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1.  Introduction 
This paper deals with a special kind of generalized quantifiers, called itera-
tions.  As expected, iterations are obtained by iterating quantifiers, of 
certain types.  Equivalently, they are definable by (generalized) quantifier 
prefixes.  This generalizes the notions of a quantifier prefix, and of prenex 
form, familiar from elementary logic, to logic with generalized quantifiers.  
Another motive for studying iterations is linguistic.  A wide range of 
sentences in natural languages have truth conditions representable by means 
of iterations.  When this is possible, the scope relations between noun 
phrases in the sentences are directly reflected in the corresponding prefix, 
by the left-right order.  Scope ambiguities are accounted for by 
permutations of that order.  Furthermore, there are other sentences, 
seemingly similar to the ones using iterations, whose truth conditions can be 
represented by other kinds of generalized quantifiers, but, on a closer look, 
not by iterations.  Thus, it becomes of interest to know just when these other 
kinds of quantifiers are iterations, and when they are not.  Several such 
questions will be addressed in this paper. 
 The first significant results on generalized quantifier prefixes were ob-
tained by Edward Keenan.  In fact, Part I of the present paper is my way of 
understanding his two main results in this field, the ‘Reducibility Equiva-
lence Theorem’ in Keenan 1992 and the ‘Generalized Linear Prefix Theo-
rem’ in Keenan 1993.  Keenan usually writes with particular linguistic ap-
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plications in mind, but these theorems also have a purely logical interest.  I 
will reformulate them in a setting more familiar to logicians, generalize 
them slightly, and bring out certain techniques which are implicit in their 
proofs.  Part II contains a number of applications of these techniques to 
questions of definability of generalized quantifiers. 
 In more detail, the paper is organized as follows.  In section 1, the itera-
tion operation is defined for a suitable class of quantifiers, and motivated by 
a number of linguistic examples.  Section 2 presents some useful properties 
of iterations, and section 3 contains (generalizations of) the two results by 
Keenan mentioned above.  In section 4, the convertible iterations are 
characterized, i.e., those which are ‘closed under converses’, and as a 
corollary we also obtain necessary and sufficient conditions for a 
resumption (an ordinary monadic quantifier applied to n-tuples instead of 
individuals) to be an iteration.  The main result of Section 5 gives a similar 
characterization for branching quantifiers, and section 6 one for 
cumulations (quantifiers rendering the so-called cumulative readings of 
certain sentences).  Section 7 takes up the issue (raised in van Benthem 
1989) of when a quantifier is a Boolean combination of iterations, and we 
prove, among other things, that the resumption of the quantifier most to 
pairs instead of individuals is not such a Boolean combination.  Section 8, 
finally, lists some problems for further study.1 
 
 

I 
  ITERATIONS AND THEIR PROPERTIES 

 

2.  Motivation and definitions 
As usual, a (generalized) quantifier of type <k1,…,kn> (ki ≥ 1) is a func-
tional Q which to each non-empty set M assigns a quantifier QM of type 
<k1,…,kn> on M, i.e., an n-ary relation between subsets of Mk1,…,Mkn, re-
spectively.  Q is monadic if ki = 1, i = 1,…,n, polyadic otherwise.  Q is 
simple if n = 1. 
 To Q corresponds a quantifier symbol Q (of the same type), which acts 
as a variable-binding operator according to the following formation rule:  if 
φ1,…,φn  are formulas and x11,…,xnkn

 are distinct variables, then 

  Qx11…x1k1
, … ,xn1…xnkn

(φ1,…,φn) 
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is a formula.  By adding Q to elementary logic, with this formation rule and 
a corresponding additional clause in the definition of satisfaction, one ob-
tains the logic L(Q), and similarly L(Q1,…,Qk).  The formation rules and 
satisfaction clauses for the usual type <1> quantifiers ∀ and ∃ can be seen 
as instances of this. 
 Call the quantifier symbol followed by an appropriate string of variables,  
Qx11…x1k1

, … ,xn1…xnkn 
, a quantifier expression.  Quantifier expressions 

with simple quantifier symbols, i.e., those applying to just one formula, can 
be iterated:  put one more in front of a formula and you get a new formula.  
A (generalized quantifier) prefix is a finite string of simple quantifier 
expressions, with all variables distinct.  If Q1,…,Qk are simple, a formula of 
L(Q1,…,Qk) is in prenex form if it has the form of a prefix (which may 
contain ∀ and ∃) followed by a quantifier-free formula. 
 Iterating quantifier expressions is one thing, iterating quantifiers is an-
other, though of course related, thing.  To see which kind of quantifiers we 
want to iterate, let us look at a few examples from natural language. 
 The canonical quantified English sentence has quantified subject and ob-
ject noun phrases and a transitive verb, as in 

(1)  Most critics reviewed two books. 

This can be formalized as a quantifier Q applied to three arguments, the set 
of critics (A), the set of books (B), and the relation denoted by reviewed (R); 
Q is thus of type <1,1,2>.  But clearly it is more informative to represent the 
truth condition of (1) by means of the two familiar type <1,1> quantifiers 
most and two.  Indeed (suppressing the universe M), 

  QAB,R    ⇔    most A{a: two B{b: Rab}}. 

We will call Q the iteration of most and two, and formalize (1) as 

  most⋅ two AB,R. 

One advantage of this is that the other reading of (1), that there were two 
books such that most critics reviewed both of them, can now be represented 
as another iteration  two B{b: most A {a: Rab}} , i.e., 

  two⋅most BA,R–1 

(note that we always take the first set argument to be linked to the first ar-
gument of the relation, and the second set argument to the second relation 
argument; hence the appearance of R–1 above). 
 There are more complex iterations. Consider 

(2) Two boys gave more dahlias than roses to three girls. 



 

Here three quantifiers are iterated, the first and the third of type <1,1>, but 
the second is the type <1,1,1> quantifier more-than (defined by  more-
than ABC  ⇔  |A↔C| > |B↔C|), and the resulting quantifier has type 
<1,1,1,1,3>. We should have 

  two⋅more-than⋅ three ABCD,R     
  ⇔    two A{a: more-than BC{b: three D{c: Rabc}}}; 

this gives one reading of (2).2 
 It thus seems clear that we should be able, in principle, to iterate arbi-
trary monadic quantifiers.  In fact, we will define iteration for an even larger 
class, which includes (certain) polyadic quantifiers as well, and which is 
closed under iteration.  It is not surprising that this turns out to simplify the 
definition; after all, the iteration of two monadic quantifiers is polyadic.  
More interesting is the fact that this move also has a linguistic motivation.  
Keenan 1992 gives several examples involving ‘unreducible’ polyadic 
quantifiers, among them 

(3) Every student criticized himself 
(4) Every boy likes a different girl. 

One reading of (4) uses the type <1,1,2> quantifier ED, defined by 

  ED AB,R     ⇔     ∀a,b∈A(a ≠ b  ⇒  ∃c∈B(Rac  & ¬Rbc)), 

and (3) uses the type <1,2> quantifier  EH A,R   ⇔  ∀a∈A Raa .  Now, al-
though none of these are iterations, as Keenan shows, they can themselves 
be iterated with other quantifiers: 

(5) Every student introduced himself to two professors 
(6) Every boy gave different flowers to two girls. 

For example, one reading of (6) should be rendered 

  ED⋅ two ABC,R    ⇔    ED AB,{(a,b): two C{c: Rabc}}, 

and the other reading is obtained by permuting the two quantifiers as before. 
 We are now ready to define iteration. Here is the relevant class of 
quantifiers. 
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1.1. Definition.  CIT is the class of quantifiers of types <1,…,1,k> with 
m+1 arguments, such that m ≥ 0, k ≥ 1, and if m > 0, then m ≥ k.  For 
obvious reasons, the first m arguments are called the noun arguments, and 
the last argument the verb argument.  Thus, simple quantifiers in CIT (m = 
0) have only verb arguments.  For every Q ∈ CIT and all sets A1,…,Am, 
define the simple quantifier 

(7) (QA1,…, Am)MR    ⇔    QMA1…Am,R 

(if some Aj is not included in M, (QA1,…, Am)MR is false). 
 
 Now, the idea is to first define iteration for simple quantifiers, and then 
extend the definition to all quantifiers in CIT via (7). We need the follow-
ing 
 
1.2. Notation.  If R is an n-ary relation on M, k < n, and a1,…,ak  ∈ M, let 
Ra1…ak

 be the (n−k)-ary relation defined by 

  Ra1…ak
     =     {(ak+1,…,an) ∈Mn-k :  Ra1…an}. 

 
Note that 

  (Ra1…ak
)b1…bm

    =     Ra1…akb1…bm 
. 

 Here is how to iterate two simple quantifiers. 
 
1.3. Definition.  If Q1 is of type <k>, Q2 of type <m>, define Q1⋅Q2 of type 
<k+m> as follows: 

  Q1⋅Q2R     ⇔     Q1{(a1,…,ak) :  Q2Ra1…ak
} 

(the universe M is suppressed as usual). 
 
 We will often omit the ‘⋅’ and write just  Q1Q2 .  It is easily verified that 
the iteration operation is associative: 

  (Q1Q2)Q3     =     Q1(Q2Q3). 

Thus, Q1Q2Q3, and in general 

  Q1…Qk , 

is well-defined. 
 We have defined iteration of simple quantifiers in a purely set-theoretic 
way.  Of course, we could have gone via prefixes instead: 
 



 

1.4. Fact.  If Qi is of type <pi>, Q1…Qk is the quantifier defined by the 
sentence 

  Q1x11…x1p1
 … Qkxk1…xkpk 

Rx11...xkpk
. 

 
 Finally, we extend the notion of iteration to arbitrary quantifiers in CIT. 
 
1.5. Definition.  If Qi is of type <1,…,1,pi> with  mi+1 arguments, define 
the quantifier Q1…Qk of type <1,…,1, … ,1,…,1, p1+…+pk>  (with 
m1+…+mk+1 arguments) by 

 Q1…QkA11...Akmk
,R   ⇔   (Q1

A11,…, A1m1…Qk
Ak1,…, Akmk)R . 

 
 Thus, the class CIT is Closed under ITeration.  The reader can check 
that Definition 1.5 indeed gives the truth conditions we wanted in the 
examples above.  To account for ambiguities we can introduce permutations 
of iterations: 
 
1.6. Definition.  For simple Q1,…,Qk, a permutation i1,…, ik of 1,…,k 
induces a permutation (Q1…Qk)(i1,…, ik) of Q1…Qk as follows:  
(Q1…Qk)(i1,…, ik) is the quantifier defined by the sentence 

  Qi1xi11…xi1pi1
 … Qikxik1…xikpik 

Rx11…xkpk
. 

This can be extended to arbitrary Q1,…,Qk ∈ CIT as usual: 

 (Q1…Qk)(i1,…, ik)A11...Akmk
,R   ⇔   (Q1

A11,…, A1m1…Qk
Ak1,…, Akmk)(i1,…, ik)R. 3 

2  Basic properties of iterations 
The familiar properties of type <1,1> quantifiers, 

CONSERV QMAB    ⇔    QMA A∩B 
EXT  If A,B ⊆ M and  A,B ⊆ Mʹ′, then  QMAB   ⇔   QMʹ′AB 
ISOM  If (M,A,B) ≅ (Mʹ′,Aʹ′,Bʹ′) then  QMAB   ⇔   QMʹ′Aʹ′Bʹ′, 

can be generalized to quantifiers in CIT.  This is immediate for EXT and 
ISOM.  For CONSERV, let Q be of type <1,…,1,k> with m+1 arguments, 
and assume m > 0 to avoid trivialities.  For example, Q could be an iteration 
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Q1…Qr , and then we know precisely which noun arguments are linked to 
which arguments of the k-ary relation.  This information is required for 
CONSERV to make sense:  CONSERV says that each relation argument can 
be restricted to the union of those sets which are linked to it: 
 
2.1. Definition.  Let Q be as above (so m ≥ k). For each m1,…,mk > 0 with 
m1+…+mk = m, we say that Q is (m1,…,mk)-conservative if the following 
holds: 

CONSERV QA11…A1m1
,…,Ak1…Akmk

,R     ⇔      
  QA11…A1m1

,…,Ak1…Akmk
, ((A11∪…∪A1m1

)×… × (Ak1∪…∪Akmk
)) ∩ R. 

 
 When k = m = 1 we have the old notion of CONSERV for type <1,1> 
quantifiers.  When k = 1, the above definition coincides with the notion of 
conservativity for monadic quantifiers proposed in the literature.  
Quantifiers like ED above of type <1,1,2> are (1,1)-conservative.  In most 
cases a specific linking of noun arguments to the verb argument is 
understood;  we then drop the prefix and talk about plain conservativity. 
 
2.2. Fact.  Iteration preserves CONSERV, EXT, and ISOM.  Specifically, for 
CONSERV:  if Q1 is (m1,…,mk)-conservative and Q2 is (p1,…,pn)-
conservative, then Q1Q2 is (m1,…,mk ,p1,…,pn)-conservative. 
 
Proof.  Straightforward calculation.   ⎯| 
 
 A quantifier Q is said to be trivial on M, if QM is either the empty or the 
universal relation between relations on M (of the appropriate type); oth-
erwise Q is nontrivial on M.  This is a local notion of nontriviality.  We also 
need a global notion — one not confined to a particular universe: 
 
2.3. Definition.   Let Q and m1,…,mk be as in Definition 2.1.  Q is 
(m1,…,mk)-nontrivial — but ‘(m1,…,mk)’ is usually left out — if there are 
n1,…,nk ≥ 0 such that whenever A11,…,Akmk

 ⊆ M with |Ai1∪…∪Aimi
| ≥ ni , 1 

≤ i ≤ k, QA11,...,Akmk is nontrivial on M.  If Q is simple we require instead that 
there be an n ≥ 0 such that Q is nontrivial on M whenever |M| ≥ n.  n1,…,nk 
(n) are called the triviality bounds of Q.  If the condition is not satisfied, Q 
is trivial. 
 
 For example, the type <1,1> quantifier at least 5 is nontrivial, with a 
triviality bound of 5, but the quantifier 

  QAB   ⇔   |A| is even and |A∩B| ≥ 5 



 

is trivial.  Note that this quantifier is (globally) trivial even though it is 
(locally) nontrivial on every universe with at least 6 elements.  This is be-
cause of the special role of the noun arguments in Definition 2.3:  to be non-
trivial, Q has to be nontrivial on all large enough noun arguments and all 
surrounding universes, as it were, not just on all large enough universes. 
Such a special role is well motivated at least for quantifiers satisfying CON-
SERV and EXT; these conditions hold for most non-simple quantifiers in 
CIT related to natural language. 
 
2.4. Triviality Lemma.  (i)  For Q1,…,Qk ∈ CIT:  Q1…Qk is trivial  ⇔  
some Qi is trivial. 
(ii) (Keenan)  For simple Q1,…,Qk :  Q1…Qk is trivial on M  ⇔  some Qi is 
trivial on M. 
 
 Q1,…,Qk can of course also be simple in (i), but the restriction to simple 
quantifiers is necessary in the local version (ii).  To see this, consider the 
iteration  every⋅0 , where 0 is the empty quantifier of type <1>.  We have  
every⋅0 A,R  ⇔  A = ∅ , so every⋅0 is in fact nontrivial on every M, 
although one of its components is trivial on every M. 
 
Proof of Lemma 2.4.  We first give Keenan's proof of (ii), and then derive 
(i) from (ii). 
(ii):  An immediate induction shows that it is sufficient to consider the case 
k = 2.  Let Q1 be of type <m> and Q2 of type <n>. Thus, 

  Q1Q2R     ⇔     Q1{(a1,…,am) :  Q2Ra1…am
}. 

Now, if either Q1 or Q2 is trivial on M, it is straightforward to calculate that 
so is Q1Q2.  So suppose Q1 and Q2 are both nontrivial on M.  Hence there 
are R1,R2 ⊆ Mm and S1,S2 ⊆ Mn such that Q1R1, ¬Q1R2, Q2S1, and ¬Q2S2 
(on M).  It follows that the following claim establishes the result, i.e., that 
Q1Q2 is nontrivial on M: 

CLAIM:     ∀R ⊆ Mm ∃Rʹ′ ⊆ Mm+n (R  =  {(a1,…,am) :  Q2Rʹ′a1…am
}). 

The Claim is proved by taking  Rʹ′  = 

 {(a1,…,am ,b1,…,bn): (Ra1…am & S1b1…bn) ∨ (¬Ra1…am & S2b1…bn)}. 

Then Ra1…am implies that Rʹ′a1…am
 = S1, and hence Q2Rʹ′a1…am

.  Similarly, 
¬Ra1…am implies ¬Q2Rʹ′a1…am

. 
(i):  We leave it as an exercise to check that if all of Q1,…,Qk are nontrivial, 
(ii) can be used to verify that Q1…Qk too is nontrivial (with triviality 
bounds given by those for Q1,…,Qk).  For the other direction, suppose some 
Qi is trivial.  More precisely, suppose it is (m1,…,mp)-trivial, and hence is 



 

of type <1,…,1,p> with  m1+…+mp+1 arguments.  Now choose any 
putative triviality bounds n1,…,nr for Q1…Qk.  Let n = max(n1,…,nr).  By 
the triviality of Qi, we can find M and  A11,…,Apmp

 ⊆ M such that 
|Aj1∪…∪Ajmj

| ≥ n for 1 ≤ j ≤ p, and Qi
A11,...,Apmp is trivial on M.  Now, from 

(ii) and Definition 1.5 it follows that for any choice of the remaining noun 
arguments for Q1…Qk ⎯ let us indicate such a choice by C 
⎯ (Q1…Qk)

C , A11,...,Apmp is trivial on M.  Moreover, by the choice of n, we 
can take C such that all the sizes of the relevant unions of sets are > 
n1,…,nr, and all noun arguments are still subsets of M.  So we have shown 
that however these bounds are chosen, we can find an M including noun 
arguments ‘above’ the respective bounds such that the corresponding simple 
‘instance’ of Q1…Qk is trivial on M.  In other words, Q1…Qk is trivial.   ⎯| 
 
 Next, let us look at iteration and negation.  For Q of type <1,…,1,p>, the 
inner negation  Q¬ of Q is defined by  (Q¬)MA1…Am,R  ⇔  
QMA1…Am,Mp—R, and the dual is  Qd  =  ¬(Q¬)  =  (¬Q)¬ .  The fol-
lowing lemma is simple but useful. 
 
2.5. Negation Lemma.  For Q1,…,Qk � CIT: 
(i)  Q1…Qk   =   Q1…Qi–1⋅Qi¬⋅¬Qi+1⋅Qi+2…Qk 
(ii)  ¬(Q1…Qk)   =   ¬Q1⋅Q2…Qk 
(iii) (Q1…Qk)¬   =   Q1…Qk–1⋅Qk¬ 
(iv) (Q1…Qk)d   =   Q1

d…Qk
d 

 
Proof.  Almost immediate, using Fact 1.4, and the fact that  (Q¬)x1…xpφ  ×  
Qx1…xp¬φ .   ⎯| 
 
 Call a simple quantifier Q positive (on M) if ¬Q∅ (on M).  One frequent 
use of the Negation Lemma is that when Q is a simple iteration, we can 
always assume that Q is of the form Q1…Qk with Q2…Qk positive (on a 
particular M, or on every M).   
 Our last two lemmas, which are more or less implicit in Keenan 1992, 
concern the characteristic behaviour of iterations on Cartesian products.  In 
particular the first of these lemmas turns out to be very useful. 
 
2.6. Product Decomposition Lemma.  Suppose Q1 is of type <k>, Q2 of 
type <m>, and that Q2 is positive on M.  Then, for all R ⊆ Mk and all S ⊆ 
Mm, 

  Q1Q2R×S     ⇔     (Q1R & Q2S)  ∨  (Q1∅ & ¬Q2S). 

 
Proof.  This is almost immediate once you understand the mechanism of it-
eration. The argument goes like this.  Since 



 

(a)  Ra1…ak    ⇒    (R×S)a1…ak
  =  S 

(b)  ¬Ra1…ak    ⇒    (R×S)a1…ak
  =  ∅, 

it follows from the positivity of Q2 that 

(c)  Q2S    ⇒    {(a1,…,ak) :  Q2(R×S)a1…ak
}  =  R 

(d)  ¬Q2S    ⇒    {(a1,…,ak) :  Q2(R×S)a1…ak
}  =  ∅. 

And since  Q1Q2R×S  ⇔  Q1{(a1,…,ak): Q2(R×S)a1…ak
}, the desired result 

follows readily from (c) and (d).   ⎯| 
 
2.7. Product Lemma.  Suppose that, on M, Q = Q1…Qk, where Qi is of type 
<pi>, and let m = p1+…+pk.  Then, for every R ⊆ Mm, there is a product P = 
R1×…×Rk, with Ri ⊆ Mpi, such that  QMR  ⇔  QMP . 
 
Proof.  By induction on k, the case k = 1 being trivial.  Suppose the result 
holds for k, and consider Q0…Qk, where we may assume that Q1…Qk is 
positive.  Take any R ⊆ Mp0+...+pk.  Let 

  R0   =   {(a1,…,ap0
) :  Q1…QkRa1…ak0

}. 

Thus,  Q0…QkR  ⇔  Q0R0 .  If R0 = ∅, we can take P = ∅.  So suppose R0 ≠ 
∅.  Since Q1…QkRb1…bk0

 for some (b1,…,bp0
), there is by induction 

hypothesis a product Pʹ′ = R1×…×Rk such that Q1…QkPʹ′.  Set P = 
R0×R1×…×Rk.  Essentially the same argument as in the previous proof now 
gives the result.4   ⎯|   
 

3.  Keenan’s Prefix Theorems 
The two theorems by Keenan mentioned in the Introduction provide 
answers to the following questions: 

 1. To what extent does an iteration determine its components, or, 
equivalently, the prefix that defines it? 

 2. Are iterations uniquely determined by their behaviour on Cartesian 
products? 

Versions of these answers are given in this section. To distinguish them 
from Keenan’s original theorems, I will call them the Prefix Theorem and 
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products on M if there is a product on M (of the suitable form) for which Q holds, 
and another for which it does not hold.  Then Q trivially has the property stated in 
the Product Lemma.  The Product Lemma just gives a way (for iterations) of finding 
a corresponding product regardless of such a nontriviality assumption. 



 

the Product Theorem, respectively. They generalize Keenan's results in that 
they (i) are global, not (only) local, and (ii) apply to iterations of arbitrary 
quantifiers in CIT whereas Keenan deals with iterations of type <1> quanti-
fiers. 
 Starting with the first question, it is clear by associativity that an itera-
tion by itself determines neither the number of its components nor their 
types.  In other words, the notion of a component is not yet precise enough.  
 
3.1. Definition.  If τ1,…,τk are types of quantifiers in CIT, σ = <τ1,…,τk> 
is called a (k-ary) iteration form.  σ is an iteration form of Q if there are Qi 
of type τi such that Q = Q1…Qk.  Q1,…,Qk are called σ-components of Q. 
 
 A first version of the first question is then: Does an iteration Q of form σ 
determine its σ-components?  The answer is NO.  First, if Q is trivial we 
can, by the Triviality Lemma, get no useful information about the σ-com-
ponents (except that at least one of them must also be trivial).  Second, the 
Negation Lemma shows that there are 2k–1 different ways to distribute inner 
and outer negations in Q1…Qk without changing the resulting quantifier or 
the iteration form. 
 Thus, we need to disregard trivial quantifiers and provide some informa-
tion about how negations are distributed.  Moreover, we wish to do this 
globally, not just on a particular universe.  A global notion of nontriviality 
was introduced in Definition 2.3.  As to negations, it turns out that it suf-
fices to know, for each choice of the noun arguments, the behaviour of the 
σ-components when the verb argument is the empty relation.  We could ex-
tend iteration forms to, say, weighted iteration forms by encoding this in-
formation as well.  The Prefix Theorem then says that a nontrivial iteration 
together with a weighted iteration form does determine the components 
uniquely.  This formulation is slightly cumbersome, so we proceed instead 
as follows. 
 
3.2. Definition.  Let Q,Qʹ′ be nontrivial quantifiers of type <1,…,1,p> with 
m+1 arguments.  Q and Qʹ′ are balanced, if for all large enough M and 
A1,…,Am ⊆ M (i.e., with the cardinality of the each relevant union above the 
maxima of the corresponding triviality bounds), QA1…Am,∅ ⇔  
Qʹ′A1…Am,∅.  For k ≥ 2, the sequences (Q1,…,Qk) and (Q1ʹ′,…,Qkʹ′) are 
balanced if Qi and Qiʹ′ are balanced for 2 ≤ i ≤ k (we actually don’t need to 
assume that Q1 and Q1ʹ′ are balanced!).  The corresponding local notion of 
balance on M is obtained by restricting attention to a particular universe M 
and leaving out the nontriviality requirements. 



 

3.3. The Prefix Theorem.  Suppose Q1…Qk = Q1ʹ′…Qkʹ′, where (Q1,…,Qk) 
and (Q1ʹ′,…,Qkʹ′) are nontrivial and balanced. Then for each i, Qi is 
eventually equal to Qiʹ′ (they are equal above the triviality bounds of Qi).  
For the local version we must assume that the quantifiers involved are all 
simple; then, if Q1…Qk = Q1ʹ′…Qkʹ′ on M, where (Q1,…,Qk) and 
(Q1ʹ′,…,Qkʹ′) are nontrivial and balanced on M, we have for each i, Qi = Qiʹ′ 
on M.5 
 
Remark.  Keenan’s Generalized Linear Prefix Theorem is essentially the lo-
cal version of this for k = 2 without the assumption of balance.  The con-
clusion then becomes that either Q1 = Q1ʹ′ and Q2 = Q2ʹ′ on M, or Q1 = Q1ʹ′¬ 
and Q2 = ¬Q2ʹ′ on M.  Balance reduces the options to one, and hence allows 
generalization to any k. 
 
 The answer to the question whether iterations are determined by their 
product behaviour is YES, once we make clear what ‘product behaviour’ 
means. 
 
3.4. Definition.  Two quantifiers Q and Qʹ′ in CIT of the same iteration 
form σ = <τ1,…,τk>, where τi = <1,…,1,pi> with mi+1 arguments, are said 
to be equal on products on M w.r.t. σ, if for all A11,…,Akmk

 ⊆ M and all Ri 
⊆ Mpi,  QA11…Akmk

,R1×…×Rk  ⇔  Qʹ′A11…Akmk
,R1×…×Rk on M.  They are 

equal on products w.r.t. σ if this holds for all M. 
 
3.5. The Product Theorem.  If two iterations in CIT are equal on products 
(on M) w.r.t. the same iteration form, then they are equal (on M). 
 
Proof.  First, it is clearly enough to prove the local version.  Second, it suf-
fices to prove the result for simple quantifiers.  For then, if Q and Qʹ′ are 
arbitrary iterations in CIT which are equal on products w.r.t. σ on M, 
choose noun arguments A11,…,Akmk

 ⊆ M.  By Definition 1.5, QA11,...,Akmk and 
Qʹ′A11,...,Akmk are simple iterations, equal on products on M w.r.t. the simple 
iteration form σʹ′ corresponding to σ.  Hence QA11,...,Akmk = Qʹ′A11,...,Akmk on M, 
and since A11,…,Akmk

 were arbitrary, Q = Qʹ′ on M.   
 Next, we dispose of the case where one of the iterations is trivial on M.  
So suppose Q1…Qk and Q1ʹ′…Qkʹ′ are equal on products on M w.r.t. the it-
eration form <<p1>,…,<pk>>, and that, say, Q1…Qk is trivial on M (the 
other case is symmetric).  Let p = p1+…+pk.  Suppose 

                                                             
5I am indebted to Dorit Ben-Shalom for this formulation of the Prefix Theorem. 

My original formulation used a stronger notion of balance, but she pointed out that 
the present notion is sufficient. 



 

  ∀R ⊆ MpQ1…QkR. 

Then, we claim, the same holds for Q1ʹ′…Qkʹ′.  For, it follows from our as-
sumption that Q1ʹ′…Qkʹ′P for any product P = R1×…×Rk ⊆ Mp.  But then, by 
the Product Lemma, Q1ʹ′…Qkʹ′R holds for all R ⊆ Mp.  A similar argument 
applies if ∀R ⊆ Mp¬Q1…QkR.  Hence, Q1…Qk = Q1ʹ′…Qkʹ′. 
 To prove the theorem for simple iterations which are nontrivial on M we 
use induction on the length k of the iteration form.  The result is trivial for k 
= 1, so suppose it holds for k, and let Q0…Qk and Q0ʹ′…Qkʹ′ be equal on 
products on M w.r.t. <<p0>,…,<pk>>.  As noted before, we can assume that 
Q1…Qk and Q1ʹ′…Qkʹ′ are positive on M.  Thus, by product decomposition:  

(*)  For all R ⊆ Mp0 and all S ⊆ Mp (p = p1+…+pk), 
   (Q0R & Q1…QkS) ∨ (Q0∅ & ¬Q1…QkS)    
  ⇔   (Q0ʹ′R & Q1ʹ′…Qkʹ′S) ∨ (Q0ʹ′∅ & ¬Q1ʹ′…Qkʹ′S). 

Then, 

(i)  Q0∅    ⇔    Q0ʹ′∅ 

(we suppress mention of M here and below). To see this, suppose, say, that 
¬Q0∅ but Q0ʹ′∅.  But then (*) is false for R = ∅. 

(ii)  Q1…Qk and Q1ʹ′…Qkʹ′ are equal on products. 

This is proved as follows.  Suppose first that ¬Q0∅, and so ¬Q0ʹ′∅ by (i).  
Take any product P = R1×…×Rk.  Fix R such that Q0R (nontriviality of Q0).  
Then 

    Q1…QkP ⇒     Q0R  &  Q1…QkP 
    ⇒     Q0…QkR×P (product decomposition) 
    ⇒     Q0ʹ′…Qkʹ′R×P (assumption) 
    ⇒     Q1ʹ′…Qkʹ′P (product decomposition). 

Similarly,  Q1ʹ′…Qkʹ′P  ⇒  Q1…QkP.  If instead Q0∅, and hence Q0ʹ′∅, 
apply the above argument to ¬Q0…Qk and ¬Q0ʹ′…Qkʹ′.  This proves (ii). 
 By (ii) and the induction hypothesis, 

(iii) Q1…Qk  =  Q1ʹ′…Qkʹ′. 

 Now take S such that Q1…QkS.  It follows immediately from (iii) and (*) 
that 

(iv) Q0 = Q0ʹ′. 

 This concludes the proof.   ⎯| 
 



 

 The proof of the Prefix Theorem uses a similar argument.  We know that 
the hypothesis that the two iterations are equal can be replaced by the hy-
pothesis that they are equal on products. Thus, if we make the additional as-
sumptions of nontriviality and balance, it is only natural that the conclusion 
becomes stronger: not only the iterations are equal, but also their respective 
components. 
 
Proof of the Prefix Theorem.  We first show that the local version implies 
the global one.  So suppose Q1,…,Qk and Q1ʹ′,…,Qkʹ′ satisfy the assumptions 
of the global result.  Take large enough M and A11,…,Akmk

 ⊆ M (so that the 
cardinality of the relevant unions are above the respective triviality bounds 
for Q1,…,Qk). Then the quantifiers Q1

A11,…, A1m1,…,Qk
Ak1,…, Akmk and 

Q1ʹ′
A11,…, A1m1,…,Qkʹ′

Ak1,…, Akmk satisfy the assumptions of the local version, 
relative to M.  In particular, they are nontrivial on M by definition.  So the 
local result gives us that Qi

Ai1,…, Aimi = Qiʹ′
Ai1,…, Aimi on M, for each i.  Hence 

Qi = Qiʹ′ , for large enough arguments. 
 The local result is proved by induction.  Suppose the result holds for k, 
and that we have Q1…Qk+1 = Q1ʹ′…Qk+1ʹ′ on M, where Q1,…,Qk+1 and 
Q1ʹ′,…,Qk+1ʹ′ are nontrivial and balanced on M.  Let Q = Q1…Qk and Qʹ′ = 
Q1ʹ′…Qkʹ′, so that  

  QQk+1 = Qʹ′Qk+1ʹ′ 

(suppressing M).  Distinguish two cases. 

Case I:  ¬Qk+1∅. 

By balance, ¬Qk+1ʹ′∅.  Now we argue as in steps (*), (i), (ii) and (iv) of the 
preceding proof (with k = 1), using our assumption of nontriviality on M, 
concluding successively that Q∅ ⇔ Qʹ′∅ (i.e., Q and Qʹ′ are balanced), Qk+1 
= Qk+1ʹ′, and Q = Qʹ′. 

Case II:  Qk+1∅. 

By balance, Qk+1ʹ′∅.  But Q¬⋅¬Qk+1 = Qʹ′¬⋅¬Qk+1ʹ′ by the Negation Lemma, 
so we can conclude as in Case I that ¬Qk+1 = ¬Qk+1ʹ′ and Q¬ = Qʹ′¬.  
 Thus, in both cases, Qk+1 = Qk+1ʹ′, and Q = Qʹ′on M. It then follows from 
the induction hypothesis that Qi = Qiʹ′ on M for 1 ≤ i ≤ k, and the proof is 
complete.   ⎯| 
 
 
 



 

II 
APPLICATIONS TO DEFINABILITY  

 

4.  Convertibility and resumptions 
Keenan’s motive for studying generalized quantifier prefixes was partly to 
obtain methods for showing that certain polyadic quantifiers are not itera-
tions.  One such method is this:  Show that a particular quantifier is equal to 
some iteration on products, but not on all relations. Then it follows by the 
Product Theorem that the quantifier in question cannot be an iteration.  This 
is quite efficient in many cases; for example, it can be used to show that the 
quantifiers ED and EH from section 1 are not iterations.6 
 In sections 4–6 we apply the results in Part I not to particular quantifiers, 
but to some natural classes of quantifiers, and give necessary and sufficient 
conditions for a quantifier in such a class to be an iteration (these char-
acterizations are in fact also quite useful for showing particular quantifiers 
not to be iterations).  Although the characterizations are not simple applica-
tions of the previous results but require extra work, the basic facts of Part I 
are used repeatedly, and the present results would have been much less 
feasible without them. 
 We now make a few assumptions that will hold, unless otherwise stated, 
for the rest of the paper.  First, we restrict attention to simple quantifiers. 
We have already seen that this is no real restriction — think of these quanti-
fiers as noun phrase denotations, obtained from quantifiers in CIT by 
fixing the noun arguments.  Second, we consider for simplicity only 
iteration forms <<1>,…,<1>>.  So the information about a quantifier that it 
is a k-ary iteration uniquely determines its iteration form (and its type, i.e., 
<k>).  Third, we restrict attention to finite universes.  Fourth and last, we 
assume ISOM of all quantifiers.   
 In contrast with the first three assumptions, the last one may seem com-
pletely unrealistic from a linguistic point of view, since a noun phrase deno-
tation of the form QA11,… practically never satisfies ISOM (A11,… are fixed 
sets)!  However, this simplifying assumption does have an adequate motiva-
tion:  our results in fact have stronger versions which only rely on the (quite 
realistic) assumption that Q, not QA11,…, satisfies (CONSERV and) ISOM.   
 The present section is supposed to deal with convertible quantifiers and 
with resumptions, so we had better define these notions.  First, however, 
another piece of 
 
                                                             

6More examples can be found in Keenan 1992. Ben-Shalom 1993 further extends 
Keenan’s methods. 



 

4.1. Notation.  If R is a k-ary relation on M and i1,…, ik a permutation of 
1,…,k,  let R(i1,…, ik) be the relation on M defined by the following condition: 

  R(i1,…, ik)ai1…aik    ⇔    Ra1…ak . 

 
 Thus, if R is binary, R(2,1) is the converse of R, or R–1.  This notation is 
related to the one we introduced for permutations of iterations in Definition 
1.6 by the following easily verified 
 
4.2. Fact.  For type <1> quantifiers, we have  (Q1…Qk)(i1,…, ik)R  ⇔ 
Qi1…QikR

(i1,…, ik). 
 
 The notion of convertibility generalizes the property of a type <2> 
quantifier of being ‘closed under converses’ to arbitrary simple quantifiers. 
 
4.3. Definition.  A quantifier Q of type <k> is convertible (on M) if for 
every permutation i1,…, ik of 1,…,k and every k-ary relation R (on M),  QR  
⇒  QR(i1,…, ik) (on M). 
 
4.4. Fact.  (i)  If Q is convertible, so are ¬Q, Q¬, and (hence) Qd. 
(ii)  If Q is of type <k> and closed under permutations of k-tuples, then Q is 
convertible. 
 
Proof.  For (i), note that  Mk — R(i1,…, ik)  =  (Mk — R)(i1,…, ik).  (ii) follows 
from the fact that if Q is closed under permutations of k-tuples, then only 
the cardinality of R matters for whether QR holds or not, so Q is clearly 
convertible.   ⎯| 
 
 There are lots of convertible quantifiers, but for our main example we 
need one more 
 
4.5. Definition.  If Q is of type <1,…,1> with n arguments and k ≥ 1, the k-
ary resumption Q(k) of Q, of type <k,…,k>, is defined as follows: for all M 
and all R1,…,Rn ⊆ Mk,    

  Q(k)
MR1…Rn    ⇔     QMk R1…Rn. 

For k = 0 we let  Q(0)
M  =  TM , the trivially true quantifier on M (of the type 

of Q). 
 
 For example, most(2) is the type <2,2> quantifier defined by 

  most(2)RS    ⇔     |R∩S| > |R—S|. 



 

The use of resumption (quantification over pairs) in natural language is pro-
posed in May 1989;  cf. van Benthem 1989 and Westerståhl 1989 for 
further discussion.  Note that most(2) is not in CIT.  To remain within CIT 
we will only consider resumptions of type <1> quantifiers here.  In 
particular, instead of most(2) we consider the type <2> quantifier 

   (QR)(2)
M R    ⇔     |R| > |M2—R|, 

i.e., the resumption of the ‘type <1> counterpart’ QR of most (the notation 
‘QR’ is because this is sometimes called the ‘Rescher quantifier’). 
 Here are some familiar examples of convertible quantifiers: 

 • All resumptions Q(k) (since Q is assumed to satisfy ISOM, Q(k) is 
closed under permutations of k-tuples). 

 • QE
nR   ⇔   R is an equivalence relation with at least n equivalence 

classes. 
 • TotR   ⇔   R is a total ordering of the universe. 
 • QkR   ⇔   there is an infinite set A such that A×…×A ⊆ R (a 

‘Ramsey quantifier’; only interesting on infinite universes, of 
course). 

 Which iterations are convertible?  Well, clearly  ∃…∃  and  ∀…∀, but it 
is not so easy to find other examples.  Here, however, is one.  Let  QoddA   
⇔   |A| is odd. 
 
4.6. Fact.  Qodd

(k) =  Qodd⋅…⋅Qodd (k components).  Hence, the iteration 
Qodd⋅…⋅Qodd is convertible. 
 
Proof.  Induction on k.  k = 1 is trivial.  Suppose the result is true for k.  
Write  It(k)(Qodd)  for Qodd⋅…⋅Qodd with k components. 

   It(k+1)(Qodd)R ⇔  Qodd{a:  It(k)(Qodd)Ra} (by definition) 
  ⇔  Qodd{a:  |Ra| is odd} (by ind. hypothesis). 

But clearly, for M = {a1,…,am}, 

  |R|   =   |Ra1
| + ... + |Ram

|. 

Now it is easy to verify that |R| is odd iff there is an odd number of ai such 
that |Rai

| is odd.   ⎯| 
 
 Having found this somewhat unexpected convertible iteration one may 
ask if there are others. But the main result of this section says, essentially, 
that the three we have found are the only convertible iterations.  For the 
proof we shall need the following 



 

 
4.7. Lemma.  If Q0 is nontrivial on M and Q0…Qk is convertible on M, then 
Q1…Qk is also convertible on M. 
 
Proof.  Case 1:  ¬Q1…Qk∅. 

Subcase 1A:  ¬Q0∅. 

Take A ⊆ M such that Q0A (nontriviality).  By product decomposition, for 
every R ⊆ Mk, 

  Q0…QkA×R    ⇔    Q0A  &  Q1…QkR    ⇔    Q1…QkR, 

and similarly, 

  Q0…QkA×R(i1,…, ik)    ⇔    Q1…QkR(i1,…, ik). 

But A×R(i1,…, ik) is a ‘converse’ of A×R, and so, by the convertibility of 
Q0…Qk, Q1…QkR  ⇔  Q1…QkR(i1,…, ik). 

Subcase 1B:  Q0∅. 

This time, taking A such that ¬Q0A, product decomposition gives 

  Q0…QkA×R    ⇔    ¬Q1…QkR 
  Q0…QkA×R(i1,…, ik)    ⇔    ¬Q1…QkR(i1,…, ik), 

etc. 

Case 2:  Q1…Qk∅. 

Consider  Q0¬⋅¬(Q1…Qk) and repeat Case 1.   ⎯| 
 
4.8. Theorem.  Q1…Qk is convertible iff, on each M where Q1…Qk is 
nontrivial, Q1…Qk is either ∃…∃ or ∀…∀ or Qodd⋅…⋅Qodd (k components), 
or one of their negations (k ≥ 2). 
 
Proof.  ‘If’:  This follows from Fact 4.6, and the fact that if Q is trivial on 
M, it is convertible on M. 
‘Only if’:  We shall prove by induction on k that if Q1…Qk is convertible, 
and nontrivial on M, and if both Q1 and Q2…Qk are positive on M, then 
Q1…Qk is either ∃…∃ or ∀…∀ or Qodd⋅…⋅Qodd on M.  This is sufficient, for 
we can always assume that Q2…Qk is positive on M, and if Q1 is not posi-
tive on M, we apply the result to ¬Q1…Qk, and conclude that Q1…Qk is the 
negation of one the three alternatives. 



 

 INDUCTION BASE, k = 2:  In this inductive proof the basis case requires 
more work than the induction step.  Suppose Q1Q2 is convertible and non-
trivial on M, and that Q1 and Q2 are positive  (from now on in the proof, the 
phrase ‘on M’ will usually be omitted).  We start with the 

CLAIM:  Q1  =  Q2 

To prove this, we argue as follows.  For all A,B ⊆ M, 

   Q1Q2A×B ⇔  Q1Q2B×A (by convertibility) 
   ⇔     Q1B  &  Q2A (by product decomposition, 
     since Q1, Q2 are positive) 
   ⇔     Q2Q1A×B (product decomposition again). 

This shows that Q1Q2 and Q2Q1 are equal on products.  By the Product 
Theorem, they are equal. Hence, by the Prefix Theorem (Q1 and Q2 are bal-
anced since they are both positive), Q1 = Q2. 
 Let M = {a1,…,am}.  Because of ISOM (and the fact that M is finite), we 
can regard Q1 simply as a subset of {0,…,m}.  Thus, we often write  k ∈ Q1  
instead of ‘there is A ⊆ M with |A| = k such that Q1A’.  We now consider 
two cases. 

Case 1:  1 ∉ Q1. 

Since 0,1 ∉ Q1, we have m > 1 by the nontriviality of Q1.  Thus, Q1 cannot 
be ∃ or Qodd.  We show that it must be ∀.  Let n be the smallest number in 
Q1;  n exists by nontriviality, and is > 1 by assumption.  It suffices to show 
that n = m.  Suppose, for contradiction, that n < m.  Choose a binary relation 
R such that ai has exactly n (R-)successors for 1 ≤ i ≤ n, but such that not all 
of these ai have the same successors, and that the remaining elements of M 
have no successors. Note that this choice of R is possible because 1 < n < m.  
Since n ∈ Q1 but 0 ∉ Q1, |{a : Q1Ra}| = n, and so Q1Q1R.  But, by the 
construction of R, the number of elements in M with exactly n predecessors 
must be smaller than n (all predecessors are among a1,…,an).  So this 
number is not in Q1, and it follows that ¬Q1Q1R–1.  This contradicts the 
convertibility of Q1Q1, and we have shown that Q1 = ∀ = {m}. 

Case 2:  1 ∈ Q1. 

Subcase 2A:  2 ∈ Q1. 

We show that Q1 = ∃ = {1,…,m}.  This follows from the next 

CLAIM:  If k ∈ Q1, then k+1 ∈ Q1  (k < m). 

If m = 2 we are done, so assume m > 2.  Assume k ∈ Q1 but k+1 ∉ Q1.  
Then define R as follows: 



 

  Ra1
  =  {a1,…,ak+1} 

  Ra2
  =  {a1,a2} 

  Rai
  =  {ai} , for 3 ≤ i ≤ k+1,  and Ra  =  ∅  otherwise. 

Then we have {a : Q1Ra} = {a2,…,ak+1}, so Q1Q1R.  But {a : Q1R–1
a} = 

{a1,…,ak+1}, and hence ¬Q1Q1R–1, contradicting our hypothesis, and the 
Claim is proved.  

Subcase 2B:  2 ∉ Q1. 

That Q1 = Qodd now follows from the 

CLAIM:   k ∉ Q1  iff  k+1 ∈ Q1  (k < m). 

To prove this we define R as follows: 

  Ra1
  =  {a1,…,ak} 

  Ra2
  =  {ak+1} ,  and Ra  =  ∅  otherwise. 

Suppose first that k ∉ Q1 and k+1 ∉ Q1.  Then {a : Q1Ra} = {a2}, so Q1Q1R.  
But {a : Q1R–1

a} = {a1,…,ak+1}, and hence ¬Q1Q1R–1, contradiction.  Next, 
suppose instead k ∈ Q1 and k+1 ∈ Q1.  This time, {a : Q1Ra} = {a1,a2}, and 
so ¬Q1Q1R.  But {a : Q1R–1

a} = {a1,…,ak+1} as before, and it follows that 
Q1Q1R–1, again a contradiction.  This proves the Claim, and thereby 
concludes the proof of the induction basis. 

 INDUCTION STEP:  Suppose the result is true for k, and let Q0…Qk be 
convertible, nontrivial on M, and such that both Q0 and Q1…Qk are positive.  
Since Q0 is nontrivial (by the Triviality Lemma), it follows from Lemma 
4.7 and the induction hypothesis that Q1…Qk is either ∃…∃ or ∀…∀ or 
Qodd⋅…⋅Qodd . 

Case 1:  Q1…Qk  =  ∃…∃. 

Thus, Q0…QkR  ⇔  Q0{a : Ra ≠ ∅}.  Since Q0 is positive and nontrivial, 
there is A ≠ ∅ such that Q0A.  Fix a non-empty S ⊆ Mk–1, and let B be any 
non-empty subset of M.  Then 

  Q0…QkA×B×S    ⇔    Q0A 
  Q0…QkB×A×S    ⇔    Q0B. 

Thus, by the convertibility of Q0…Qk , Q0B.  We have shown that Q0B for 
any non-empty subset B of M, i.e., Q0 = ∃ on M. 

Case 2:  Q1…Qk  =  ∀…∀. 



 

By the Negation Lemma, (Q1…Qk)d = ∃…∃.  But (Q0…Qk)d = 
Q0

d⋅Q1
d…Qk

d is convertible (Fact 4.4), and Q0
d and (Q1

d…Qk
d) are positive, 

so by Case 1 we get Q0
d = ∃, i.e., Q0 = ∀. 

Case 3:  Q1…Qk  =  Qodd⋅…⋅Qodd . 

This time, by Fact 4.6, Q0…QkR ⇔ Q0{a : |Ra| is odd}.  Fix S ⊆ Mk–1 such 
that |S| is odd.  Then, for all A,B ⊆ M: 

(i)  If |B| is odd, Q0…QkA×B×S  ⇔  Q0A  (since |B×S| is odd). 
(ii)  If |A| is odd, Q0…QkB×A×S  ⇔  Q0B. 
(iii) If |A| is even, ¬Q0…Qk B×A×S  (since |A×S| is even and ¬Q0∅). 
(iv) If |A| is even, ¬Q0A (by convertibility from (iii) and (i)). 
(v)  If |B| is odd, then Q0B. 

To see that (v) holds, suppose |B| is odd, and take (by nontriviality) an A 
such that Q0A.  By (iv), |A| is odd.  Thus, by (i), (ii), and convertibility, Q0B.  
 (iv) and (v) show that Q0 = Qodd on M.  This concludes the proof of the 
induction step, and thereby of the theorem.   ⎯| 
 
 As a bonus, we get the following characterization for free: 
 
4.9. Corollary.  Q(k) is a k-ary iteration iff, on each M where Q(k) is non-
trivial, Q(k) is either  ∃(k) or  ∀(k) or  Qodd

(k), or one of their negations (k ≥ 
2). 
 
Proof.  ‘Only if’:  If Q(k) = Q1…Qk, then Q1…Qk is convertible, so the result 
is immediate from the theorem (and Fact 4.6). 
‘If’:  Suppose the right hand side holds. We must find type <1> quantifiers 
Q1,…,Qk such that Q(k) = Q1…Qk.  So we must define each Qi on every 
universe M.  If Q(k) is trivial on M, we can clearly find Q1,…,Qk on M such 
that Q(k) = Q1…Qk on M.  If Q(k) is nontrivial on M, it is either ∃(k) or ∀(k) or 
Qodd

(k), or one of their negations, on M.  So again Q1,…,Qk can be defined 
on M in the desired way. (For example, if Q(k) = ¬∃(k) on M, we let (Q1)M = 
¬∃M, and (Q2)M = ... = (Qk)M = ∃M.  Of course, we cannot guarantee that 
Q1,…,Qk are defined in the same way on every M where Q(k) is nontrivial, 
but that is not required.)   ⎯| 
 
Remark:  In view of the fact (4.4) that not only ¬Q, but also Q¬ and Qd are 
convertible if Q is, didn't we forget a few cases in Theorem 4.8?  Well, 
(∃…∃)¬ is convertible, but  (∃…∃)¬  =  ¬(∀…∀), so this is covered by the 
theorem.  But what about (Qodd⋅…⋅Qodd)¬ ?  To see that this too is covered, 
note first that 

(1)  If |M| is odd then Qodd
d = Qodd on M, and if |M| is even,  



 

  Qodd¬ = Qodd on M. 

Thus, if |M| is odd, then  (Qodd⋅…⋅Qodd)¬  =  ¬(Qodd
d⋅…⋅Qodd

d)  =  
¬(Qodd⋅…⋅Qodd)  as above, and if |M| is even, then  (Qodd⋅…⋅Qodd)¬  =  
Qodd⋅…⋅Qodd⋅Qodd¬  =  Qodd⋅…⋅Qodd.   ⎯| 
 
 It should be noted that both the assumptions of ISOM and of finiteness of 
the universe are used essentially in these results.  As to ISOM, consider typ-
ical non-ISOM quantifiers like proper names: 

  JohnA    ⇔    John ∈ A. 

Then  John⋅JohnR  ⇔  (John,John) ∈ R , so John⋅John is convertible.  
Similarly, it can be seen that the results in the next two sections fail for 
proper names. 
 However, we said earlier that the requirement of ISOM for the type <1> 
quantifiers Q1,…,Qk in Theorem 4.8 can be weakened to a linguistically 
more realistic assumption.  To this end we need two more lemmas.  Let  
oddAB  ⇔  |A∩B| is odd, and recall that for Q of type <1,1>,  (QA)MB  ⇔  
QMAB. 
 
4.10. Lemma.  someA⋅someB is convertible iff A = B or one of A,B is ∅.  
Similarly for allA⋅allB and oddA⋅oddB. 
 
Proof.  If A = ∅ or B = ∅,  someA⋅someBR is always false, so convertibility 
holds.  And clearly someA⋅someA is convertible.  For the other direction, 
suppose ∅ ≠ A,B, and take a ∈ A.  Then take b ∈ B and let R = {(a,b)}.  
Thus someA⋅someBR, so by convertibility, someA⋅someBR–1, i.e., there is c ∈ 
A such that someB(R–1)c.  Hence, c = b, (R–1)b = {a}, and B∩(R–1)b ≠ ∅, so a 
∈ B.  We have shown that A ⊆ B, and by symmetry, that B ⊆ A.  This takes 
care of the case of someA⋅someB.  For allA⋅allB the result follows by taking 
duals.  For oddA⋅oddB essentially the same argument as for someA⋅someB 
works.   ⎯| 
 
4.11. Lemma.  Suppose that QA = someB on M, where QA and someB are 
nontrivial on M, Q is ISOM and CONSERV, and ¬QA∅ on M.  Then A = B.  
The same conclusion holds if QA = allB, or QA = oddB. 
 
Proof.  Note that the assumptions imply that ∅ ≠ A,B ⊆ M (in particular, if 
A = ∅, then by CONSERV, QAC  ⇔  QA∅ for all C ⊆ M, which makes QA 
trivial on M).  Suppose first a ∈ B.  Then someB{a}, so QA{a}, and 
QAA∩{a} by CONSERV.  Hence, A∩{a} ≠ ∅, i.e., a ∈ A.  So B ⊆ A.  Next, 
suppose a ∈ A.  Take any b ∈ B.  Since someB{b}, we have QA{b}.  But a,b 
∈ A, and hence it follows from ISOM that QA{a}.  Hence, someB{a}, so a ∈ 



 

B.  This shows that A = B when QA = someB.  If instead QA = allB, we get 
the same result by taking duals, and if QA = oddB,  the same proof as for 
some works.    ⎯| 
 
 We can now give the following strengthening of Theorem 4.8. 
 
4.12. Theorem.  Suppose that the type <1,1> quantifiers Q1,…,Qk are 
CONSERV and ISOM, that A1,…,Ak ≠ ∅, and that Q1

A1…Qk
Ak is nontrivial 

on some universe.  Then, Q1
A1…Qk

Ak is convertible iff A1 = … = Ak = A, 
and, on every M where Q1

A1…Qk
Ak is nontrivial, Q1

A1…Qk
Ak is either 

someA…someA or allA…allA or oddA…oddA (k components), or a negation 
of these. 
 
 Note that Theorem 4.8 follows from this theorem:  if Q1,…,Qk are of 
type <1>  and ISOM, then Q1ʹ′,…,Qkʹ′ defined by  Qiʹ′BC  ⇔  Qi 

B∩C  are 
CONSERV and ISOM, and Qi = (Qiʹ′)M on every M, so the theorem applies. 
 
Proof  of Theorem 4.12 (outline).  ‘If’:  This is just as before. 
‘Only if’:  We consider only the case k = 2.  Suppose Q1

AQ2
B is convertible, 

and nontrivial on M; such an M exists by hypothesis.  As before we may 
assume that Q1

A and Q2
B are both positive on M.  Now the first claim in the 

proof of Theorem 4.8 used only the Product Decomposition Lemma, not 
ISOM, so exactly the same argument gives 

  Q1
A  =  Q2

B 

(on M).  Thus, Q1
AQ1

A is convertible.  Since Q1 is CONSERV, only the 
behaviour of Q1

A on subsets of A need be considered.  Since Q1 is ISOM 
(and A is finite), only the size of these subsets matters.  Thus, Q1

A can be 
considered as a subset of {0,...,|A|}, where k ∈ Q1

A means that there is C ⊆ 
A such that |C| = k and Q1

AC.  But then, the same arguments as for the case 
k = 2 in the proof of Theorem 4.8 show that Q1

A is either someA or allA or 
oddA on M.  It also follows by Lemma 4.11 that A = B, and we are done.   
⎯| 
 
 The results in the next two sections also have stronger versions, where 
the type <1> quantifiers involved are ‘instances’ of CONSERV and ISOM 
type <1,1> quantifiers, but I will not state these versions explicitly. 



 

5.  Branching 
Barwise 1979 introduced branching generalized quantifiers in connection 
with natural language semantics.  Here we shall only consider branching of 
MON↑ type <1> quantifiers, defined (by Barwise) as follows: 
 
5.1. Definition.  For type <1> MON↑ Q1,…,Qk, define the quantifier  
B(Q1,…,Qk)  of type <k> by 

 B(Q1,…,Qk)MR     ⇔     
  ∃X1,…,Xk ⊆ M [Q1MX1 & … & QkMXk  &  X1×…×Xk ⊆ R]. 

We call the corresponding syntactic expression ‘B(Q1,…,Qk)’ a branching 
prefix (for typographical reasons; a vertical alignment of Q1,…,Qk would 
have been better). 
 
 Note that B(Q1,…,Qk), as defined above, is always MON↑, regardless of 
the monotonicity behaviour of Q1,…,Qk.  However, in what follows we 
presuppose that Q1,…,Qk are MON↑, whenever ‘B(Q1,…,Qk)’ occurs. 
 
5.2. Lemma.  If each of Q1,…,Qk is MON↑, then so is Q1…Qk. 
 
Proof.  Straightforward calculation.   ⎯| 
 
 Here are some useful facts about branching. 
 
5.3. Lemma.  B(Q1,…,Qk) is nontrivial on M iff each Qi is nontrivial on M. 
 
Proof.  ‘Only if’:  Suppose that Qi is trivial on M.  If Qi = ∅ then 
B(Q1,…,Qk)R is always false.  If Qi  = P(M), then Qi∅, and so, by the def-
inition of branching, 

  B(Q1,…,Qk)R     ⇔     ∃X1,…,Xk [Q1X1 & … & QkXk], 

and the right hand side is independent of R. 
‘If’:  Suppose that each Qi is nontrivial on M.  Then there are Xi such that Qi 
Xi , and hence B(Q1,…,Qk)X1×…×Xk .  It remains to show that not ∀R ⊆ Mk 
B(Q1,…,Qk)R.  Suppose this is not so.  Then B(Q1,…,Qk)∅, so it follows 
that for some i, Qi∅.  But then Qi is trivial on M by MON↑, contrary to 
assumption.   ⎯| 
 
5.4. Lemma.  If B(Q1,…,Qk) is nontrivial on M, then B(Q1,…,Qk) and 
Q1…Qk are equal on products on M. 



 

Proof.  By the previous lemma, each Qi is non-trivial on M.  We have 

  B(Q1,…,Qk)A1×…×Ak     
 ⇔ ∃X1,…,Xk [Q1X1 & … & QkXk  &  X1×…×Xk ⊆ A1×…×Ak] 
 ⇔ ∃X1[Q1X1 & X1 ∏ A1] & ... & ∃Xk[QkXk & Xk ⊆ Ak] 
     (Xi ≠ ∅ by MON↑ and nontriviality) 
 ⇔ Q1A1 & … & QkAk (by MON↑) 
 ⇔ Q1…QkA1×…×Ak (by product decomposition). 

⎯| 
 
 The next lemma shows that the branching of Q1,…,Qk is at least as 
strong as than the iteration of Q1,…,Qk, in any order. 
 
5.5.  Lemma.  For any permutation i1,…, ik of 1,…,k and any k-ary R,  

  B(Q1,…,Qk)R     ⇒     (Q1…Qk)(i1,…, ik) R. 
 
Proof.  If there are X1,…,Xk such that QjXj for each j and X1×…×Xk ⊆ R, it 
follows that 

(*)  Xi1×
…×Xik   ⊆   R(i1,…, ik). 

Suppose first that Qj∅ for some j.  Since Qj is MON↑, {a : Qj A} = M for 
every set A.  But, by MON↑ and our assumption, QiM for each i.  From this 
it follows that (Q1…Qk)(i1,…, ik)R. 
 Next, suppose ¬Qj∅ for each j.  Then, by the Product Decomposition 
Lemma,  

  Qi1…Qik(Xi1×
…×Xik). 

Thus, by (*) and Lemma 5.2, Qi1…QikR
(i1,…, ik), i.e., (Q1…Qk)(i1,…, ik)R.   ⎯| 

 
 This is a good time to state the following fact, which is immediate from 
the definition of branching: 
 
5.6. Fact.   B(Q1,…,Qk)R     ⇔     B(Qi1,…,Qik)R

(i1,…, ik). 
 
 We may express this by saying that branching prefixes are order 
independent, in contrast with (most) linear prefixes.  Note carefully that 
order independence, i.e., invariance under permutations of quantifier 
expressions in a prefix, is a property of syntactic prefixes, but not of the 
quantifiers defined by these prefixes.  For example, the quantifiers ∃∃ and 



 

∃¬⋅¬∃ are identical, but whereas the prefix  ∃x∃y  is order independent, the 
prefix  (∃¬)x(¬∃)y  is not.7 
 Also note the difference between order independence of a prefix and 
convertibility of the corresponding quantifier, i.e., invariance under 
permutations of the arguments of the relation (this is a property of 
quantifiers).  Branching quantifiers are not in general convertible, not even 
when they are equal to iterations, as we shall see.  However, for both linear 
and branching prefixes, the two properties coincide in the case of iterations 
of the same quantifier expression (compare the notion of self-commutativity 
in van Benthem 1989), so, for example, B(Q,…,Q) is convertible.  Is this 
the only case when a branching quantifier is convertible?  The positive 
answer to this question (which was posed by Jaap van der Does) turns out to 
be a simple application of the methods developed here:  
 
5.7. Proposition.  B(Q1,…,Qk) is convertible iff, on any M where 
B(Q1,…,Qk) is nontrivial, Q1 = ... = Qk. 
 
Proof.  Suppose B(Q1,…,Qk) is convertible and nontrivial on M.  Let 
i1,…, ik be any permutation of 1,…,k, and let j1,…, jk be its inverse permu-
tation.  Then 

 B(Qi1,…,Qik)R ⇔ B(Q1,…,Qk)R(j1,…, jk) (by Fact 5.6) 
  ⇔ B(Q1,…,Qk)R (by convertibility). 

Thus, B(Q1,…,Qk) = B(Qi1,…,Qik).  But then, by Lemmas 5.3 and 5.4, 
Q1…Qk and Qi1…Qik are equal on products (on M).  Since each Qi is posi-
tive on M, it follows as usual from the Product and Prefix Theorems that Qr 
= Qir, for r = 1,…,k.  But since i1,…, ik was an arbitrary permutation, this 
can only hold if Q1 = ... = Qk on M.   ⎯| 
  
 The main result of this section says that branchings are iterations only in 
very few cases.   
 
5.8. Theorem.  B(Q1,…,Qk) is a k-ary iteration iff, on each M where 
B(Q1,…,Qk) is nontrivial there is n with 0 ≤ n < k such that Q1 = ... = Qn = 
∃, and Qn+2 = ... = Qk = ∀ (k ≥ 2). 
 
Proof.  ‘If’:  We have to find Q1ʹ′,…,Qkʹ′ such that B(Q1,…,Qk) = Q1ʹ′…Qkʹ′. 
If M is such that B(Q1,…,Qk) is trivial, clearly this is possible.  Otherwise, 
we take Qiʹ′ = Qi, where Q1 = ... = Qn = ∃, and Qn+2 = ... = Qk = ∀, on M.  
                                                             

7Westerståhl 1986 discusses order indpendence of linear prefixes. For MON↑ 
Q1,…,Qk, assuming ISOM and finite models, the prefix  Q1x1…Qkxk  is order 
independent essentially only when  Q1 = … = Qk = ∀ or  Q1 = … = Qk = ∃. 



 

From Lemma 5.5, we know that B(Q1,…,Qk)R  ⇒  Q1…QkR.  For the other 
direction, suppose that Q1…QkR, i.e., that ∃(n)⋅Qn+1⋅∀

(k–n–1)R.  Then 

  {(a1,…,an) :  Qn+1⋅∀
(k–n–1)Ra1…an

}    
  =   {(a1,…,an) :  Qn+1{b :  Ra1…anb = Mk–n–1}}   ≠   ∅. 

Take (a1,…,an) in this set.  It follows that 

 {a1} × … × {an} × {b :  Ra1…anb = Mk–n–1} × M × … × M    ⊆    R. 

Thus, B(Q1,…,Qk)R. 
‘Only if’:  Suppose B(Q1,…,Qk) = Q1ʹ′…Qkʹ′, and that B(Q1,…,Qk) is non-
trivial on M.  By Lemma 5.3, each Qi is nontrivial on M (mention of M will 
be omitted in what follows).  By Lemma 5.4 and the assumption, Q1…Qk 
and Q1ʹ′…Qkʹ′ are equal on products. Hence, by the Product Theorem, 
Q1…Qk = Q1ʹ′…Qkʹ′.  That is, B(Q1,…,Qk) = Q1…Qk.  Now we are in a 
position to show that the quantifiers Q1,…,Qk have the required form, by 
induction on k. 

 INDUCTION BASE, k = 2:  Suppose B(Q1,Q2) = Q1Q2 on M = {a1,…,am}.  
Let ni be the smallest number in Qi , i = 1,2.  n1,n2 > 0, by nontriviality.  If 
n1 = 1, then Q1 = ∃, and we are done.  Assume n1 > 1.  We must show that 
n2 = m (so Q2 = ∀).  Suppose instead that n2 < m.  Let 

 R    =    ({a1,…,an1–1}×{a1,…,an2
}) ∪ ({an1

}×{a2,…,an2
,am}). 

It follows that if X×Y ⊆ R, then either |X| < n1 or |Y| < n2.  Thus, 
¬B(Q1,Q2)R.  On the other hand, |{a: |Ra| ≥ n2}| = n1, so Q1Q2R.  This 
contradicts our assumption. 

 INDUCTION STEP:  Suppose the result is true for k, and B(Q0,…,Qk) = 
Q0…Qk.  We use the following 
 
5.9. Lemma.  If B(Q0,…,Qk) = Q0…Qk and B(Q0,…,Qk) is nontrivial on M, 
then B(Q1,…,Qk) = Q1…Qk and B(Q0,…,Qk–1) = Q0…Qk–1. 
 
Proof.  Fix A ⊆ M such that Q0A (nontriviality and Lemma 5.3) and take 
any R ⊆ Mk.  We have 

  B(Q0,…,Qk)A×R  
  ⇔ ∃X0,…,Xk [Q0X0 & … & QkXk  &  X0×…×Xk ⊆ A×R] 
  ⇔ ∃X0[Q0X0 & X0 ⊆ A]  &   
   ∃X1,…,Xk [Q1X1 & … & QkXk  &  X1×…×Xk ⊆ R] 
  ⇔ Q0A  &  B(Q1,…,Qk)R 
  ⇔ B(Q1,…,Qk)R. 



 

But also, 

  Q0…QkA×R  
  ⇔ Q0A  &  Q1…QkR    (product decomposition)     
  ⇔ Q1…QkR. 

This proves the first part of the lemma. The second part is proved by fixing 
B such that QkB and considering R×B.   ⎯| 
 
 To finish the proof of Theorem 5.9, the induction hypothesis and the 
lemma show that both B(Q1,…,Qk) and B(Q0,…,Qk–1) have the desired 
‘form’ on M. But then it is readily verified that the same holds for 
B(Q0,…,Qk).   ⎯| 
 

6.  Cumulation 
So-called cumulative readings (Scha 1981) of quantifiers are natural for 
sentences like 

(1) Sixty teachers taught seventy courses at the summer school 
(2) Five girls told ten stories to three boys. 

(2) has a reading involving five girls, ten stories, and three boys, but not 
saying exactly how many stories the first girl told the second boy etc., only 
that each girl told some story to some boy, that each story was told by some 
girl to some boy, etc. This leads to the following 
 
6.1. Definition.  

  (Q1,…,Qk)cx1…xkRx1…xk    ↔     
  Q1x1∃x2...∃xkRx1…xk ∧ … ∧ Qkxk∃x1…∃xk-1Rx1…x . 

Or, equivalently, 

(3)  (Q1,…,Qk)cR  ⇔  ∧1≤i≤k  Qi∃…∃R(i,1,…, i–1, i+1,…, k). 
            
 
 Thus, cumulatives are Boolean combinations of iterations, but we shall 
see that they are very seldom iterations themselves.  We only consider cu-
mulations of positive (but not necessarily monotone) quantifiers, and start 
with the following observations. 
 
6.2. Lemma.  Let Q1,…,Qk be positive. Then (Q1,…,Qk)c and Q1…Qk are 
equal on products. 
 



 

Proof.   

  (Q1,…,Qk)cA1×…×Ak  
  ⇔   ∧1≤i≤k Qi ∃...∃(A×A1×…×Ai–1×Ai+1×…×Ak)    (definition) 
  ⇔   ∧1≤i≤k (QiAi   &  ∧j≠ i (Aj ≠ ∅)) (product decomposition) 
  ⇔     Q1A1 & … & QkAk (positivity) 
  ⇔     Q1…QkA1×…×Ak (product decomposition). 

⎯| 
 
 
6.3. Lemma.  Suppose Q1,…,Qk are positive on M.  (Q1,…,Qk)c is 
nontrivial on M iff each Qi is nontrivial on M. 
 
Proof.  If Qj is trivial on M it must be empty on M (since it is positive), but 
then the corresponding conjunct in (3) is always false, so (Q1,…,Qk)c is 
trivial on M.  If each Qi is nontrivial on M there are Ai ≠ ∅ such that QiAi, 1 
≤ i ≤ k, and thus, just as in the proof of the previous lemma, 
(Q1,…,Qk)cA1×…×Ak.  We must show that ¬∀R ⊆ M(Q1,…,Qk)cR.  
Otherwise, (Q1,…,Qk)c∅.  But then the first conjunct in (3) is Q1⋅∃…∃∅, 
and hence Q1∅, contradicting the positivity of Q1.   ⎯| 
 
 Now we can characterize the (positive) cumulations which are iterations. 
 
6.4. Theorem.  (Q1,…,Qk)c is a k-ary iteration iff, on each M where 
(Q1,…,Qk)c is nontrivial, Q2 = ... = Qk = ∃. 
 
Proof.  ‘If’:  As usual, we can obviously find the required iteration on uni-
verses where (Q1,…,Qk)c is trivial.  On other universes, one easily verifies, 
using the positivity of Q1, that (Q1,∃,…,∃)c = Q1⋅∃…∃. 

‘Only if’:  Suppose (Q1,…,Qk)c = Q1ʹ′…Qkʹ′, and that (Q1,…,Qk)c is non-
trivial on M.  By Lemma 6.2, Q1…Qk and Q1ʹ′…Qkʹ′ are equal on products, 
and hence equal, by the Product Theorem.  Thus, (Q1,…,Qk)c = Q1…Qk on 
M = {a1,…,a}.  We shall prove the 

CLAIM:     If 0 < ni < m then  ni ∈ Qi  ⇔  n+1 ∈ Qi ,  for i = 2,...,k. 

Since 0 ∉ Qi but some p ∈ Qi, it follows from the Claim that Qi = ∃, for i = 
2,...,k. 
 To prove the Claim, fix such an i.  For each j ≠ i, 1 ≤ j ≤ k, choose nj ∈ 
Qj .  Thus, each nj > 0.  Choose any ni with 0 < ni < m.  We define the k-ary 
relation R by the following stipulations: 

  Rx1…xi–1a1xi+1…xk   ,  …  ,  Rx1…xi–1anxi+1…xk  , 



 

  for all x1 ∈ {a1,…,an1 –1}  and  xj ∈ {a1,…,anj
},  2 ≤ j ≤ k, j ≠ i , 

 and Ran1
x2…xi–1a2xi+1…xk   ,  …  ,  Ran1

x2…xi–1ani +1xi+1…xk   , 
  for all xj ∈ {a1,…,anj

},  2 ≤ j ≤ k, j ≠ i , 

 and no other k-tuples are in R. 

Then R has the following properties. 

(i)  For j ≠ i, 1 ≤ j ≤ k:   
  {yj :  ∃x1…∃xj–1∃xj+1…∃xkRx1…xj–1yj xj+1…xk}   =    
  {a1,…,anj

},  and hence,  Qj ⋅∃…∃R(j,1,…, j–1, j+1,…, k). 

(ii)  {yi :  ∃x1…∃xi–1∃xi+1…∃xkRx1…xi–1yi xi+1…xk}   =    
  {a1,…,ani +1}. 

(iii) For i < r < k:   
  If xj ∈ {a1,…,anj

} for j ≠ i, 1 ≤ j < r, and xi ∈ {a1,…,ani +1},  
  then  {yr :  Qr+1…QkRx1…xr–1

yr}   =   {a1,…,anr
}.  Otherwise,  

  {yr :  Qr+1…QkRx1…xr–1
yr}  =  ∅. 

(i) and (ii) are immediate from the definition of R.  (iii) follows by a 
(downward) inductive argument on r (omitted here), using the fact that 0 ∉ 
Qr but nr ∈ Qr , for i < r ≤ k.  (iii) is not true for r = i.  However, we still 
have 

(iv) If xj ∈ {a1,…,anj
} for 1 ≤ j < i, then  |{yi :  Qi+1…QkRx1…xi–1

yi}|   
  =  ni .  Otherwise,  |{yi :  Qi+1…QkRx1…xi–1

yi}|  =  0. 

Indeed, it follows from (iii) and the defining conditions of R that {yi :  
Qi+1…QkRx1…xi–1

yi} is either ∅ or else {a1,…,ani
} or {a2,…,ani +1}. 

 Now, suppose first that ni ∈ Qi .  Then, by (iii) and (iv), we can 
‘continue downward’, from r = i to r = 1, eventually obtaining 

  {y1 :  Q2…QkRy1
}   =   {a1,…,an1

}, 

and hence Q1…QkR.  But then, (Q1,…,Qk)cR, and so in particular, 

  Qi ⋅∃…∃R(i,1,…, i–1, i+1,…, k). 

By (ii), this is equivalent to 

  Qi{a1,…,ani +1}, 

and thus n+1 ∈ Qi .   
 Now suppose instead ni ∉ Qi .  It follows that from step i–1 and down-
ward in the above induction we always get ∅, and so ¬Q1…QkR.  Hence, 



 

¬(Q1,…,Qk)cR.  But, by (i), all the conjuncts in the definition of 
(Q1,…,Qk)cR, except the one involving Qi , are true.  It follows that 

  ¬Qi ⋅∃…∃R(i,1,…, i–1, i+1,…, k), 

which, by (ii), means that n+1 ∉ Qi .  This proves the Claim, and thereby 
the theorem.   ⎯| 
 

7.  Unary complexes 
In this section, we briefly look at a generalization of the question as to when 
a certain quantifier is an iteration.  The linguistic interest of this question 
stems from the ubiquity of natural language sentences with a transitive verb 
and quantified subject and object noun phrases.  But other means of ex-
pression are also ‘natural’.  For one thing, Boolean operators are clearly 
available.  For another, sentences corresponding to iterations are often am-
biguous, and hence all their readings can be used.  Restricting attention to 2-
ary iterations, this leads to the following definition, from van Benthem 1989 
(though he uses ‘unary complex’ for what I here call a ‘right complex’). 
 
7.1. Definition.  A quantifier Q of type <2> is a unary complex if there is a 
Boolean combination Φ of iterations of the form Q1Q2R and inverse it-
erations of the form Q1ʹ′Q2ʹ′R–1, such that for all R,  QR  ⇔  Φ.  Q is a right 
complex (left complex) if only iterations (inverse iterations) are used. 
 
 The next proposition is an example of the added expressive power of 
unary complexes compared to iterations.  Note that, by Corollary 4.9, 
(∃≥n)(2) is not an iteration for n ≥ 2.  
 
7.2. Proposition.  (∃≥n)(2) is a right complex for all n. 
 
Proof. (sketch)  We must express ‘|R| ≥ n’, for binary R, as a right complex.  
Start with the following equivalence, which is clearly valid: 

 |R| ≥ n    ⇔     ∨   (∃=kx∃yRxy   ∧   |R| ≥ n)    ∨    ∃≥nx∃yRxy. 
   1≤k≤n–1 

Thus, it suffices to express each of the n–1 first disjuncts as right com-
plexes.  Given that exactly k elements have R-successors, it is not so hard to 
describe the circumstances under which  |R| ≥ n.  Consider the different 
ways, say s1,…,sr , in which n can be written as the sum of k positive inte-
gers (independent of order).  Each such way corresponds to a minimal dis-
tribution of successors (over the k elements which have successors) so that 
|R| ≥ n.  With each si we will correlate a right complex ψi .  Rather than 



 

giving precise details, we explain the idea by means of an example.  There 
are 5 ways in which 10 (n) can be written as the sum of 6 (k) positive inte-
gers.  We exhibit them below, together with the corresponding right com-
plexes: 

       si    ψi 

 5 + 1 + 1 + 1 + 1 + 1 ∃x∃≥5yRxy  
 4 + 2 + 1 + 1 + 1 + 1 ∃≥2x∃≥2yRxy  ∧  ∃x∃≥4yRxy 
 3 + 3 + 1 + 1 + 1 + 1 ∃≥2x∃≥3yRxy 
 3 + 2 + 2 + 1 + 1 + 1 ∃≥3x∃≥2yRxy  ∧  ∃x∃≥3yRxy 
 2 + 2 + 2 + 2 + 1 + 1 ∃≥4x∃≥2yRxy 

(note that, since ∃=6x∃yRxy, conjuncts corresponding to the 1's, such as  
∃≥5x∃yRxy  for the first row, are not needed in ψi ).  Hopefully the idea is 
clear, and one may now verify that, in general, 

 ∃=kx∃yRxy   ∧   |R| ≥ n      ⇔      ∃=kx∃yRxy   ∧   (ψ1 ∨ ... ∨ ψr ). 

⎯| 
 
 The properties of orientation from van Benthem 1989 provide 
convenient ways of showing that certain quantifiers are not unary (right, 
left) complexes.  For example, in this way one easily sees that cumulations, 
although unary complexes, are usually not right or left complexes, and that 
branchings are usually not unary complexes.  However, the method does not 
work for resumptions, since all resumptions have these orientation proper-
ties.  Our final application of ‘prefix techniques’ in this paper shows that the 
resumption of QR is not a unary complex.  Recall that, on finite universes, 
QR means ‘more than half of the elements of the universe’.  It is clear that 
the next result extends to any proportion quantifier ‘more than m/n:ths of 
the elements of the universe’. 
 
7.3. Theorem.  (QR)(2) is not a unary complex. 
 
Proof.  We shall prove that not even  (QR)(2)A×B  can be expressed by a 
(fixed) unary complex.  Suppose to the contrary that there is a unary com-
plex Φ, i.e., a Boolean combination of iterations of the forms  Q1Q2A×B  
and  Q3Q4B×A  such that for all M and all A,B ⊆ M,  

  |A×B|  >  |M|2/2        ⇔        Φ. 

We now perform the following operations on Φ.  First, by redefining the 
quantifiers in Φ if necessary, make sure that the second quantifier in an 
iteration (or inverse iteration) is always positive.  Then replace, according to 
the Product Decomposition Lemma, each  Q1Q2A×B  in Φ by  (Q1A ∧ 



 

¬Q2B) ∨ (Q1∅ ∧ ¬Q2B) , and similarly for the inverse iterations.  Next, 
rewrite the result in disjunctive normal form.  Finally, in each disjunct, ‘pull 
together’ the conjuncts which involve A by defining suitable new 
quantifiers (for example, if the conditions on A in one conjunct are  Qʹ′A ,  
Qʹ′ʹ′A , and  ¬Qʹ′ʹ′ʹ′A , replace  Qʹ′A ∧ Qʹ′ʹ′A ∧ ¬Qʹ′ʹ′ʹ′A  by  QA , where Q  =  Qʹ′ 
∧ Qʹ′ʹ′ ∧ ¬Qʹ′ʹ′ʹ′ ), and similarly for B and ∅.  The result of all this is that there 
are type <1> quantifiers  Qi , Qiʹ′, and Qiʺ″, 1 ≤ i ≤ p, which satisfy ISOM and 
are such that 

 |A×B|  >  |M|2/2 ⇔ ∨ (Qi A  ∧  Qiʹ′B  ∧  Qiʺ″∅)       (on M). 
           1≤i≤p 

In other words, for all m > 0 there are X,Y,Zi ⊆ {0,...,m}, 1 ≤ i ≤ p, such that 
for all k,n ≤ m, 

  kn  >  m2/2 ⇔     ∨ (k ∈ Xi  ∧ n ∈ Yi  ∧  0 ∈ Zi). 
              1≤i≤p 

Simplifying a little, it follows that 

(*)    ∃p ∀m > 0 ∃pʹ′ ≤ p  ∃X,Y  ⊆ {0,…,m} for 1 ≤ i ≤ pʹ′ s.t. ∀k,n ≤ m, 
  kn  >  m2/2 ⇔     ∨  ((k,n) ∈ Xi×Yi ). 
              1≤i≤pʹ′ 

It is intuitively plausible that (*) cannot possibly be true, since p is fixed but 
m arbitrary.  Nevertheless, here is a proof. 
 Suppose m is even and large enough (cf. below).  For k,n ≤ m, call (k,n) 
minimal if kn > m2/2, but (k–1)n, k(n–1) ≤ m2/2.  We shall count the number 
of minimal pairs. 

(i)  If (k,n) is minimal then (n,k) is minimal. 
(ii)  If (k,n) is minimal then  k,n > m/2  and  k ≠ n. 
(iii) (m/2 + 1 , m – 1) is minimal. 

These are all immediate or almost:  that (k,k) cannot be minimal follows 
from the fact that if k⋅k > m2/2 then k(k–1) > m2/2, for large enough m (m > 
70 suffices). 
 Let  k0  =  m/2 + 1 , and then let  ki+1 =  ki + 1  until we reach  ki  =  kl–1 + 
1  =  the largest k such that  k⋅k ≤ m2/2.  Also, let ni be the smallest n such 
that  k⋅n  > m2/2.   

(iv) (ki ,ni) is minimal, ni > ki , for 0 ≤ i ≤ l, and n0 > … > nl . 

Proof:  That ni > ki is immediate.  The rest is by induction.  (k0 ,n0) = (m/2 + 
1 , m–1) is minimal.  Suppose (ki ,ni) is minimal.  Then we have ki+1(ni – 1)  
=  (ki + 1)(ni – 1)  =  kni + ni – (ki + 1)  ≥  kni  (since ni > ki)  >  m2/2.  Thus, 
ni+1 < n.  To see that (ki+1,ni+1) is minimal, it suffices to check that (ki+1 – 



 

1)ni+1 ≤ m2/2.  But  (ki+1 – 1)ni+1  =  ki+1ni+1 – ni+1  <  ki+1ni+1 - ki+1  =  
ki+1(ni+1 – 1)  ≤ m2/2, by the definition of ni+1. 

(v)  If (k,n) is minimal and k < n, then (k,n) = (ki ,ni), for some i. 

Proof:  It suffices to show that k0 ≤ k ≤ kl .  Clearly k0 ≤ k.  Suppose k > kl .  
Now (kl + 1)(kl+ 1) > m2/2, and hence (kl + 1) > m2/2.  It follows that (k – 
1)n > m2/2, contradicting the minimality of (k,n). 
 From (i), (ii), (iv) and (v) we get 

(vi) There are 2(l + 1) minimal pairs. 

 Now we can return to (*).  The point of the preceding exercise is this: 

(vii) Distinct minimal pairs belong to distinct Xi×Yi in (*). 

Proof:  Suppose (k,n), (kʹ′,nʹ′) are minimal, (k,n) ≠ (kʹ′,nʹ′), say, k < kʹ′, and 
(k,n),(kʹ′,nʹ′) ∈ Xi×Y.  But then (k,nʹ′) ∈ Xi×Y, so knʹ′ > m2/2 by (*), which 
contradicts the minimality of (kʹ′,nʹ′). 
 We have shown that p ≥ pʹ′ ≥ 2(l + 1).  But this is impossible, since p is 
fixed and l increases with m, in fact, 

(viii) l   >   m/2( 2  + 1)  –  2 .  

Proof:  Easy calculation, from (kl + 1)2 > m2/2, and kl  =  m/2 + l + 1. 
 This concludes the proof of the theorem.   ⎯| 
  
 I have been a bit fussy about distinguishing local from global results in 
this paper.  The usual notion of definability in logic is global, i.e., uniform 
over universes, and I have endeavoured to state global forms of all 
definability results here.  We have seen that many of these results have both 
a global and a local version.  The last result above, however, is a good 
illustration of the point that this is not always so.  Indeed, it follows from a 
result in van Benthem 1989 that, on any given universe M, (QR)(2) can be 
defined as a right complex.  There is just no definition that works for all 
universes.8 

8.  Issues for further study 
What else could be said about iteration?  Very briefly, here are a few 
suggestions. 
1. Characterizing quantifier lifts.  Can iteration be characterized in terms of 
their properties?  That is, are there (interesting) properties such that, say, a 
                                                             

8In Westerståhl 1992 I conjecture that (QR)(2) is not even monadically definable, 
that is, not definable in any logic L(Q1,…,Qk), where the Qi are monadic. 



 

type <2> quantifier is a 2-ary iteration iff it has these properties?9  One nec-
essary such property is being determined by its behaviour on products.  We 
have seen in Part II that this is not sufficient, but combining it with other 
properties might give a sufficient condition. 
 This is part of a more general issue.  Iteration, resumption, branching 
and cumulation can all be considered as natural liftings of monadic quanti-
fiers to polyadic ones (or, more generally, liftings of quantifiers of certain 
types to quantifiers of ‘higher’ types).  These lifts have characteristic 
properties, and it would be interesting to know if they can be completely 
characterized in terms of these properties.  A similar question is studied in 
van der Does 1992, 1993 in the field of collective quantification (i.e., 
quantification over collections, or sets, of individuals).  He displays several 
lifts from ordinary quantification to quantification over collections, and, 
among other things, characterizes the lifts in terms of their respective 
properties, such as (versions of) conservativity, monotonicity, etc.  Further, 
in both cases one can study which linguistic mechanisms trigger such lifts.  
In general (as Johan van Benthem has pointed out), polyadic quantification 
of the kinds studied here and collective quantification seem to have much in 
common. 

2. Generalizing the Prefix Theorem.  It is an immediate corollary of the 
Prefix Theorem that if  Q1x1…Qkxk  and  Q1ʹ′x1…Qkʹ′xk  are prefixes with Qi 
and Qiʹ′ in {∀,∃} such that 

(*)  |= Q1x1…QkxkRx1…xk     ↔      Q1ʹ′x1…Qkʹ′xkRx1…xk , 

then Qi = Qiʹ′ for each i (in view of the Product Theorem, we could replace  
Rx1…xk  by  P1x1 ∧ … ∧ Pkxk  here).  This is a weak version of the Linear 
Prefix Theorem in Keisler and Walkoe 1973.  In the original version,  
Rx1…xk  on the right hand side in (*) is replaced by an arbitrary quantifier-
free formula φ (without constant or function symbols).   As Keenan notes, 
the strong version does not hold for arbitrary type <1> quantifiers; even  
∀xPx  ↔  (¬∃)x¬Px  is a counterexample.  But it might still hold under 
some restrictions.  For example, does it hold when all the quantifiers are 
positive? 

3.  Infinite universes.  The proofs of the main theorems in Part II depend 
heavily on the assumption that universes are finite.  Are there versions of 
these results for infinite models? 

                                                             
9Keenan 1992 has such a characterization (the Reducibility Characterization 

Theorem), but the property used is too reminiscent of the definition of iteration to be 
of real interest here (it has other uses, mainly as a tool for showing that certain 
quantifiers are not iterations). 



 

4.  General branching.  Barwise's branching of monotone quantifiers has 
been extended to other generalized quantifiers (cf. Spaan 1992 for 
references and a discussion of the various options here).  Can the results in 
section 5 be extended accordingly? 

5. Iteration in other types.  The notion of iteration is not confined to quan-
tifiers.  Thinking of quantifiers as objects in type theory, one may general-
ize the idea to objects of (certain) other types.  What is the common pattern 
here?  Will characteristic properties of quantifier iteration, such as the Prod-
uct Theorem, carry over to the general case? 
 Already for the case studied here, the perspective of type theory and 
categorial grammar, may be fruitful.  Johan van Benthem remarked that our 
basic iteration scheme (Definition 1.3) yields a type transition 

  (ek→t)→t , (em→t)→t     ⇒    (ek+m→t)→t   

(where e1 = e, en+1 = e⋅en) which is provable in the Lambek Calculus, and 
that the scheme itself is precisely the lambda term for its most straightfor-
ward derivation (cf. van Benthem 1991).  Likewise, some properties of 
iterations, like the preservation of ISOM or CONSERV, can be predicted 
from a categorial analysis. 

6. Syllogistic inference.  Various kinds of syllogistic inference with non-
iterated quantifiers are known from the literature.  For example, consider a 
language which has atomic formulas of the form  QAB , where  A  and  B  
are Boolean combinations of set variables  X1,X1,… , and  Q  is a type 
<1,1> quantifier symbol selected among  Q1,Q2,… ,  where Q1,Q2,… are 
given quantifiers.  The language also has the usual propositional connec-
tives, and the obvious semantics.  For simple choices of Q1,Q2,… , com-
plete axiomatizations of validity are known; for example,  van der Hoek and 
de Rijke 1991 axiomatize the case when Qi = at least i  (in this logic, quan-
tifiers like all and no are of course definable). 
 This could be generalized to iterations, say, of type <1,1,2>.  One then 
adds variables  R1,R2,…  for binary relations, and in addition to the Boolean 
operations, one might have other operations from relational algebra, such as 
converse.  New ‘atomic’ formulas are  QQʹ′AB,R , with  A,B  as before,  R  
an expression in the chosen relational algebra, and  Q,Qʹ′  type <1,1> 
quantifier symbols.  The expressive power has increased somewhat, but is 
still weak compared to L(Q1,Q2,…).  Do the valid sentences still have nice 
axiomatizations for natural choices of Q1,Q2,… ? 
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