

M, X U{ay,...,ar} ?(m/ai) ¢ and M, X U{ay,...,ar} '7(1'1'/04') )
(e) M, X |? [p, Y] <= for all ai,...,a; € M,

it M, XU{ay,...,ax} ﬁ( ¢thenM,XU{a1,...7ak}|? 1.
X

i/ai) (zi/ai)

DEFINITION 3.5 M |? ¢ = M, ? o.

Note that if (Varg N Vary) \ X is empty, i.e., if ¢ and ¢ have no variables
in common, or if their common variables are all in X, then (¢,%) behaves as
conjunction, and [¢, ] as material implication. One easily establishes

LEMMA 3.2 If f and g are M-assignments which agree on Freey U X, then
M, X )?¢ if M, X = ¢.
g

COROLLARY 3.3 If ¢ is a sentence and f, g any two M -assignments, then
M )? o iff M Ig o.

Thus, the following definition makes sense.

DEFINITION 3.6 If ¢ is a sentence, M = ¢ iff for some f, M |? 0.

We state another lemma for later use; it follows almost directly from the
truth definition:

LEMMA 3.4 If Varg \ X = Varg \ Y, then M, X | 6 iff M,Y 6.

As an example of how the truth definition works, let us spell out the truth
conditions for the sentence [Pz, (Qy, Rxy)]. This sentence is true in M iff for
some f, M ’? [Pz, (Qy, Rxy)], and we have

M l? [Pz, (Qy, Rry)]

< for all a € M, if M, {z} '?(ac/a) Pz then M, {z} |?(x (Qy, Rxy)

/a)
<= for all a € PM there is b € M such that M, {z,y} | Qy
4 M. {og) = r f(z/a,y/b)
an ) 1L, Y Ty
f(z/a,y/b)

<= for all @ € PM there is b € Q™ such that (a,b) € RM,



so the sentence is equivalent to Va(Pz — Jy(Qy A Rxy)). For [Pz, (Qz, Rxy)],
on the other hand, since = € {«}, the last two lines become, with f(y) = b,

for all a € PM, M, d M, R
<= forall a € {z} ?(z/a) Qz an {z} ﬁ(m/a) Ty

< for alla € PM, a € Q™ and (a,b) € RM.

This is the truth condition of the formula Y (Pz — (Qz A Rzy)).
Negation can be introduced as usual:

def

_'¢ = [¢7J—]
It follows that

M,X|7—\¢<:>notM,X|7¢

The truth definition gives the formula (¢,v) the same truth conditions as
—[¢, )] (whether or not ¢ and 1 have common variables), so we may use only
[,], L and the comma as logical symbols in PFO. The comma could also be
eliminated, by writing

[9][¥]

instead of [¢,4] (cf. (i) at the end of section 1). Having the comma saves on
the number of parentheses, though.

4 FORMALIZATION IN PFO

We shall not give precise formalization rules here, but the basic ideas can be
made clear from examples. In these examples we sometimes indicate intermedi-
ate steps from an English sentence to its formalization, using expressions that
mix English and PFO syntax.

(1) Pedro owns a donkey
translates as

(1) (donkey y , p owns y)
Likewise,

(2) A farmer owns a donkey
first goes into

(farmer x , x owns a donkey)

and the same rule that takes us from (1) to (1’) then gives

(2") (farmer x , (donkey y , x owns y))



Similarly, from
(3) Every man loves a woman
we get the usual two formalizations
(3") [man x, (woman y , = loves y))
(3") (woman y , [man z , x loves y])
Next, consider
(4) If Pedro owns a donkey he is rich
We translate first to
[Pedro owns a donkey , he is rich]
and then as before to
(4") [(donkey y , p owns y) , rich p]

which is the desired implication, with an existential quantification in the an-
tecedent. Now, exactly the same procedure works for

(5) If Pedro owns a donkey he beats it
namely, first
[Pedro owns a donkey , he beats it]
and then
(5") [(donkey y , p owns y) , p beats y]

This is a universal quantification, with conjunction in the antecedent, as de-
sired.” Likewise, by these rules

(6) If a farmer owns a donkey he beats it
translates into
(6") [(farmer z , (donkey y ,  owns y)) , x beats Y

where both 2 and y are universally quantified. Note that (2) is a subsentence
of (6), and (2') a subformula of (6).
Now consider some examples with relative clauses.

(7) Every farmer who owns a donkey is rich.
Here are the translation steps:

[farmer who owns a donkey x , rich 1]

"In (4) and (5) we have, for simplicity, treated “he” just as a substitute for the proper
name.
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[(farmer z ,  owns a donkey) , rich 1]
(7") [(farmer z , (donkey y , x owns y)) , rich 1]
Again, exactly the same steps translate
(8) Every farmer who owns a donkey beats it
as
(8") [(farmer z , (donkey y , x owns y)) , « beats y]

i.e., (6"), which is the desired result.

In general, NP’s of the form “a(n) N” like the conjunction “and” both trans-
late with (¢, ), whereas NP’s “every N” and “if (then)” translate with [¢,)].
If the antecedent ¢ of the latter has the form (x, 6), and the consequent ¢ has
variables in common with it, these variables become universally quantified.®

So far, no distinction between indefinite and quantified NP’s w.r.t. formal-
ization has been made. However, only indefinite NP’s in the antecedent of a
conditional allow ‘donkey anaphora’. If we apply the rules hinted at by the
previous examples to a universally quantified NP in that position we may get
wrong results:

(9) Pedro owns every donkey

(9') [donkey y , p owns y]

(10) If Pedro owns every donkey he is rich
(10") [[donkey y , p owns y| , rich p]

(11) If Pedro owns every donkey he beats it
(117) [[donkey y , p owns y] , p beats y|

(9) and (10") are correct formalizations, but (117) is not (it is equivalent to
Yy(donkey y — p owns y) — p owns y)).

Since PFO is a variant of predicate logic, no distinction corresponding to
the one between indefinite and quantified NP’s is built into it. Instead, the
distinction can be made at the level of the formalization rules. Suppose f is the
formalization function induced by these rules. We assume that the sentences in
the fragment have been disambiguated w.r.t. scope dependencies and anaphoric
relations by means of some suitable indexing. Call the thus indexed sentences
readings. f is then a function from readings to PFO formulas. As indicated

8First-order PFO fails to give sentences such as If I have a coin in my pocket I will put it
in the meter the preferred ‘weak’ donkey reading, just as DPL or (first-order) DRT. One way
to account for such readings is within an extended framework allowing generalized quantifiers
and plurals. We would then universally quantify over sets of all coins in my pocket, and in
the consequent there would be a choice between saying that I put every element in such a set
in the meter (strong reading), or some element in the set (weak reading).

11



above, the rules also produce and operate on syntactic objects in between (in-
dexed) sentences and PFO formulas. For convenience, we include those among
the readings too.

Now, suppose that, in formalization, a formula ¢ with quantified x is embed-
ded in a larger formula. When can z be ‘reused’ outside of ¢ (thereby cancelling
the quantification)? Here is a first answer. Call = f, S-quantified at ¢ if S is a
reading with f(S) = ¢ and some N is such that (i) a noun phrase Det+N has
wide scope in S, and (ii) f(N+ ) is a subformula of ¢. Next, for ¢ in the range
of f, call  f-quantified in ¢ if there is a subformula 9 of ¢ (not necessarily
proper) and a reading S’ such that x is f,S’-quantified at 1. For example, y
is f-quantified in (man x , [donkey y , x owns y]), since it is f, S’-quantified at
[donkey y , @ owns y], where S’ is z owns every donkey,, (which appears in the
formalization of @ man, owns every donkeyz). Now we can state the following
restriction:

(*) A variable f-quantified in [¢,1] is not to be used outside [p,].

The effect of (*) is to rule out certain readings, thus restricting the domain
and range of f. In particular, it forbids anaphoric interpretations of pronoun
occurrences in certain readings. It rules out (117) but permits

(11") [[donkey y , p owns y| , p beats 2]

(from the reading if Pedro, owns every donkeyg he, beats itg). For another
familiar example, consider

(12) Every donkey loves a farmer who cares for it

A simple analogy with (3) would seem to give us the two formalizations
(12") [donkey x , ((farmer y , y cares for z) , x loves y)]
(127) ((farmer y , y cares for x) , [donkey x , x loves y])

but only (12) is correct, since a farmer cannot have wide scope in (12) unless it
is anaphoric to something outside the sentence. (*) rules out (127) but permits

(12") ((farmer y , y cares for z) , [donkey x , x loves y])
Likewise, given that —¢ abbreviates [¢, L] , (*) rules out the formalization
[—(student z , sleeps x) , tired 1
of the sentence
(13) If no student sleeps he is tired

which is correct—(13) cannot in fact be read anaphorically.
Next, consider a Bach-Peters case, where the definite NP gets a Russellian
analysis:

12



(14) A pilot who sighted it downed the Mig that chased him
Here are some translation steps:
(pilot who sighted it x , x downed the Mig that chased him)
((pilot = , = sighted it) , (the Mig that chased him =y , © downed y))

((pilot z , x sighted it) , ((Mig y , y chased him) , [(Mig z , z chased him)
,z2=1|), « downed y))

where we have left the pronouns in place. Now, replacing it by = and him by
y gives the Bach-Peters reading. We could also replace either one, or both, by
new variables; this gives the (perfectly reasonable) readings where the pronouns
are anaphoric to something outside the sentence.”

The same kind of formalization works if we replace a pilot in (14) by the
pilot, or the Mig by a Mig. On the other hand,

(15) Every pilot who sighted it downed every Mig that chased him

should have no reading where every Mig that chased him binds it. This follows
from (*); first we get

[(pilot = , x sighted it) , [(Mig y , y chased him) , x downed ]

and now (*) prevents replacement of it by y, but permits replacing him by x.
We can, however, get the reasonable formalization

(15") [(pilot z , x sighted 2) , [(Mig y , y chased z) , x downed Y]

Disjunctive sentences ¢ or ¢ can be formalized with the operator {-,-},
defined as

def

{¢,9} = [-¢,9]

We can then uniformly formalize sentences with disjunctive noun phrases by
means of this operator and existential generalization'?, as shown in the following
steps:

(16) Bill owns a horse or a donkey
(z = a horse or x = a donkey, Bill owns )
({z = a horse , © = a donkey} , Bill owns )

(16") ({(horsey , x =vy) , (donkey z , x = z)} , Bill owns x)

9Similar readings were possible for a number of the previous example sentences, though
we didn’t bother to mention them. Bach-Peters sentences appear to be a problem for DPL,
due to the essential ’left to right direction’ of that system.

10The following analysis resulted as a response to a question by Lauri Karttunen.
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This method slightly complicates formalizations, but applies to definite and
indefinite NP disjuncts alike (e.g., the horse or the donkey, the horse or a don-
key) and also allows a uniform treatment of indefinites, since no special clauses
are needed for their occurrences in disjunctive NPs. The treatment of donkey
anaphora also comes out as desired:

(17) If Bill owns a horse or a donkey, then he beats it
(17 [({(horse y , x =y) , (donkey z , x = 2)} , Bill owns ) , Bill beats 1]

The formalization is compositional. The difference in availability of anaphoric
readings between this case and

(18) If Bill owns a horse or Bill owns a donkey, then he beats it

is brought out. Not only can no variable can replace ‘7’ in

(18") [{(horse x , Bill owns x) , (donkey y , Bill owns y)} , Bill beats 7|

and capture an anaphoric relation to both indefinite noun phrases, but, because
of the definition of {-, -}, the choice of x or y as substituend is also a violation of
(*). Note also that (*) forbids replacing the last occurrence of x in (17") by y or
z, again as desired, since there is no reading of (17) on which “it” is anaphoric
just to “a horse” or just to “a donkey”.

In PFO, generic and non-generic readings of sentences like It don’t mean
a thing if it ain’t got that swing get the same formalization, which allows a
straightforward compositional analysis e.g. of If it’s not in Dutch, then it don’t
mean a thing if it ain’t got that swing. Note that in DPL, like in PL (and DRT),
a formalization of (the generic reading of) the first sentence cannot occur as a
subformula of a formalization of the generic reading of the second.

Finally, consider simple cross sentence anaphora of the following kind:

(19) Pedro owns a donkey. He feeds it. It frightens a girl. She hates it.

In predicate logic we formalize such a text as a conjunction. This is particularly
easy in PFO: just add on the relevant formulas using the operation (-, -):

(19") ((((donkey y , p owns y) , p feeds y) , (girl z , y frightens z)) , z hates y)
(19’) is logically equivalent to

(19") Fy3z((((donkey y A p owns y) A p feeds y) A (girl z A y frightens z))
A z hates y)

but every ‘conjunct’ in (19) corresponds to a subformula of (19’), which is not
the case for (19”)). Some of the conjuncts in (19) introduce individuals which
are referred to by pronouns in later conjuncts. In ordinary predicate logic the
existential quantification must then be ‘raised’ to a position where its scope
includes those later conjuncts. No such ‘raising’ is required in PFO.

As a last example of the use of (*), note that it predicts the fact that in
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(20) A student didn’t arrive. He was tired.
(21) Not every student arrived. He was tired.

the pronoun can be anaphoric in (20) but not in (21) (even though the initial
sentences of (20) and (21) are logically equivalent).!!

5 PFO AND PREDICATE LOGIC

Consider, for simplicity, PFO with (-,-) as a defined operator, and predicate
logic PL with = , 1, —, V as primitive logical symbols. For a PL-formula ¢,
FV(¢) is the set of free variables in ¢.

To translate from PFO to PL we simply follow the definition of satisfaction
for PFO.

DEFINITION 5.1 For a PFO-formula ¢ and X C Var, define inductively the
PL-formula ¢t% by

(a) ¢TX = ¢ , if ¢ is atomic,
(0) [, 1 = Viy . Vg (§7 XA m0) b X0,
where x1,..., 2, are the elements of Sboundj, 4 \ X (in some fixed order).

DEFINITION 5.2 ¢+ = ¢+

A straightforward induction shows
PROPOSITION 5.1 M, X |- ¢ <= M [ ¢+

Clearly, the same variables occur in ¢ and ¢T%. Concerning the free vari-
ables, we have the following

PROPOSITION 5.2 If Frees C X C Vary, then FV(¢%) = X. In partic-
ular, if ¢ is a sentence, so is ¢T.

Proof: Tt is clear from Definition 5.1 that X C FV(¢*%). Suppose z €
Vary \ X. Then z € Bounds and there is a unique largest subformula [, 6]
of ¢ such that z € Sbound, ¢). Translating from the ‘outside’, we arrive at
[, 0] and must form [¢), §]TY for some Y such that X C Y. But the variables
in Y\ X are surface bound in larger subformulas of ¢ than [¢,6] . Therefore,

' There are, however, some (more or less convincing) counterexamples to (*) involving nega-
tion, which can be accommodated by allowing double negation elimination before applying
(*). We also note that with this rule PFO can handle Barbara Partee’s example

Either there is no bathroom in this house or it is in a funny place
which creates problems for DPL and DRT. Given that either ¢ or 1 is rendered by [—¢, ],
and there is no x which is 0 by —(x,0), we get the formalization [[[(Bz, Hz), 1], 1], Fz],
which, after a double negation elimination, becomes [(Bz, Hz), Fz|, which is permitted by

(*)-
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z € Sboundpy g\Y, and z is universally quantified at that step in the translation.
Thus, z is bound in ¢+ X. O

COROLLARY 5.3 When ¢ is a PFO-sentence, M ’£FO¢ iff M |£L¢+ .

In fact, it is not hard to see that Tisan injection from the set of PFO-formulas
into the set of PL-formulas.
Translating in the opposite direction is slightly more interesting.

DEFINITION 5.3 If ¢ is a PL-formula, define the PFO-formula ¢* induc-
tively as follows:

(a) ¢* = ¢, if ¢ is atomic

(b) (6 — ) = [6",0"]

(c) (Vzg)* = [z ==z, ¢7]

Note that (Pz — Qz)* = [Pz, Qx], which is equivalent to Vz(Pz — Qzx),
so free variables can become bound in this translation, and the meaning of
formulas is not in general preserved. However, if we ‘mark’ the free variables of
¢, meaning will be preserved for strict formulas:

DEFINITION 5.4 A PL-formula is called strict, if (i) no variable occurs both
free and bound in it, (ii) all quantifiers use distinct variables, and (iii) there is
no vacuous quantification.

Every PL-formula is of course logically equivalent to a strict PL-formula. In
PFO, strictness is built into the syntax (Proposition 3.1).

PROPOSITION 5.4 For a strict PL-formula ¢, M )%L(;S iff M, FV () |? o*.

Examples like VzPx — Qz and VxPx — VxQx show that the restriction to
strict PL- formulas is necessary.

A variable occurs in ¢ iff it occurs in ¢*. Also, if ¢ is strict, Freeg« C FV(¢).
Thus, if ¢ is a sentence, so is ¢*, and we get

COROLLARY 5.5 If ¢ is a strict PL-sentence, then M |£qu iff M |£FO¢*.

Proof of Proposition 5.4: By induction. The case of atomic formulas is
clear. Consider first a formula Vz¢. By strictness, x is free in ¢, and FV (¢) =
FV(VYx¢) U {z} . We have

PL
M E Vo
f
<:>foralla€M,M|£L ¢
fla/z)
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< foralla e M, M,FV(¢) ) o* (ind. hypothesis)
¢

T
for all a € M, M, FV
<= forallae (¢) ﬁ(a/x

) x = x implies M, FV(¢) ﬁ(a/x) o*

= M, FV(Vz¢) )7 [z =2z, ¢ (since x occurs in ¢*)

Now consider a formula ¢ — 1. We have

(1) M,FV(¢ =) l7 [¢*, 4] =
M, FV(¢— ) l?sb* implies M, FV (¢ — ) )?1&*

For, let z be any surface bound variable in [¢*,¢*]. Then z occurs in both ¢
and v, hence it is free in both ¢ and ¥, by the assumption of strictness. So (1)
follows from the definition of satisfaction. Now, FV (¢ — o) = FV(¢)UFV (¢),
and we observe next that

(2) Varg- \ FV(¢) = Varg- \ (FV(¢) U FV(¢))

since any variable in Varg \ F'V(¢) is bound in ¢, hence does not occur at all
in ¢. From (2), it follows by Lemma 3.4 that

M, FV (¢ — 1) i7¢* = M, FV(9) |?¢*

and similarly for ¢*. Hence, using the induction hypothesis and (1),
MUFV(6 =) E [0, 6] = M6 — v

and the result is proved. O

Note that (VzPz)* = (x = ¢ — Px)* , so the function * is not one-one.
But this is the only type of exception. In fact, one easily proves that * is a
bijection from the set of PL-formulas (strict or not) with no subformulas of the
form x = z — 1 to the set of PFO- formulas.

Remark 1: The prohibition of vacuous quantification in strict formulas is because
if  does not occur in ¢, it will be bound in Vx¢ but free in [z = =, ¢*].
However, if we define a translation function ** as in Definition 5.3 except that
(c) is changed to

(Vep)™ = [z =z, [zt =z, ¢™]],
vacuous quantification can be permitted in strict PL-formulas; Proposition 5.4

and Corollary 5.5 will still hold for **.

Remark 2 (On the complexity of the PFO syntax in the Chomsky hierarchy):
Just as for PL, the set of PFO-formulas is context free. It might be thought
that the set of PFO-sentences should be simpler than the set of PL- sentences,
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since in order to decide whether an occurrence of z in a PFO formula ¢ is free
or not, one needs only check if there is an occurrence of x in another atomic
formula: if so, x is bound, otherwise it is free. Nevertheless, it follows from the
Pumping Lemma for context free languages (Hopcroft and Ullman, p. 125 ff.)
that this set is not context free.

To see this, let, for some fixed non-logical vocabulary, Lpro(Lpyr) be the
corresponding set of PFO- (PL-)sentences. There is no number k such that any
s € Lppo of length > k is decomposable into uvwzy such that

(i) length(vwz) <k
(ii) length(vz) >0
(iii) wv'wz'y € Lpro for i >0

For assume there is such a k and let s be (x,, = &y, Tp = X1, ), where n and m
indicate index strings the lengths of which are different and exceed k. Clearly
the only substrings of length < k we can iterate as in (iii) while preserving
formulahood are substrings of the index strings. But these iterations will have
to be made either within a single index string or within index strings of different
variables, since occurrences of the same variable are too far apart (cf. clause
(i)). Hence, already one iteration will destroy sentencehood. m

Let L™ = {¢** : ¢ € Lpr}. L** is a fragment of Lpro with the same
expressive power as Lpro itself. For any ¢ € Lpy, ¢1** is a sentence of L** with
the same meaning (in the sense of section 9). L** is structurally rather like Lpy:
every variable first occurs in subformulas (z = z,(z = z,...) or [z = z,[z =
x, . ..] before any other occurrences to the right, just as occurrences in Vz or 3z in
Lpr, and, as in Lpy, there need be no further occurrences. We conjecture that
Lpr, and L™ have the same complexity, i.e., can be generated by the same kind
of grammars. Indeed, the indexed grammar for Lpy (with = as only primitive
predicate) given in Marsh and Partee (1984) can be straightforwardly modified
into a grammar for L**. Marsh and Partee conjecture that the fragment of
Lpy, which results by eliminating sentences with vacuous quantification is not
an indexed language, and for partly the same reasons we believe that Lppro
itself is of greater complexity than L**. (End of remark)

If ¢ is a PFO-sentence, ¢ is strict, so we have

M ﬁF% =M gFOW*

although usually ¢ and ¢™* are distinct. Likewise, if ¢ is a strict PL-sentence,
¢ ¢t
is valid.
In conclusion, there are satisfaction-preserving translations for sentences be-
tween PFO and the strict fragment of PL. Furthermore, if we stipulate that

free variables in PL-formulas are ‘marked’ in the PFO truth definition, these
translations are satisfaction-preserving for formulas as well.
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6 DEFINABILITY AND CONSEQUENCE IN
PFO

The last remark in the previous section indicates what model theory in PFO
looks like: notions involving sentences are as usual, whereas for formulas we
have to use ‘marking’ of variables. For example, R C M" is M-definable in
PL iff there is a PL-formula ¢ with FV(¢) = {x1,...,2,} such that for all
al,...,ay € M,
PL
(a1,...,an) E R<= M E 0]
{wi/ai}
Correspondingly, we say that R C M" is M-definable in PFO iff there is a
PFO-formula ¢ and X = {x1,...,z,} with Free, C X C Vary such that for all
iy ...,an € M,
(aty...,an) E R—= M, X E 10
{zi/ai}
PROPOSITION 6.1 R C M" is M-definable in PL iff it is M- definable in
PFO.

Proof: Suppose R is M-definable in PL by a formula ¢. We may assume that
¢ is strict. But then it follows from Proposition 5.4 that R is M-definable in
PFO by ¢* with X = FV(¢), since clearly Free,« C X C Varg-. Now suppose
R is M-definable in PFO by a formula 1 with a set of ‘marked’ variables X. It
follows from Propositions 5.1 and 5.2 that R is M-definable in PL by ™. O

As another example, consider the model theoretic notion of an elementary
extension: M <pp N iff M C N and for every PL-formula ¢ and every M-

PL PL
assignment f, if M = "¢ then N )zf ¢. Here is the corresponding PFO version:

M <ppo N iff M C N and for every PFO-formula ¢, every X C Vary, and
every M-assignment f, if M, X |7 ¢ then N, X = ¢. Again, it follows from

Propositions 5.1 and 5.4 that M <p; N if M <pro N.
The notion of logical consequence, on the other hand, involves only sentences.
Let I" be a set of PFO-sentences and ¢ a PFO-sentence:

DEFINITION 6.1 T’ IEFO ¢ iff no model makes all the sentences in I' true
and ¢ false.

Clearly,

F£F0¢<:)F+ |£L¢+

(where I't = {7 : ¢p € T'}). Likewise, if I' is a set of strict PL-sentences and ¢
a strict PL-sentence, then

F|£L¢<:>F* )EFOW
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7 NATURAL DEDUCTION

PFO allows a rather elegant formulation of natural deduction, with just one
introduction rule and one elimination rule, plus rules for negation and iden-
tity. Here deducibility involves sentences, so we shall need to assume that
there is always a sufficient number of individual constants around to perform
instantiations. In the two rules below, [¢, )] is assumed to be a sentence with
Vary N Vary = {x1,..., 25}, and ¢(t1,...,ty,) is the result of simultaneously re-
placing all occurrences (free or bound) of z; in ¢ by ¢;. The rules are presented
in the usual informal way. ¢! marks that the assumption ¢ has been discharged
(killed).

Ble o)t
where {z1,...,2,} = Vary, N Vary and
¢(017---7cn) C1,...,¢n, do mot occur in ¢, ¥ or
INTR _— open assumptions in the derivation of

[, Y] (e, ..., cn), except ¢(ci,. .., cn).
¢(t17 s ,t") [¢, 1/)]
ELIM where {z1,...,2,} = Vary,N Vary and
U(ty, ..., ty) t1,...,tn are closed terms.

In addition, we have the rule for (classical) negation:
-t
4L
¢

NEG

It is easy to show (in the usual way) that NEG needs only be stated for
atomic ¢. Only the identity rules remain. Let ¢, t1, to be closed terms.

ID-axiom t=t

t1 =to o
ID-rule _— where ¢’ results from ¢ by replacing
(;5/ some occurrences of t1 by t2
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When ¢ and ¢ have no common variables, INTR and ELIM amount to
the usual introduction and elimination rules for implication. They also yield
the familiar forms of introduction and elimination of universal quantification as

derived rules, here called V-INTR, and V-ELIM.

where {z1,...,zn} C Varg N Vary, and

[p(ct,--yen), (e scn) ci,...,cn do not occur in ¢, ¥ or
V-INTR open assumptions in the derivation of
(@, V] [p(ciy ... en),P(ct, ... Cn)l
[¢,9)]
V-ELIM where {z1,...,z,} C Varg N Vary and
[D(t1,. . tn), (1, .. tn)] t1,...,tn are closed terms.

Note that we need only instantiate some of the common variables in V-ELIM.
Here is a derivation of V-INTR. Let Varg N Vary = {z1,...,Tn,¥1,.-., Yy} and
let dy,...,d; be new individual constants.

d)(clw"acnadlw-wdk:)T [¢(Cla-"7cn7y17"'797{:))1[}(01’"'7cn7y1a"'7yk)]

’(/J(C]_,...,Cn,dl,...7dk)
INTR

[¢(x1a"'axn7y1a"'ayk)aw(x17"',mnaylw"?yk)]

V-ELIM is similar.

Let T’ IPFO(;S mean that there is a derivation of ¢ with open assumptions in

I', and write ¢1, ..., ¢k }PFO(Z) instead of {¢1,..., Pk} IPFO(;S The superscript

will often be omitted. We now give some properties of this deducibility relation.
If ¢ is any formula with Varg = {z1,...,2,}, and ¢1,...,¢c, are new con-
stants,

dler, ... cn)l
[, ¢]

is an instance of INTR, which proves (1):
(1) [, ¢], for any formula ¢

21
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(2) If Varg N Vary, = Vary, N Varg = Varg N Varg, then [¢, 9], [, 0] F [¢, 6].
(3) If Vargn Vary, =0, then TU{¢} F ¢ <= T I [¢,¢].

The rules INTR and ELIM have corresponding derived rules for the operator

(.).);

[p(t1, - stn), ¥ (t1, ... tn)]

()-INTR where {z1,...,z,} = Vary N Vary and
[¢7 1/1] ti,...,tn are closed terms.
dler,...,cn)t Wler, ... en)t
: where {z1,...,z,} = Vary N Vary and
) ci, ..., cn do not occur in ¢, ¥ or 6, nor
(,)-ELIM (9,9) 0 in open assumptions in the derivation
-

of 0, except possibly ¢(c1,...,cn) and
0 el .., cn).

Here is a derivation of (,)-ELIM:

¢(cl,...,cn)Jf w(cl,...,cn)T

6 [0, L]7

ELIM

1
INTR
[d(c1y ... cn)y L]
INTR
¢, [¥, L] ([, [, L]}, L]
ELIM
1
NEG

0

(note that [[¢, [¢, L]], L] = (¢,4)). From these rules we can get the following:

(4) If (¢, 1) is a sentence then (¢, ) b (1, @).
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(5) Under the same conditions on variables as in V-ELIM,

(¢(t13 R 7tn)a¢(t17 cee 7tn))

FINTR
(¢,)

(6) If {z1,...,2zn} € Varg N Vary and c1, ..., ¢, are not in ¢, ¢, 6 or in any
open assumption other than (¢(c1,...,c,),¥(c1,...,¢n)), then

(dct,. .. en),ablen, .. en))t

(¢,9) 0
J-ELIM
0
(7) If Varg N Vary, = 0, then ¢, 4 b (¢, ). (A-INTR)
(8) If Vary N Vary, = 0, then (¢, ) F ¢. (A-ELIM.1)
(9) If Varg N Vary, = 0, then (¢, ) b 1. (A-ELIM.2)

These examples should make it plausible that our rules are sufficient for
PFO. That this is indeed the case follows from the

PFO

THEOREM 7.1 (Completeness Theorem) If T |£FO¢ then T~ 7 ¢.

This can be proved from the completeness theorem for PL via the transla-
tions described in section 5, but it is easier to give Henkin’s argument directly for
PFO. Here is a brief outline: It suffices to show that every consistent set of sen-

tences has a model, where I' is consistent if not I’ IEFOL. Call T full, if whenever
(¢,9) € T with Vary, N Vary = {z1,..., 2.}, (¢(c1,...,¢cn),¥(c1,...,¢,)) €T
for some ¢y, ..., ¢, in the corresponding language. One shows as usual (mak-
ing use of 3-ELIM) that every consistent I' can be extended to a maximally
consistent and full set ¥ in a language obtained by adding an infinite set C'
of individual constants. From Y the Henkin model My is constructed in the

standard way. One verifies by induction that

(10) If Freey C {z1,...,2n}, f is an assignment, and ¢1,...,¢, € C, then
PFO
My Az, 20} E (a1, .. 1) = My EY(cr, ... 0n)
fxi/leil)

(where [c] is the equivalence class of ¢ under the usual equivalence relation on the
set of individual constants). Using this, together with the fullness and maximal
consistency of ¥ (hence closure under deductive consequences, in particular 3-
INTR), the usual inductive proof of
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(11) For all sentences ¢, ¢ € ¥ <= My, )EFO¢

goes through, and the proof is complete. O

8 PFO, PL AND DPL

We have said that PFO, in contrast with DPL, is basically a variant of PL. In
this section we elaborate briefly on this claim, mainly by looking a bit closer at
the respective ‘truth definitions’ in these systems.

The first thing to note, however, is that the claim cannot be substantiated by
means of the usual model theoretic notion of expressive power. Two logics are
equivalent in this sense if for each sentence in the first logic there is a sentence
in the second with the same class of models, and vice versa. The translations
in section 5 show that this is indeed the case for PL and PFO, but similar
translations exist between DPL, or DRT, and PL. In terms of the expressive
power of sentences, PL, DPL, DRT and PFO are all equivalent.

Beyond expressive power, there is no accepted general standard for com-
paring logics. A natural suggestion, though, is to look at the properties of the
respective notions of logical consequence. Such a comparison substantiates our
claim. It is well known that the (preferred) notion of logical consequence in
DPL is quite different from the one in PL. For example, it is not reflexive or

. . DPL . . .
transitive. Furthermore, although the relation = is axiomatizable, no ex-
plicit and natural axiomatization exists to date, in spite of efforts to find one.

. . . PFO . . .
On the other hand, as we saw in section 7, the relation = is easily axiom-

atized, by a straightforward adaption of a familiar axiomatization of \EL We
tentatively conclude that the relations of logical consequence in PL and PFO
are essentially the same, whereas the logical consequence relation of DPL would
appear to differ in some important way.

To sharpen the comparison between our three systems we need to look at
their respective basic satisfaction relations. Here the essential difference between
DPL and PL, one supposes, is that the former but not the latter is dynamic. To
see how PFO fares in this respect, it is worth while considering for a moment
precisely what this dynamism consists in.

The usual PL semantics associates (given a model) with each formula a set
of assignments, whereas the usual DPL semantics associates a binary relation
between assignments with each formula. Let us say we have a semantics in terms
of truth conditions in the first case, and in terms of input/output conditions in
the second.

Making the dynamic/static distinction in terms of input/output conditions
vs. truth conditions is standard (cf., for example, van Benthem 1991). But of
course the mere existence of a semantics of one of these kinds for a formalism

. . . . 4. .
tells us nothing about its dynamic nature. For, each semantics ( =) in terms

of input/output conditions induces a truth conditional semantics ( | ):
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(1) M.fi¢<:>agM,g.fi¢.

This is how DPL gets its truth conditional semantics. And conversely, each

truth conditional semantics ( =) trivially generates a semantics in terms of
4 4

input/output conditions ( =) such that (1) holds: just let M, g |?¢ iff f=g¢g

and M E 6.

Thus, both DPL and PL can in principle be viewed from a dynamic and
a static perspective. The point of saying that DPL but not PL is dynamic is
rather that the input/output semantics for DPL is fundamental in some sense:
it is the intended semantics, it has a recursive definition, in contrast with the
induced truth conditional semantics, etc., and correspondingly for PL.

One may think a dynamic perspective on PL is pointless. The trivial in-
put/output conditions mentioned above certainly add nothing of interest. And
if the PL syntax is equipped with a real input/output semantics, the result, it
might seem, is DPL, not PL. Actually, things are a little more complex than
that. This can be seen from the following alternative input/output semantics
for PL, which lies between the trivial semantics and the one given by DPL.

Take the definition of the standard 4-place satisfaction relation for DPL,
with =, A, and 3 as primitive, and just change the clause for A to intersection
instead of composition:

DEFINITION 8.1
d
(i) M,gE Pty...t, <= f=gand (" .. M) e pM

~

(i) M,g E ¢ < f = g and for no h, M,h)%(b

(iii) M,g

~Ta e

¢A¢<:>f:gandEIpM,pl%gbanquM,q|fg1/)

(iv) M, g 12 3e¢ = Fn(f[z]h and M, g |% é)

|l

(f[x]h means that the assignments f and h differ at most on the variable x).
Recall that the DPL semantics is like this except that (iii) is replaced by
.. DPL DPL DPL
(i) Mg 270 A <= I E 6 and Mg ' 0)
But even with (iii), it makes some sense to think of Definition 8.1 as an

input/output semantics, because of clause (iv). We have M, g |7d Pz iff flz|g

and g(z) € PM just as in DPL. Likewise, the clause for negation is the same
as in DPL, and hence the non-duality of 3 and V in terms of input/output
conditions:

/\/l,gI%Vaxb{:)f:ganth(f[m]h:M,h)%(b)
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However, even though this is a non-trivial dynamic semantics, it is still a
semantics for PL, and not for some other system. This is due to two things: (i)
the standard syntactic notion of free/bound variables in PL corresponds to the
semantic notion of free/bound variables implicit in Definition 8.1; (ii) the truth
conditional semantics induced by Definition 8.1 is the ordinary PL semantics.
The latter claim follows from the (easily proved)

IS8

PROPOSITION 8.1 M %Lqﬁ =3 Mg

Although PL can be seen in this not-completely-trivial dynamic perspective,
its truth conditional semantics is, of course, the fundamental one: it does not
need a dynamic counterpart but ‘stands on its own’. But the above semantics
locates the precise point where DPL differs from PL from a dynamic perspective:
in treating conjunction as composition and not intersection. Perhaps this, then,
is the essential characteristic of a dynamic logic.

Now, what about PFO? It would seem that its truth conditional seman-
tics is not fundamental: only the 4-place satisfaction relation was recursively
defined in section 3.2. On the other hand, conjunction is not treated as compo-
sition. Also, the semantics associates with each formula not a relation between
assignments but a relation between an assignment and a variable set—hardly
an input/output relation. Our distinctions are perhaps not yet sharp enough to
settle the matter. However, we shall now point to one way to settle it, although
we do not claim it is the final word on the issue.

It turns out, perhaps surprisingly, that PFO does have a recursive truth
conditional semantics, provided we make one small generalization of the previous
set-up. The generalization is to allow partial assignments, i.e., functions from
subsets of Var (including @) to universes of models. This is a rather insignificant
move, easily carried through for PL and DPL. One only needs to see to it that

M )%L(b (or M, g |]:DPfL¢) implies that the free variables of ¢ (in the respective

PL
sense) are in dom(f). There are in fact two options here: either let M ):f )

be undefined when FV (¢) € dom(f), or let it be false then. For definiteness,
choose the last option, which is perhaps simplest.!? Clearly, this is a trivial
modification.

Now do the same for PFO, but this time add a trick: we also let dom(f) be
the set of ‘marked’ variables. This is feasible since free variables can always be
treated as ‘marked’—they are certainly not to be quantified. In addition, we put
the ‘marked’ bound variables in dom(f). The value of f for these is immaterial;
the point is that f is defined for them, and undefined for the (surface-bound)
variables that we do quantify.

Let f, g,... be partial assignments in what follows. If dom(f) N X = 0,
let f Cx h mean that h extends f to X, i.e., dom(h) = dom(f) U X and
hldom(f) = f. The revised truth definition is quite simple:

12But note that now, ¢ and —¢ can both be false: the usual logical laws only hold when all
relevant free variables are in the domain of the considered assignment.
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DEFINITION 8.2
(i) M EPty ... t, < Varpy,. 4, C dom(f) and (¢4, M-Sy € pM
Let (Vary N Vary) \ dom(f) =X

(i) M Jlt/:(qﬁ, V) <= Freeqs 4y C dom(f) & 3h Dx f (M h|/:q5 and M });zzﬁ)
(iii)) M flz[(b, Y] <= Freey ) C dom(f) and Vh Dx f (M h'/:(b =M ‘};:w) 13

Thus, if € dom(f), x is not quantified. That is why we can extend f to
the variables which are to be quantified; we do not, as with total assignments,
need to change the value of f for those variables.

That this is just the old PFO notion of satisfaction in a new guise follows
from the next result, which is not hard to prove.

PFO !
PROPOSITION 8.2 If f is total, M, X ff M .
/1 s tota ':f¢zﬁ ]'?|(Free¢UX)¢

So here we have a recursive truth conditional semantics for PFO. Further-
more, we can equip PFO with an input/output semantics just as for PL: Con-
sider the PFO syntax with — and (-,-) as primitive operators:

DEFINITION 8.3
C dom(f) & f Cg& . tMT) €

v

(i) M,g |ngt1...tn < Varpe, .4,
pM

.. d
(ii) M,g =

! ’

—¢p <= Free, C dom(f) & f C g & Vary, C dom(g) & Yh—- M, h |fg¢

~

!

() M, k£ (6,) <= Freeqsp)  dom(f) & 3h 2x f(M,g £ 6 & Mg ),
where X = (Varg N Vary) \ dom(f).*

Again, it can be shown that the induced truth conditional semantics is the
one we just gave:

PROPOSITION 8.3 M )f:¢ < dgM,g )fg¢

13 Although this is a truth conditional semantics in the present sense, it differs in certain
respects from the corresponding PL semantics. In PL, if f|FV (¢) = g|FV (¢), it follows (also
when f,g are partial) that f satisfies ¢ in M iff g satisfies ¢ in M. In PFO, on the other
hand, one must assume f|Vary, = g| Vary to obtain the corresponding conclusion. Related to
this is the fact that, whereas in PL the truth of ¢ in M can be defined as the satisfaction of ¢
in M by any assignment, in PFO we must require ¢ to be satisfied by the empty assignment
(or by any assignment which is undefined for all variables in ¢).

14This definition is related to Definition 8.2 as Definition 8.1 is related to the standard
definition of satisfaction in PL, modulo some differences due to the use of partial assignments.
For example, the condition ‘f = g’ in the PL case is here replaced by ‘f C g’.
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In conclusion, these results offer a quick way to substantiate the claim that
PFO is essentially non-dynamic, just as PL, although there exist non-trivial
dynamic perspectives on both systems. We suspect, however, that this is only
one side of the coin. To get to the heart of the (non-)dynamic nature of DPL,
PFO, PL, and similar systems, one should also compare in more general terms
their respective variable-binding mechanisms. After all, DPL syntax is char-
acterized by a very particular notion of variable-binding, and the same holds
for PFO. It seems to us that there is more to say about the interplay between
variable-binding and dynamics, but that is the subject of another paper.

9 PFO AND COMPOSITIONALITY

What is the meaning of a PFO formula? A natural suggestion is to include
in semantic interpretation precisely as much as it takes to make the language
compositional. In PL, we get a truth value of a formula ¢, relative to a model
M and an M-assignment f. That is, MﬂM,f is 1 or 0. The argument f cannot
be dropped. In PFO, yet another argument, a set of variables X, is needed
to ensure compositionality. The resulting generalization of the notion of truth
conditions is, we feel, quite natural.

The recursive definition of the meaning function [¢] for a formal language
is often not given compositionally, but it can sometimes be rewritten in such a
fashion. For example, the standard truth definition for PL is not compositional,
but may be rewritten so that, for example, to the rule which from ‘x’ and ‘¢’
forms ‘Jx¢’ corresponds the rule which from [z] and [¢] gives the function
which, for M and f, yields the value 1 iff [[gb]]M,f(a/x) = 1 for some a € M.

It is not entirely obvious that the truth definition for PFO in section 3 can
be similarly rewritten, since the variables quantified over in, say, (¢, 1), are not
given as arguments to the formation rule. Nevertheless, this can be done, as we
now indicate. As in section 8, the key is to allow partial M-assignments, but
this time they are used in conjunction with the variable sets, to obtain a truly
compositional semantics for PFO.

Let a model M be fixed. For a partial f and a term ¢, t*f is now defined
iff each variable in ¢ is in dom(f), and for ay,...,a, € M, {z1,...,2,} C
dom(f(xz;/a;)) (even if z; & dom(f)). We also let the meaning functions [¢] be
partial, so that [¢] . is defined iff Freey, U (Var, N X) C dom(f) (we omit the
subscript M). It is then straightforward to check that if (Varg N Vary) \ X =
{z1,... 2}, a1,...,an € M, ' = f(z;/a;) and X' = X U {z1,...,2,}, then
[(6,9)]x s is defined iff [¢]y, ; and [¢]y/ ; are both defined. This ensures
that the switch to partial assignments in no way makes PFO partial; indeed
the logic is just as before and we are only allowing that assignments may be
undefined for irrelevant variables. Now, we can easily see that

[¢]y ; is defined iff Free, C dom(f)
[¢]y 4 ¢ is defined iff Vary, C dom(f)
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(Var is the set of all variables), and this allows us to recover Free, and Vary,
which is the point of the present modification of the truth definition. Thus, let
K be the class of PFO type meaning functions, i.e., partial functions from pairs
(X, f) to {0,1}, and let, for G € K,

Fe =n{dom(f): G(0, f) is defined}
Vg = n{dom(f): G(Var, f) is defined}
Also, for X C Varand G, H € K, let
Do ux=Fg\Vy)U(Fg\Vg)U((VeUVg)NX)

(cf. the characterization of Free ) at the end of section 3.1). Now, correspond-
ing to the formation rule for (-,-), we can define a function O : K x K — K
as follows:

def. <= D¢ ux Cdom(f)
=1 <= day,...,ap, e M(GX',f)=H(X', ') =1),
O)(G,H)(X,f) where (Ve N V) \ X ={a1,...,2,},
f'=f(zi/a;) and X' = X U{xy,..., 2}
=0 <= defined and # 1

Then, O (G, H)([¢], [+']) = [(¢,%)]. The function for [-, ] is defined analo-
gously, and we have a compositional mapping from syntactic to semantic struc-
tures.

There are few general arguments for the desirability of a compositional se-
mantics. One such argument proceeds from the premiss that a language be
learnable. As is generally recognized, however, this premiss only yields the con-
clusion that the meaning of a complex expression be effectively computable from
the meaning of its parts and the mode of composition. Of course, a composi-
tional semantics provides a particularly simple and elegant way of computing
meanings of complex expressions, and for this reason the requirement of learn-
ability has some relevance for the desirability of a compositional semantics, but
the argument still falls far short of conclusiveness.

In the case of donkey sentences we see another, stronger, argument. A
compositional treatment of (2) in section 2, the paradigmatic donkey sentence,
allows us to avoid postulating an ambiguity in “a donkey”, sometimes treating
it as existential and sometimes as a universal quantifier. This is a good reason,
since no such ambiguity is intuitively perceived.

In classical formulations of DRT (such as Kamp, 1981), no such ambiguity
is postulated. On the other hand an additional level of semantic representa-
tions, discourse representation structures, is introduced, where “a donkey” is
represented as a discourse referent (a free variable) together with a condition
(that of being a donkey). That is, we have here two distinct notions of semantic
content, one given by discourse representation structures and the other by the
traditional notion of truth conditions, the latter being related to the former via
embedding conditions.
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At this point, we believe, a more general and more significant reason for
compositionality emerges, namely, the requirement of a single, uniform notion
of semantic content. The point of formal semantics is, we take it, to provide a
theoretical account of linguistic practice. The reason for including semantics as
part of such an account, i.e., for postulating semantic constructs, is the high de-
gree of context independence in the way structured utterances contribute to our
understanding of speakers, and to the expression of their thoughts and beliefs.
We take semantic content to be a formal counterpart to this informal notion of
the context invariant contribution of syntactic objects to the understanding of
speakers. Now, traditionally the fundamental syntactic category is the sentence.
The sentence has been thought of as the basic unit for depicting reality, since
sentences are the smallest units that can be evaluated as right or wrong in this
respect. It has also been regarded as the unit for articulating thoughts. These
two functions of sentences can be seen as providing basic requirements on se-
mantic concepts. Some, like Davidson, have thought that one range of semantic
concepts can account for both functions, and some, like Frege, have thought
otherwise. In both cases, however, the sentence is fundamental, and semantic
descriptions of smaller units are to be evaluated according to their adequacy
in contributing to descriptions of sentences. Seen in this light, the requirement
of compositionality, at sentence level, reflects the desirability of a certain kind
of explanation of semantic concepts: the semantic content of a sentence should
both be specified by concepts explainable in the desired way and provide for its
contribution to semantic contents of larger units—larger sentences or texts.

From this it is seen on the one hand that the requirement of compositionality
has a basic conceptual motivation, and on the other hand that compositionality
is not to be achieved at all costs. A compositional theory which uses a notion
of sentence content for which no other justification can be given than that it
provides a compositional treatment, does not automatically rank higher than
a non-compositional alternative. Our problem is, of course, that traditional
notions of sentence meaning, such as that of truth conditions, may be well
justifiable but do not provide a strictly compositional treatment of the anaphoric
constructions considered in this paper. The question is then whether there are
natural extensions of the notion of truth conditions which allow a compositional
analysis of these problematic kinds of linguistic context dependence. Specifically,
does the suggested interpretation of PFO formulas have this property?

We believe so. Think of a set X of variables relevant for the evaluation of
a formula ¢, relative to a sequence (and a model), in a context as registering
the impact of that context on the evaluation. Relative to a linguistic context
the membership of a variable x in X indicates the occurrence of x elsewhere
in the context, and thus that this variable is quantified in some clause super-
ordinate to ¢. This corresponds to certain anaphoric relations between noun
phrases (in and, respectively, outside the natural language sentence formalized
by ¢). Relative to a non-linguistic context the membership of a variable = in
X indicates some deictic interpretation of a corresponding pronoun, thus pro-
hibiting a reading according to which x is quantified in ¢. Conversely, for a
given X we can think of the function [¢],,(X,-) from assignments to truth
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values as yielding the information about how ¢ contributes to or modifies the
content of an embedding discourse in some non-linguistic context, the relevant
factors of which are registered in X. If we modified our account by requiring
that free variables in ¢ be included in the relevant sets X then we could say
that the special case where X is the empty set, corresponding to our traditional
notion of truth conditions, is simply the special case of zero context dependence
(linguistic as well as non-linguistic).

We thus think we are justified in claiming that our notion of semantic content
is a natural and legitimate generalization of the traditional notion of truth
conditions; truth conditions in context, so to speak. But this notion of truth
conditions in context is clearly similar in spirit e.g. to Heim’s notion of file
change potential (Heim, 1982) or Groenendijk and Stokhof’s notion of (truth
conditions cum) embedding conditions. What we have claimed on behalf of the
PFO notion of semantic content could also, we believe, with justice be claimed
on behalf of corresponding notions of DPL and varieties of DRT (perhaps in
particular the compositional version in Zeevat, 1989).

Thus it seems that a comparative evaluation based on purely conceptual
considerations will be inconclusive. Rather it will have to be based on more
technical merits and demerits. We shall end here by making some comments on
the relative advantages of PFO and DPL. A first point is that the binary quan-
tification mode of PFO allows more faithful formalization of English quantified
sentences than formalisms using the standard V and 3. On the other hand, the
binding mechanisms of DPL are sometimes closer to natural English than those
of PFO. Several features of natural English which are accounted for in DPL
itself can only be accounted for in PFO by way of restrictions on variable choice
in formalizations. For instance, the non-equivalence of A man walks. He talks.
with He talks. A man walks. is directly reflected in DPL, whereas in PFO only
restrictions on variable choice (in this case essentially Heim’s novelty- familiar-
ity conditions) tell us that ((talks = , (man z, walks x)) is not a formalization of
the second text, despite the fact that ((man z , walks z) , talks z) is a formaliza-
tion of the first.!® Likewise, the unavailability of a directly anaphoric reading
of If every man walks, then he is tired is directly accounted for by the binding
mechanisms of DPL, whereas again in PFO we must rely on restrictions (cf. (*)
of section 4). Nothing is, of course, lost, since the restrictions are part of the
natural language semantics, but it is clear that in some cases the difference in
meaning between a formula and what it formalizes is greater in PFO than in
DPL.

This difference cuts both ways, however. Restrictions can easily be modified
and thus allow greater flexibility. Cataphoric constructions, like Bach-Peters
sentences (cf. (14), section 4) can in this way be accounted for in PFO, but
the binding mechanisms of DPL block a straightforward compositional analysis.
The same holds of examples like that of Partee (footnote 11, section 4), or the
sentence It don’t mean a thing if it ain’t got that swing, discussed in section
4. Ultimately, however, a comparative evaluation must take into account the

15This observation was prompted by questions by Hans Kamp and Paul Dekker.
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potential both of generalizing applications of the systems, e.g. for treating
tenses, and of generalizing the systems themselves, e.g. of applying the basic
binding principles in treating generalized quantifiers.

A AN INTUITIONISTIC VERSION OF PFO

PFO does not have a primitive disjunction, but the operator {-,-} defined by

def

{,9} = [-¢,9]

appears to be what is needed for formalization of disjunction in natural language;
cf. section 4. Note that {¢,v} means that for all x1,...,2,, ¢ or ¢» , where
Z1,...,Ty are the variables common to ¢ and . To get an intuitionistic version
of PFO, however, it turns out that we need to fuse existential quantification and
disjunction into one operator. Thus, we introduce the operator

(¢,9)

meaning that for some z1,...,z,, ¢ or ¥ (i.e., with a corresponding clause
added to the PFO truth definition), and with the following introduction and
elimination rules:

Bty,. . tn) Gty .. tn)
(,)-INTR

where {z1,...,2,} = Vary,N Vary and
(p, ) (@, 1) t1,...,tn are closed terms.

TR LI R |

: : where {z1,...,2n} = Varg N Vary
and ci,...,c, do not occur in ¢,
(¢, 9) 0 0 1 or €, nor in open assumptions in
the derivation of 0, except possibly
0 o(ci,y ... cn) and P(ct, ..., cn).

In classical PFO, (-,-) is definable in the following sense: for all ¢, ¢ with
{z1,..., 2} = Vary, N Vary,

(¢, 9) and (z1 = 21, (..., (xn = zpn, {P,9})...)) are equivalent

(i.e., satisfied by the same models, assignments and variable sets).'6

161n contrast with {¢,v}, (¢, 1) is not, it seems, uniformly definable in PFO, i.e., definable
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Intuitionistic PFO, PFOy, has a natural deduction system consisting of the
introduction and elimination rules for [-,-], (-,-), (-,-) , the identity rules, and
the intuitionistic absurdity rule,

NEG;

in place of the classical one. That this is really a system for intuitionistic first-
order logic can be shown proof-theoretically. Let }PI be the derivability relation

of PFOy, and I—SI the derivability relation for standard intuitionistic predicate
logic. Extend the translations * and * of section 5 so that, where {z1,...,2,} =
(Varg N Vary) \ X, (¢, )X = 3y ... Fa, (¢ XHT1mnd v g B X H@1mndy
and (¢ V)* = (¢*,¢¥*). Let ¢ ~ 1, where ¢, ¥ are PL;-formulas, mean that
¢ is strict and results from 1 by bound variable changes and elimination of
vacuous quantifications, and let I' & A mean that ~ is a 1-1 relation between
the sets I' and A. Then we can show that for each derivation in the one system
there is a corresponding derivation in the other system, in the following sense:

THEOREM A.1
) IfT 1%, then T+ 1yt

b) T' I—SI¢ iff there are I'o = T" and ¢g ~ ¢ such that Ty |_SI¢O

P

(

(

(c) IfT,¢ are strict and T’ }—Slqb, then T'* Iflqb*
(d) [frHF

! T then T I—Plcﬁ

Outline of proof: (a): First, recall that for a PFO-formula ¢ = ¢(x1,...,x,)
with 21,...,2, among its (free or bound) variables, ¢(ci,...,¢,) is the re-
sult of replacing all occurrences of x1,...,z, by c1,...,c,, respectively. For
a PL-formula ¢, let ¢x1,...,2n/c1,...,cy] be the result of replacing all free
occurrences of x1,...,x, by c1,...,c,, respectively. We need the following fact,
for any PFO-formula ¢ = ¢(x1,...,Tn, Y1, -+, Ym):

(1) ¢+’{I1a~~~’wn,y1,.‘.’ym}[xl, ceyZnfely . en]l =0(er, o Cny YL, - 7y7n)+’{-’”"

from a fixed scheme. The distinction between uniformly and non-uniformly definable operators
is characteristic of the PFO style of variable-binding. In PL, for example, a binary quantifier
Q (of type (1,1)) is definable iff there is a PL-formula § = 6(P1, P2) with two unary predicate
symbols P; and P> such that

F Qz(Piz, Pax) < 0(P1, P2)
Then, for any formulas ¢, 1) with at most x free,

F Qz(¢,¢) < 0(¢,¢)

so the definition for atomic formulas gives a uniform defining scheme.
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Note that z1, ..., Zn,Y1,. . ., Ym have only free occurrences in ¢ {#1 - Zny1,ym}
(1) is easily proved by induction.

Now, (a) is proved by induction over the number of steps in the derivation of
¢ from I'. When this number is 0, ¢ is either an identity axiom or an assumption
(I' = {¢}); in both cases (a) holds for ¢. The induction steps proceeds by cases,
each case defined by the deduction rule applied in the last step of the derivation.
Here we only consider the case of (,)-ELIM. The other cases are similar.

Thus, suppose we have a derivation in PFO; from I'y UT's UT'3 to 6 of the
form

1—‘1 F? ¢(Clv"'7cn)T Fd ¢(017"'7Cn)T

(0, 9) 6 9

with {z1,...,2,} = VaryNVary. By induction hypothesis, we have I'f FSI<¢, Py,

I3 U{oler,...,cn)t} I—SIGJr, and T3 U {¢(ct,...,cn)t} 19+ Then we also
have

F;‘ (,zﬁ(cl,...,cn)ﬂL F;’ 1/)(01,...,C7L)+T

d(cty - yen)TV(er, ..o )T oF oF

9+

in SI. Call this derivation IIy. ¢(c1,. .., cn_1,2,) 1 o, fen] = d(cr, ... en)
by (1), and similarly for ¢. Thus, we get by J-elimination in SI

3xn(¢(cla ooy Cn—1, xn)Jﬁ{En} \ 1/1(01, ey Cn—1, xn)Jﬁ{xn}) HO
o+
where the assumption ¢(c1,...,cn)" Vp(ct,...,c,)T is discharged at the final

step. Call this derivation IT;. Repeating this step we finally obtain a derivation
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Az ... Hxn((b—&-,{xl,...,xn} Vv ,L/}—i-,{xl,.“,acn}) L,

9+

in SI, with open assumptions in Ty UT'T U{3z; ... 3z, (pT Az zabygptdenendyy
But 3z ... 3z, (¢ Tz yyptdznmnd) = (¢ 4h)+. Add the derivation from

I'f to (¢,4)*, and we have a derivation from I'T UT§ UT3 to 6% in SI.
(b): This is a known fact.

(c): If T FSIQS, then there is a normal derivation of ¢ from I' in SI (in the
sense of Prawitz, 1965, ch. IV). By the Subformula Property, each formula in
this derivation is a subformula of either ¢ or some formula in I". Since ¢ and I'
are strict, it follows that each formula in the derivation is strict. We show by

induction over the length of the normal derivation that I'* IPI(b*. The following
two cases suffice for illustration:

(i) Suppose we have a normal derivation of ¢ from I' where the last step is an
—-elimination from ¢ and 1) — ¢ to ¢. Since 1 and ¥ — ¢ are strict, we have by
induction hypothesis I'* £ 4* and I'* (3 — ¢)*. Now (¢ — ¢)* = [v*,6"],
and since @ — ¢ is a strict sentence, ¢* and ¥* have no common variables.
Hence, by [[]-ELIM, T* £ 14+,

(ii) Suppose the last step is instead a V-introduction of Va¢ from ¢[z/c]. By

induction hypothesis, I'* IPI¢>[:U/ c]*. Since Vz¢ is strict,  has only free occur-
rences in ¢, and it follows that ¢[z/c]* = ¢*(c). Thus, by []-INTR, [z = z, ¢*]
, 1.e., (Vz)*, is derivable in PFOy.

(d): One proves by induction over the complexity of ¢ that

'PI

o1 67 and 67 g

from which (d) follows. a

POSTSCRIPT: After the first version of this paper was written, Osten Dahl
and, independently, Filip Wideback suggested that we compare PFO with the
system of implicit quantification used by C. S. Peirce in his ezistential graphs—
they thought the two styles of variable-binding would be rather similar. They
were right. Peirce’s original works are not easily penetrable, and the recent
applications of existential graphs made by some workers in Artificial Intelligence
(Sowa, 1984) are not presented from a logical point of view. However, Zeman
(1967) in his system of implicit quantification (IQ) gives a modernized version
of Peirce’s ideas.!” A quick account of IQ will show the similarities with PFO.

17Victor Sanchez drew our attention to Zeman’s paper.
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Zeman does not apply IQ to natural language semantics, nor does he give a
recursive truth definition for it.'® But informally the system is easy to under-
stand.

The syntax is very simple: just the usual atomic formulas, and the Boolean
connectives = and A. Other connectives are defined, e.g., » — 1 is an abbrevi-
ation of —(¢ A ).

All variables in a formula are implicitly quantified (thus, there are no free
variables) according to the following principle. If z occurs in ¢, the scope of x
in ¢ is the smallest subformula of ¢ containing all the occurrences of x in ¢.
Now insert Jz immediately before the scope of x in ¢. Do this for all variables
in ¢ (in some fixed order). The result is a PL-sentence with the same meaning
as ¢.

To see how this works we can consider how some typical anaphoric sentences
of the present paper would be formalized in 1Q. If Pedro owns a donkey he is
rich becomes

(Dy A Opy) — Rp

i.e., 7((Dy A Opy) A—Rp). The scope of y is (Dy A Opy), so the sentence means
Jy(Dy A Opy) — Rp. For If Pedro owns a donkey he is beats it, on the other
hand, we get

(Dy A Opy) — Bpy

where y has the scope (Dy A Opy) A ~Bpy, so the PL-translation is =3y((Dy A
Opy) A—Rp), i.e., Yy((Dy A Opy) — Bpy). Note how the existential quantifica-
tion of y in (Dy A Opy) is cancelled (and turned into universal quantification)
in (Dy A Opy) — Bpy, by the occurrence of y in Bpy, much as in PFO.
Likewise, Every farmer who owns a donkey beats it would be formalized as

(Fx A (Dy A Ozy)) — Bzy

which indeed means VaVy((Fz A (Dy A Ozy)) — Bxy). Finally, a text like A
farmer walks. He whistles. can be formalized as

(Fx ANWzx) N WHz

With respect to the features of variable-binding discussed in section 1, the IQ
system does not really use variable-binding operators but is completely implicit.
So the notion of selectiveness does not apply, but binding is from the outside in
as in PFO.

The variable-binding mechanism of 1Q is thus quite similar to PFO, but a
difference is that there are no free variables in 1Q. However, if we change 1Q so
that variables whose scope is an atomic formula are not quantified, the resulting
mechanism is essentially that of PFO.

18Most of his paper deals with establishing that the translations from IQ to PL, and from
PL to IQ, preserve derivability (he introduces a system of derivability rules for IQ). This
would follow directly (by the completeness of PL) from the fact that they preserve logical
consequence, which is easy to establish, once a proper truth definition has been given.
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So in a sense, the PFO style of variable-binding is implicit in Peirce’s work.
Our contribution in this paper, then, is to present it in a modern format, to
provide it with a compositional truth definition and a natural deduction proof
system, and to apply it to natural language, in particular to certain construc-
tions with quantification and anaphora.
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Stockholm University
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