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A NOTE ON PARAMETERIZATION

Dag Westerstdhl

1 Introduction

The purpose of this note is to prove a result in Peter Aczel's theory of replacement sys-
tems (Aczel [1988, 1989]). The result is, roughly, that any such system A can be
‘parameterized' by any class X of parameters (disjoint from A). The note is technical, but
the notion of a replacement system is simple and intuitive, as is the idea behind the proof.
In the rest of this introduction I will try to explain these ideas.

A replacement system A has a universe A of objects, which are structured in the
sense that each object a has a set Ca of components, also in A, and there is a replacement
operation - , subject to certain natural conditions, such that for any mapping ¢ of Ca into
A, o-a is the object resulting by 'replacing’ components in @ according to @,

A universe of sets can be viewed as a replacement system, where components are
eléments, and replacement of elements is the obvious operation. A different example is
furnished by the formulas of propositional logic, say, where the components of a formula
are its immediate subformulas, and replacement of subformulas is simply taken literally.
In addition to these purely set theoretic and purely syntactic examples, the notion of a re-
placement system covers a variety of other kinds of structured objects. In particular,
Aczel [1989] applies replacement systems to the objects dealt with in situarion theory (cf.
Barwise [1989]).

The components of an object may in turn have components, etc. (by the way, nothing
prevents an object from being a component of itself), and the components of components
of ... of a are called the constituenis of a. A constituent of @ marks a 'place’ where repla-
cement can be performed. Sometimes it is convenient to have special atoms, called para-
meters, at these places (an atom is an object with no components). For such 'parametric
objects' we then have the operation of replacing constituent parameters by other (possibly
parametric) objects, This substitution is distinct from simple replacement of components,
but the two operations are related: substitution of parameters in a should give the same re-
sult as replacing the components of @ by the results of substituting parameters in the com-
ponents. When this holds, for a class of parameters X, we call the replacement system X-
paramerric.

The desired result, then, is that for any replacement system A and any disjoint class
of parameters X, we can form an X-parametric replacement system A{X] which extends
A. Indeed, there is a uniform way to construct A[X] which gives the smallest replace-
ment system with these properties.

In particular cases, such as the two examples above, it is easy to see how to form
A[X], but we need to make it work for any A. The idea is simple, We would like to re-
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place components of objects in A by parameters in X, but A tells us nothing about this,
since parameters are not in A. That is, if @ is in A and £ is a function with domain Ca and
range (at least partly) in X, fa is not defined. But we can try to 'represent’ f-a by the
pair (a, f). The set of components of this object is simply the range of f. This should take
care of replacement of components of a by parameters. To get at the constituents of a, we
must repeat the consiruction, 'replacing’ in the same way components also by pairs {a, /),
etc, Hopefully, when repetition comes to a halt (adds no more pairs), we shall have (up
to isomorphism) the universe of the smallest replacement system above 4 of the required

kind.
Here is an illustration. Let « be the structured object in A with components as depic-

ted:

A\
by by
¢
VAN
dy dy
Suppose we wish to form the object where by is replaced by x and dy by y, forx,y e X,
This takes three steps. At the first step we add

~

¢,h)

N\
dy

~

from ¢, where hd| =y, hd = dy, At the second step we add

by, 8

|
(c.h)
A
y dy

from by, where ge = (¢, k). Finally, from a with fb) = x and fb2 = (b2,g) we add
(@, f)
N
x (2.8
(e,h)
N\

y dy

which is the desired object.
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Taken literally, though, this strategy yields too many objects. For example, consider
an object p-c in A obtained by replacing in ¢ above according to p, where pdy = d3 and
pda = dq. We may have ¢ # p-¢, but if 4' replaces in p-¢ in the same way as h replaces
in ¢, h'ds =y, i'dy = da, clearly we want to identify (c,h) and (p-c, &". So we need to
find a suitable equivalence relation on such pairs, and add the equivalence class of {¢,h)

as a new object rather than (c, k) itself.
Since we want the smallest X-parametric replacement system extending A, we do not

add (equivalence classes of) pairs (@, f) when the range of fis included in A, for then,
fais already in A . We keep the original objects in A and must thus ensure, among other
things, that if ¢ replaces all components in (the equivalence class of) (a, f) with objects in
A, the result is also in A.

We noted that A need not be wellfounded (i.e., that there may exist an infinite se-
quence ag, di, az, ... of objects in A such that @y € Cap for n 2 0.) Consider the simple
case of an object a whose sole component is 4 itself. Let faz =x. In contrast with a, the
pair (g, f), obtained by 'replacing' a (in 4) by the parameter x, is quite wellfounded: its
only component is x, and x in turn has no components. In general, the new objects we
construct will be wellfounded in the sense that if there is an infinite descending sequence

g, Uy, Uz, ... in A[X], eventually the uy, are all in A,

With this we turn to the actual statement and proof of the result. The paper is self-
contained, since all relevant definitions have been stated, but for further motivation and
background the reader may consult Aczel [1988, 1989] and Westerst&hl [1985].

2 Preliminaries

Replacement systems are special cases of what Aczel calls X-form systems, defined be-
low. Let X be a class.

DEFINITION 2.1: (i) An X-form system is a triple A = (A,C,:) where A is a class,
C:A — powX, and if a e A and 6:Ca — X then o-a e A and

C(oa) = range(o) :

idegsa = a

T(c:a) = (10)a, if Trange(c) > X.
(i} A replacement system is an A-form system A = (4,C,-).

In the first example mentioned above, A is a universe of sets, Ca =afora € A, and oa
= {ox:xe a} foro:Ca > A, In the second example, 4 is the set of formulas in pro-
positional logic built up from atomic formulas p, g, ... using — and A, € is defined by
Cp = & forp atomic
CH9 = (9]

Cong) = (0.9},
and the operation - by
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op =p
0('—1(3}) = "—IO'QJ
(P AQ = chAaGP.

DEFINITION 2.2: Let A; = (A,Ci,;) be X;-form systems, { = 1,2, A is a subsystem
of A, in symbols A; CAq, iff
Ay CAy and Xy £Xo

Cy = ChlA;
-1 i8 9 restricted to A and X, i.e,, a € Ay and 6:Ca — X; implies 630 = 0114,

In particular, this tells us what it means for one replacement system to be a subsystem of

another,
The next definition generalizes Aczel's notion of a homoemorphism between X-form

systems to replacement systems.

DEFINITION 2.3: Let A; = (A;,C;,+) be replacement systems, { = 1,2. A function p

from A; to Az is a homomorphism if the following holds:

(@ Copa = {px : xe Cia) forae A.

(ii) Suppose a € A and 6:Cja — Ay, and let T:Capa — Az be any function such that
Tpx = pox forx € Cya (note that by (i), such a T exists). Then p(c-ja) = Topa.

Itis easy to see that Ay is a subsystem of A, iff the identity function idy4, is a homomor-
phism, and that, if p is a homomorphism from A; to A2 and ¢ a homomorphism from A

to A3, then gp is a homomorphism from A, to As.
A homomorphism p which is also -1 is called an embedding. In fact, this is the only

case we shall need here, It is then easily seen that T in condition (ii) above is uniquely
determined by tx = pop-lx forxe Copa.

3 The induction step

For the rest of this paper, 4 = (A,C,) is a fixed replacement system. As hinted at in
section 1, the construction of an X-parametric replacement system above A will be in-
ductive. In this section we give the details of the main step in the induction,

Fix two classes X and Z with X CZ and ZnA = @ (Z will be the class of
'parametric objects’ already added). Then set

Fz = {{a,p:ae A, f:Ca— AVZ, and range(NZ # &},

DEFINITION 3.1: For (@, /), (a"f" € Fz define
{a,f) sz (@', f") iff there is a function p:Ca — Ca' such thata' = 6-a and f=f'p.
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LEMMA 3.2: (i) <z is reflexive and transitive.
(i) If (a, ). (@', f"} have a common lower <z-bound, they also have a common upper

<z-bound.

Proof: (i) follows directly from the definition, so we prove (ii). Suppose then we
have functions p,p', Asuchthat @ = pc, &' = p'c,and h = fp = f'p'. hisa
function from Ce, so there exists a I-1 function g from range(h) to Cc. Put T = gf and
1" = gf'. It foliows that

mp = 1p’,
which implies that 7 = 1a'. Also
f=gltandf = glt.
Thus, (a,/),(@,f) <z (vagh).

Now we can define the equivalence relation we need on Fyz.

DEFINITION 3.3: (a,f) =z (@, f" iff (a, ) and (@, ") have a common upper Sz-
bound.

LEMMA 3.4: (i) =7 is an equivalence relation,

iy If (a0, ) =z (a',f") then range(f) = range(f") .

(i) If (@, ) =z (@, f") and o: Crange(f) — AUZ , then
(a) range(c)nZ = & implies ofa = of"a'.
(b) range(c)Z # & implies (a,0f) =y (@,90).

Proof: For (1), the only problem is transitivity, but this follows easily from Lemma
3.2. (ii) is immediate. For (iii), suppose (a)) =2z (c,hr} viap and (@', f") <z (c,}) via
P ie.,

c=pa=p-a,f="rhp,and f' = hp'.
From this (a) follows directly. And in case (b), {a,0/) <z (c,ch) viap, and (a',0f") <z
(c,oh) viap',

DEFINITION 3.5: Ez = Fz/=z
Ay = AUX U Ey

The next thing is to extend the operations € and - to Az. Let [a, flz be the equiva-

lence class of (a, f).
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DEFINITION 3.6: Define Cyu, foru e Ag, by
Cyx = & forxeX
Cyza = Ca forae A
Cyla, flz = range(f) forla, flze Ex.

By Lemma 3.4 (ii), this is well defined. We have Czu © AUZ foru e Az,

DERINITION 3.7: Suppose € Az and o : Czu — AUZ . Define ozu as follows:
Hue X put Gzu = u.
If ue A and range(c)nZ = & ,put Gz = OGU.
If ne A and range(c)nZ # & ,put ogzn = [0z,
I u = {aflz and range(c)nZ = & ,put Gzu = ofa.
If u = [a,flz and range(o)nZ = & ,put Gzu = [a,0f]z.

That the {ast two cases of the definition are correct follows from Lemma 3.4 (iii}. Let
Az = (Az,Cz. 7).
PROPOSITION 3.8: Az is an AUZ-form system such that A S Az .

FProof: Suppose ue Azand 0 Czu - AUZ . We must show
(i) oziee Az
(i) Cz(o-zi) = range{s)

(iii) idczu i = H.
{iv) if 1 : range(c) - AUZ , then vgz{ozu) = (TO)zu.

(i) and (i) are easy. As to (iii), the result is clear if we X, Ifu e A, then
range(idcy)NZ = &, s0 deguzu = idowt = .Andif u = [a,flz € Ez,
then rangelidc, N7 # @, 50 idcyuze = [a,idepflz = u . For (iv), finally,
there are a number of cases to check, according to Definition 3.7.

Case 1: ue X . Theresult is obvious.
Case 2: ue A. There are 4 subcases, according to whether range(6)Z and range(t)Z
are empty or not. For example,
Subcase 2B: range(0)Z = @, range(nZ # . Then
Tz(0-zu) = Tz{G-u) = [0u,1]z
(to)zu = [u,10]z.
But (#,10) < (o-u,7) viao.
Case3: u = [a,flz € Ez.Again there are four subcases, for example,
Subcase 3B: range(c)Z = @, range(t)nZ # & . Then
vz(6zla, fz) = vz(ofa) = [ofa,tlz
167la, flz = [a.t0flz.
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But {(a,7¢f) <z (ofa,T).

4 Digression

There is a certain arbitrariness in our definition of Az. We could instead have considered
pairs (a, f) where fis 1-1, or where fis constant or A in the sense thatif fre A then fx
= x. Intuitively, it seems that it would suffice to restrict attention to such replacement
functions. This intuition is indeed correct, as we show in this section (which is not used

in what follows). Let

Fz® {(a,fye Fg: fisconstantonA)
F, i {a,. He Fg: fis1-1)
Fzl¢ = [(a,fe Fz: fis 1-1 and constant on 4) .

n

1

Ez®, Bzl , Ez1¢ are defined accordingly, and likewise Azt , Az, Azl . We first note
that pairs in Fz can be 'decomposed’ using pairs of the more restricted kinds.

LEMMA 4.1: If (a,/) € Fz there are fumctions ©:Ca — A and girange(f) —» AUZ such
that (g, ) Sz (Ta,g) and (va,g) € Fz& (Fzl, Fzl:©).

Proof: Let

Dy = {zeCa: fzeZ} = @

Dy = {zeCa: fze A}
Hence Ca = Dz UD, and DznDp = . Now let

T = idp, W flDy

g = [fIDz U idungeirin,)
Thus ©.Ca— A and g:C(v-a) —» AUZ is constant on A. We have gt = fiys0 (a.h)
<z (1-a,g) . For the case of Fz1, we pick an element x, in each set f Hu) forue
range(f). Then put

% = xy forxe fu}

gxy = U.
Again gt = f and we are done. For Fz1¢ we apply the second construction to {a, f),
and then the first to (T-a,g).

Next, Cz¢ = Cgz , eic., but the definitions of 2¢ etc. do not work as they stand, since
0:Czu —> AUZ need not be of required kind. This affects the third and fifth case of
Definition 3.7. There, we apply the decompositions in the proof above, in the third case
with ¢ for £, and in the fifth with of for £, Thus, in the fifth case for -z®, for example, we
ptt &-7%[a, flz¢ = {va,gl, where uCa = A, g:C(Ta) > AUZ is constant on A,
and gt = of . It now becomes a little more complicated to prove that this is well-defi-
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ned, and that Lemma 3.8 (iv) holds, We illustrate with a typical case from the proof of
the latter, w.r.t. +2%,
Subcase 3D: range(o)Z + &, range(V)Z # . Then

16zla, flz° = [voa.golz®,
where gg is constant on A and

g% = 19/,
and

vz(ozla, f1z°) = veltraglt = [ttia, g2]2°,
where g1, g2 are constant on A and

gim = of

B2l = Tg;.
Consider {a,goto) . We have goto = 16f = 12111 = g272%; . It follows that {a,g070)
Sz (tora.go) and (a,goT0) <z (T271-a, g2) . Thus, (1p-2,20) and (T271°a , g2) have a
common lower bound, and hence, by Lemma 3.2 {ii), a common upper bound. That is,

{(Tra.go) =~z (t211-@ , £2) , as was to be proved.
The other cases also work out as expected (although with rather tedious details for

Az1%), which establishes the first half of

PROPOSITION 4.2: Az¢, Azl , Azl are all AZ-form systems isomorphic to Az,

Proof: For the second half, consider AzC, Define a function p:Az° — Az by

pu=u forue AUX

pla f1z° = la,flz for la,flz° € Ez°.
That p is 1-1 and onto follows easily using Lemma 4.1, Tt remains to show that if x e
Az¢ and 0:Czu — AUZ, then p(o-z€u) = o-gzpu . This is clear except perhaps when
range(c)mZ # . For example, if 1 = [a, f]z°, we then have

p(ozfu) = pltagls® = [vaglz, where of = g7,

ozt = Gzla, flz = la,0flz .
But (a,5f) <z (v-a,g) and the result follows. The other cases are similar.

5 The construction of A[X]

Now we fix, in addition to A, a class X of parameters which is completely disfoint from
A, in the sense that X N {TC(a)u(a)) = & for all @ € A. The next definition, by in-
duction over the ordinals, gives the ‘parametric objects’ we shall add 1o A.

DEFINITION 5.1: Xy = X
Ko = XUExa
X, = UXg (A lirnit ordinal)
E<h
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Notice that alt the X, are disjoint from A.

LEMMA 5.2: If B<o then XpC Xe .

Proof: We use induction over o, The case when o < 1 or o is a limit is obvious. So
suppose O, 2 1, ¥ < o+1, and 1 € Xy; we must show 4 € Xy We may clearly assume
that yis of the form f+1. If u € X then # € Xg41, 50 suppose u = [a, ﬂxp withaeA

and f:Ca — Xp. By induction hypothesis, f:Ca = X, so it is enough to show [a, 'ﬂXB

= [a, ﬁxu . We have {a, j]xB C [a fx, by the previcus argument. Also, if (bg)e
[a,flx, .ie., giCla— Xy and (f) =x, (a,f),then (b.g) e [a, ﬂxp , since range(g)

= range(f) =Xy .
Now put

Ay = AU Xy,
By Lemma 5.2 we sce that

(1) Agpy = AUXaUExa = AUXUExu = Axu.
DEFINITION 5.3: Agst = (Aarts Carl o)) = Axg = Bxy 1Oy Xed -

By Proposition 3.9, Ag4 is an Ag-form system with A C Agy1. Morcover, it is easily
checked that

(2) AB+] ;Aq+1 \Vhen ﬁ S0,

DEFINITION 5.4: Define A[X] = (A[X], C*, *) as follows:
@ AX] = U A,

acOn

(i) Forue A[X], take 0 with u € Agsy and put C¥u = Copit.
(i) I ue A[X] and o:C*u — A[X], we can find o such that u € Agyy and

range(c) C Ay (using the axiom of replacement). Put o = gyl .

It follows from (2) that A[X] is well defined by (i) - (iil). We shall see that A[X] has the
desired properties.
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DEFINITION 5.5: A replacement system B = (B,C, ") is X—qromic, ifX<Band
Cx =1 forxe X, B is called X-parametric over A, if it is X-atomic, A € B, and
every function £:X — B has a unique extension 5:B — B such that

() 54 = idy,

() sa = (ICa)a, for ae B—X.

PROPOSITION 5.6: ALX] is.an X-parametric replacement system over A.

Progf: That A[X] is an X-atomic replacement system is an immediate consequence of
our previous results, as is the fact that A C A[X]. Take any function 5:X — A[X]. If we

put
Su = su, ifue X
Su = u, if ue A
su = (sIC*uy*u, if uis of the form [(a, Hlx, ,

it is not hard to show that this actually gives an inductive definition of .;lA.x for each «,
since, when u € Agy; — (AUX), C*u G Ag , so (sIC*u) is already defined. Thus §
is well defined, and clearly satisfies (i) and (ii) above. Also, a simple inductive argument

shows that § is unique. Hence A[X] is X-parametric,

From now on we drop the * in Definition 5.4, i.e., we extend the operations € and
- to A[X]. We want to show that A[X] is in a relevant sense the smallest X-parametric
replacement system over A. First we note that inside any X-atomic extension of A, we
can mimick the construction of A[X]. For let B = (B,C',) be such a replacement sys-

tem, and define

By = AUX

By = XU {c'a: ae A and 6:Ca — By)

By = UB (A limit ordinal)
E<h

Thenclearly ACBy B G ... ©By S Bos1 & ... & B, and we put

Bax = U By
acOn

Now it is easy to see that B x is closed in the sense that if ue By x then C'u © Ba x,
and if 6:C'u = Bpx, then 0-'n € By x. Therefore, the following definition makes

sense.

1 This is a stight variant of 4 notion introduced in Aczel [1989],




231

DEFINITION 5.7: If B is an X-atomic extension of A, let B, x be the replacement sys-
tem obtained by restricting B to Ba x.

LEMMA 5.8: A € Baox € B, and By x is X-parametric over A.

Proof: We only need to check that B, x is X-parametric over A, but this follows just
as in the proof of Proposition 5.6.

‘We need one more lemma.

LEMMA 5.9: Suppose ACB, aie A, 0pCa;— B,i =12, and oy'ay = oz'ay.
Then there are 7:Ca; — A and firange(n;) — B such that ny-a; = Tyap and G; =
hm , i=1.2.

Proof: Take a 1-1 function T:range(cy) —» Cay , and let 73 = T0;. Then mpa
to1'ar = T{o1'a)) = T(02'ay) = T0z'ay = Wyaz . Also, 0; = Tl(1g3), s0
wecantake b = -1,

We can now state our main result,

THEOREM 5.10: Let A be a replacement system and X a class completely disjoint from
A. There is a canonical way to construct an X-parametric replacement system A[X] over
A, which furthermore has the property that for each X-atomic extension B of A there is a
unique embedding from A[X] to B which is the identity on AUX.

Proaof: Only the second part remains to be proved. Given any X-atomic extension B
of A, we define by induction a function p:A[X] — Bax such that pldy : Ag — By .
D) If ue Ag=AuX,let pu = u.
(i) Suppose o > 0 and that for f < o, p is defined on Ap such that pldg: Ag — Bp.
Take u € Aq. We may assume 4 € Apy = AuXuEx[i with B+l <o If v e AUX, let

pit =u.fu=1[a ﬂxp , then pf: Ca — B by induction hypothesis. Put

pu = pf'ae Bpy & Bg.
(This is well defined, since one easily checks that (g, f) ﬁxﬁ (c,}) implies pf'a

il

phic )
First we show that p is 1-1. It suffices to check that if p is 1-1 on Ag, and if wu;
[a;,fi]xa € Agqsi,f=1,2, are such that puy = puy , then uy = uy. By assumption,

pfi'ay = pfy'ay . Thus, by Lemma 5.9, there are m;:Ca; — A , such that ©y-a; =
my-@y , and there isa h:range(rmy) — Bax such that pfi = Am;, i = 1,2. By induction

hypothesis, p is 1-1 on range(f;)  Aq. But this means that (a;, fi) <x, (Tir@ ih),

fl

ie, Uy = us.
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Next, we clearly have, for u e A[X],
3) Cpu= {px: xe Cu}.
Also,
4 If 6:Cu— A[X] then plo-w) = pop-lipu.

To check this, take o such that 1t € Ay and 6:Cu — Ay = AUX . There are a number
of cases.
Case I: we X. Then pr=uand o-u =pop-l'u=u.
Case2; ue A, Thenpu=uyand plCu = ide, , so we must show
p(ocuw) = {(po)'u.

Case 2A: range(o)nXy = @ . Then ccue A so ploy) = ou,and pc = ¢
since range(C) C A .
Case 2B: range(6)nXy # @ . Then p{o-u) = pla,clx, = (po)'u.
Casel: u = la, fix, -
Case 34: range(a)nXq = & . Using Case 2 we get pop-l'pu = popl'(pf'a) =
(wof)'a = p(ofa) = p(c-u).
Case 3B: range(0)nXqy # @ . Then popl-pu = (pof)'a = pla,ofix, = plow).

Thus, p is an embedding from A[X] 1o Ba x. Moreover, if p' is any other embedd-
ing from A[X] to By x such that p'lAUX = ida_yx , an easy inductive argument shows
that p = p'. This completes the proof,

In terms of category theory, what we have shown is that A[X] is an initial object in the
category of X-atomic extensions of A, where the arrows are embeddings which are the
identity on AUX, As usual, such initial objects are unique up to isomorphism,?
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