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OCCURRENCE SYSTEMS
A Note on the Metaphysics of Substitution

In [1988b] Peter Aczel initiates a mathematical investigation of the intuitive notion of a
structured object - a truly metaphysical project. Here I use his elegant approach to make a
note on one distinction relevant to that project, namely, the one between something
occurring in a structured object and its kaving occurrences in the object. Starting from his
notion of an X-form system, defined below, where an 'occurs in' relation is present, I
define a subclass of these, the occurrence systems, where the stronger notion of an
occurrence is meaningful. I then investigate under what conditions an X-form system is
isomorphic to an occurrence system, and some related issues. An instance of the present
problem occupied me once before, in the form of a comparison between two notions of an
abstract logic; cf. the bibliographical note at the end.

1. Preliminaries

DEFINITION 1.1: Let X be a class. An X-form-system is a triple (A4,C,") such that
A is a class
C:A - powX
IfacAoch 6:Ca—Xthen ccae A
C(o-a) = range(c)
idCaga = a
t-(0ra) = (100)-a, if T:range(c) - X .

A functionp from A to A’ is ahomomorphism between the X-form systems (4,C,-) and
(AC'Yif forae A,

Ca = Cpa

p(ca) = opa;
p is an isomorphism if it is also a bijection. (A,C,-) is a subsystem of (AC'), in
symbols (4,C,)  (A,C',"), if A is a closed subset of A’, i.¢., if a €A and 6:Ca — X



imples 0-a € A, and also 6-a = c-'a and C =C'lA. Equivalently, (A,C,) < (A",C",-")

iff A € A" and the inclusion morphism from A to A’ is a homomorphism.
Here are a few examples of X-form systems (all except 1.3 from Aczel [1988b]):

EXAMPLE 1.2: Sets of parameters. Let A = powX, Ca=aforac A, and, for 6:a = X,
letca={ox:xe a}.

EXAMPLE 1.3: Numbers structured by primes. Let A=N=(0,1,2,...,),Pr={pe N:
p is a prime}. Each n has a unique prime factorization in the standard form pik 1-...-pmkm,
with k; > 0 for i = 1,...,m, and we let Cn = {p1,....pm}. If 6:Cn — Pr let o:n be the
result of rewriting (Gpl)kl-...-(cpm)km in standard form. It is easily checked that this is

an Pr-form system.

EXAMPLE 1.4: Sentential logic. Let X be given, and let P be a set of atomic sentence
symbols, Let A = Pu{—x:xe X} U {(xay):xye X} . ThenletCp = J for p in
P, C—x = (x), and C(x Ay} = {x,y}). Finally, let 6-p =p, 6-—x = 20X, G- (X AY) =
(ox A oy). (A,C,") is clearly an X-form system.

EXAMPLE 1.5: Another version of sentential logic. In example 1.4 the 'forms' occurring
are just negation, conjunction, and atomic formulas. We can also let each formula of the
logic determine a 'form', shared only by formulas obtained from it by replacing sentential
symbols. Thus, let L be the set of formulas in — and A with sentential symbols from P,
and for ¢ € L let C¢ be the set of atomic subformulas of ¢; ¢-¢ is defined in the obvious
way, Then (L,C,) is a P-form system.

We shall need to name some relations between elements of an X-form system. Let, for the
rest of this section, (4,C,') be a fixed X-form system.



DEFINITION 1.6: Define, for a,b € A,
a<sb iff b=c-aforsomec:Ca—X
a=b iff b=ocaforsomel-10:Ca—>X

a--b iff a<bandb<a
a=b iff 3ay,...an€ Asuchthatay =a,ap=b,and for1<i<n, gj<sajsq or

Gi+1 S dj

< is reflexive and transitive. =, --, = are equivalence relations such that g = b implies
a -- b, which implies a = b. Further properties of these relations are stated below.

(1)  If a and b have a lower bound in the < pre-ordering, they also have an upper
bound.

Proof: Suppose ©-ap = a and Tag = b. Take z€ X and let og:range(c) = {z}
and to:range(t) — {z} . Then 6gpo G = 1007, and thus cpa = T0b.
(2) a=b iff forsomeceA,aScandbSc.

Proof: One direction is immediate, and the other follows by an easy induction on # in

the definition of @ = b, using (1).

Let D(a), for each a € A, be the equivalence class of g under =. A subclass K of A is
connected if a,b € K implies that there is ¢ € K suchthata<cand b <c.
3) Each D € A/~ is a maximal connected subclass of A.

Proof: That D is connected follows from (2). To see that D is maximal connected,
suppose DU(a} is connected. Take b € D. There is ¢ such that ¢ <¢ and b <c. Thus,

ce Dand henceae D,

We shall be interested in the following uniqueness property of (4,C,).



(th Ifae A, oiCa—X fori=12,and 61 02,then o1a # 024a.

Also, let (UI) be the same property for I-1 oj . Of the previous examples, 1.4 and 1.5
satisfy (U), but not 1.2 or 1.3.

4 If(U)holdsthen a--b iff a=b.

Proof:If a = 61:b and b = Gy-a, then a = (G1 0 02)-a and b = (G2 0 01)-b. By (U) it
follows that idca = 61 0 03 and idcp = G2 0 O1, so in particular, o1 is 1-1. [Note: If a and
b are finite (i.e. if Ca and Cb are finite) it suffices to assume (U1), since c:a=a implies
that ¢ is onto Ca, hence 1-1 if Ca is finite.]

DEFINITION 1.6: A cover for D(a) is a pair (Co,G) wheré Coisasetand G a 1-1
function from D(a) such that for all b € D(a), Gb =Gy is a function from Cp onto Cb,

and if 6:Cb = X, then Ggp = 60Gp.

An equivalent way of formulating the defining condition would be: G is a function from
D(a) such that if b € D(a) then Gy is a function from Cg onto Cb, and if bj € D(a) and
oi:Chi > X,i=12,then o1b1 = o2by iff 610Gp, = 620G, .

A cover acts in a sense like a minimal element of D{a). However, the existence of a
cover is a much weaker property than the existence of a minimal element: we do not re-
quire every function from Cp to X to yield an object in D(a). The situation is clarified in
Theorem 2.3.

(5)  If D{a) has a cover then (U) holds for all b € D(a).

Proof. It b e D(a), 6i:Ch ~>X and o1 +# 02, then oyb e D(a), and, since Gp is
onto, 610Gp # 620Gp. Thus o1-b # o2:b .



2. Occurrence systems

An X-form system (A,C,) has a notion 'occurs-in: x occurs in @ iff xe Ca.We want
to capture the stronger notion of x having an ‘occurrence’ in a, where the same x may
have different occurrences in an object. This requires objects to have a 'rigid structure'
with fixed 'slots' for parameters, a structure that does not change under replacement of
parameters. With each such structure is thus associated a set of slots. It is convenient, and
natural, to represent such a structured object with a pair consisting of the structure and a

function assigning a parameter to each slot.
The notion of a signature Q = (§2,v) from universal algebra, where Q is a class of

'symbols' (coding the structures in this case) and v : Q — powV gives the 'arity’ (set of
slots) of each symbol, can be used to express this idea:

DEFINITION 2.1: An X-form occurrence system (based on €2) is an X-form system
(A,C,") such that

A C{{af):ae Qandfiva - X}

Clafy = range(f)

c(af) = (a,00f) .

We do not require that every (a,f) is in A. But since (A4,C,) is an X-form system, if
(af) € A and 6:C(af) - X then o-(a,f) € A. Moreover, all objects o-(af) for o a
function from C(af) to X are distinct.

In an occurrence system (4,C,"), every element of D(a,f) (= D((a/))) has the form

(a,g) for some g. Also,

(6)  Inan occurrence system every D(af) has a cover.

Proof: Given D(a,f), let Cp=va and define Gby Ggg) = g if(@g)€ D{a.p).
Thus Ga,g) is onto C(a.g), and G is clearly 1-1. Also, if 6:C(a.g) = X,

Go(a,g) = G(a,005) = 008 = 00G(ay).

A 1-X-form system is defined in the same way as an X-form system, except that only 1-1
mappings 6:Ca — X are considered.



(7 () (UI)is preserved under isomorphisms for 1-X-form systems.
(i) (U)is preserved under isomorphisms.
i) If p:(41,C1,1) 2 (A2,C2,2), a€ Ay, and Dy(a) has a cover, then
Do(pa) = p[D1(a)] has a cover.

Proof: Exercise.

We now consider the question of under what conditions an X-form system is isomorphic
to an occurrence system.,

THEOREM 2.1: A 1-X-form system (A,C,) is isomorphic to a 1-occurrence system
iff it satisfies (U1).

Proof: The only-if-direction follows from (6), (5) and (7) (i). For the other direction,
suppose (4,C,") satisfies (U7). Let [a] be the equivalence class of @ under =, For each
K e A/=, fix ax such that [ag] = K . Then define p as follows. Givena € A, letK =
[a]. By (U1), there is a unique 1-1 6:Cag — X such thata = c-ag . Put pa = (lal,o).
Then define

A' = range(p)
C'([a),0) = range(o)
t'([al,0) = ([a],T00) , when T is a 1-1 function from range(c) to X.

Note that Ca = C'pa, and that p(ta) = ([¢],700) = 7'pa . It is then easy to check
that (A',C",") is a 1-X-form system. It is also an occurrence system, with Q = A/=
and, for K € A/=, VK = Cag . Finally, p is 1-1, since if a# b then either [a] # [b], or
[a] =[b] =K so a=01ax and b= 02ag where o1 # 02, in both cases pa # pb .

QED

Unfortunately, the corresponding result for arbitrary X-form systems with (U) in place of
(U1) fails, as the next example shows.



EXAMPLE 2.2: Let X be a proper class and put

A = {<x§>§<a:1$ae On,xge Xfor§<a,andif o> 1’x€1¢x§2 for some

§1,62 <}
C<xg>peq = (31§ <0t}
If 5:C<xp>p o — X then
| O <UDy = <OXgPpey,if 0> 1and oxp #OXg, for some &;,62 < o,

= <Oxp>, otherwise.

Thus, (A,C,) is almost the system of arbitrary wellordered sequences of parameters, but
with the twist that at least two of the parameters in each sequence (of length > 1) must be
distinct. It is easy to see that

&) (A,C,") is an X-form system satisfying (U).
Also, for any a € A, D(a) = A and, since X is a proper class,

(9)  {ICal:ae A} has no upper bound.
’

But in an occurrence system clearly there is an upper bound to each {ICal:ae D(b)}.
Hence

(10) (A,C,) is not isomorphic to an occurrence system

Using the notion of a cover, however, we can get a result corresponding to Theorem 2.1
for arbitrary X-form systems,

THEOREM 2.2: An X-form system (4,C,) is isomorphic to an occurrence system iff
every D € A/~ has a cover.

Proof: The only-if-direction follows from (6) and (7) ({ii). For the if-direction, choose
a cover for each D(a). Define p as follows. Given a € A, let (Co,G) be the cover chosen
for D(a). Let pa = (D(a),Gg) , and define



A' = range(p)
C'(D(a),Gy) = range(Gg)
6-'(D(a),Gq) = (D(a),00G,) , when o:range(Gg) > X .

Again, it is easily checked that C'(D(a),G4) = Ca, that p(c-a) = o-'pa, and that
(A',C',") is an X-form system which is an occurrence system with Q =A/~ and
v(D(a)).= Cp as above. Also, since G above is 1-1, sois p. QED

Question: If D € Al=, {ICal : a € D} has a supremum, and (U) holds for D, does it fol-

low that D has a cover?
A natural class of occurrence systems are the full systems:

DEFINITION 2.3: An X-form occurrence system (4,C,) based on Q is full, if, for

eacha e Q,
) Ival £ IXI (ifXisaset)
(i) forevery fva—X, (af)e A.

THEOREM 2.3: An X-form system (4,C,-) is isomorphic to a full occurrence system
iff it satisfies (U) and every D € A/~ has a minimal element ap (i.e., such that ap < b for

everybe D).

Proof: For the only-if-direction, suppose p :(4,C,) = A.C','Y), where
(A',C',") is a full occurrence system with signature (€2,v). We know, by Theorem 2.2
and (5), that () holds for (4,C,:). To show that the second condition also holds,
choose, for each d € Q, a 1-1 function hg: vd — X. This is possible by (i) in the defini-
tion of a full occurrence system, By (i) in that definition, (d,h4) € A'. Now take D € A/~
and choose ae D. Let pa = (df) . Then define

ap = p'ldhd) .

We claim that ap is a minimal element of D. To see this, take any b € D. Then pb =
(d,g) for some g. This follows from

(* If b<a or a<b then b = (d,g) for some g.



Proof of (*): If a<b then G-a = b for some G, and p(c-a) = o-'pa = (d,oof) . If
b<a then ©b = a forsomeT.Let pb = (d'.g") . Then (df) = p(vbh) = Tpb =
(d',tog") ,s0d =d".

Now, since kg is 1-1, there is a (unique) o:range(hg) — X such that
Gohg = 8.

Thus (d,}td) < (d,g) and it follows that
ap £ b.

This shows that ap is minimal in D.
For the if-direction, we first show that each D € A/~ has a cover. Let Cp = Cap. For

each b € D there is, by (U) and the fact that ap is minimal, a unique Gp:Cap — Cb such
that Gprap = b ; let this define G. If by # by, b1,b2 € D, then Gpap # Gpyap, SO
Gp, # Gp, > ie., G is 1-1. Now suppose 0:Cbh — X. We have Gg.prap = G-b and
Gpap = b. So (6o Gp)-ap = 0-(Gpap) = o-b. Thus, by (U), 00 Gp = Gg-bs
and (Co,G) is a cover for D. We can then define an isomorphism p as follows. For every
ae€ A there is a unique o:Cap — X suchthat a = ¢.ap, whereD = D(a). Let pa =
(D(a),0) and set

A' = range(p)
C'(D(a),0) = range(O)
'(D(a),6) = (D(a),t00) , where Tirange(c) 2 X .

As before, (A',C",”) is an occurrence system with Q = A/=and vD = Cap. It is also
full, since for any D € Q, DI IX| (if X is a set), and, whenever T:vD — X, tap e D
and p(v-ap) = (D(vap),1) = (D,1) € A" This completes the proof. QED

To illustrate the use of occurrence systems that are not full, we give the following
simple example.

EXAMPLE 2.4: Which is the simplest D € A/~, for some X-form system (4,C,"),
which satisfies () but has no minimal element? It can be drawn as follows [arrows are



10

the functions from the various Ca (identity functions are not drawn); distinct arrows must
go to distinct elements because of (U); the diagram must '‘commute']:

{y} i {x}
3 4—» 4

{x,y} {x,y}

Here we have X = {x,y), fx=y,fy=x,gx=gy=x, hx =hy =y,ix=y,jy =x (and D
= A). This D has a cover, and is isomorphic to an occurrence system, €.g.,

<Yy,¥,Y> <X,X,X>

a 4—» a

<y, X,¥> <Y,¥.,X>
a a

<K, Y, X> <X, X,¥>

Here Q = {a) and Iva | = 3 > XI. Also, e.g., (a,<x,y,y>) € A. Hence, this occurrence
system satisfies none of the two requirements in Definition 2.3.

3. Extending to replacement systems

In X-form systems parameters are just replaced by other parameters. One wants to extend
this to systems with more general substitution. Aczel considers two types of such sys-
tems, X-substitution systems, where parameters can be replaced by arbitrary objects, and
replacement systems, where there are no parameters, but objects can be replaced by other
objects. The latter notion has a very simple definition:
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DEFINITION 3.1: A replacement system is an A-form system (A,C,). Likewise, a re-
placement occurrence system based on Q is an A-form occurrence system (A,C,-) based

on .

For example, if X = powX, Example 1.2 becomes a replacement system. Aczel's re-
placement system for sentential logic looks as follows.

EXAMPLE 3.2: Let L be the set of formulas in — and A with sentential symbols from P,
and define C by

Cp=© forpe P
C—6 = {9}
Co Ay = {d.y).

If 6:Cd — L, 6-¢ is defined in the obvious way. Then (L,C, ) is an L-form system.

Example 1.4 is (isomorphic to) an occurrence system, and Example 3.2 (to) a replacement
occurrence system. Moreover, there is a fairly simple way to 'generate’ 3.2 from 1.4: Put
atomic formulas in the slots (instead of parameters), then put the thus obtained formulas
in the slots, etc. The notion of an occurrence system has the advantage that this procedure

can be applied in general, as will now be shown,
Fix a class X and a signature Q = (Q,v) such that Ival < X] (if X is a set) for a € L.

Let Qq = {a € Q:va=1}. Q has atoms if Qq # .
If a € Q and fand g are two functions with domain va, we say that f and g are simi-
lar if, for any u,v € va, fu=fv < gu=gv.Itis easy to show

(11) Iffand g are similar, there is a bijection o:range(f) — range(g) such that g = cof.

Let, for any class ¥,

Aqy = {(af):ae Q & fiva—>TY}.

ForA C Am,, let A be the system (4,C,), where
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Claf) = range(f)
o(af) = (a,09f),if oirange(f) - Y

(this notation suppresses Y, but it will be clear from context which class is intended). Of
course, A is a ¥-form (occurrence) system only if it has the required closure property: if

(af) € A and o:range(f) — Y,then (a,00f) € A.
The (full) X-form occurrence system A, X is shown in Aczel [1988b] to be a free X-

form system [which implies that it can be homomorphically mapped into any X-form
system B which is adequate for Q in the sense that each arity of a symbol of Q is equi-

numerous with the set of parameters of some object of B]. Clearly

(12) The X-form occurrence systems based on Q are precisely the subsystems of

AQ'X.

Now, for any A © Ag, x, define a class operator T4 as follows:

r,Y = {(af): ae Q,fiva—Y, and for some giva = X which is
similarto f, (@,g) e A} .

(13) T, is monotone and set-based (cf. Aczel [1988a]). Furthermore, Aj C Ay =
r A1Y c I‘AIY .

By (13) we can then define

the least fixed point of I', above {(¢,): a € Qat)
the smallest class Z s.t. {(a,D):ae Qu}cZand [ ZCZ .

Iy

Since I'y& = &, it follows that

(14) I,#(J iff () has atoms.
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Following Aczel [1988b] we define the terms T, of €} to be the smallest class Z contain-
ing {(a, D) : ae Qq} such thatif e Qand fiva = Zthen (af) € Z.

(15) T =1 Aox
Proof: Note that if 2 € Q and fiva — Y we can always find a similar giva — X, since
Ival < [XI. Then (a,g) € Ag y and the result follows.

(16) IfACAqGy, then I, is closed, i.e., (af) € I, and o:range(f) — 1, implies that

(a,c0f) € 1.

Proof: Suppose (af) € I, with f similar to some g:va = X such that (a,g) € A. If
o:range(f) — 1, it follows by (11) and the fact that lrange(f)l < Ival < 1X| that we can find
t:range(g) — X such that oof is similar to Tog. Moreover, (a,70g) € A since A is an X-

form system. Thus (a,00) € T (/) <1, .

By (16), 1, defined as before (with I, itself as the class of 'parameters’) is a feplacement
occurrence system based on . We have thus defined an operator I from the class of X-
form occurrence systems based on € to the class of replacement occurrence systems
based on £, by

14y =1,.

It follows from (13) that
(17) Iis monotone, ie., A1 CSA2CAny implies that I{A1) € I{(A2) € T,

If By is a Y-form occurrence system based on £ and B2 a Z-form occurrence system
based on £, call By and By similar, if for each (af) € Bj there is a (a,8) € B2 with g si-
milar to f, and vice versa. Also, say that S has enough atoms, if lval < 1, foralla € Q.
We collect some of the information obtained about extending X-form occurrence systems
to replacement occurrence systems in a final theorem. The straight-forward proof, which
uses the techniques introduced above, is omitted.
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THEOREM 3.1: Suppose Q has enough atoms, and Ival < [X| (if X is a set) for a € €,
Then the mapping I is 1-1, and if A is an X-form occurrence system based on , I{A) is
similar to A.

As an example, the reader might want to check that the operator I applied to Example 1.4
yields Example 3.2 (when both are construed as occurrence systems). This is simpler

than the general case, though, since both systems are full, and hence what we have is an
instance of the fact that I{A, .X) =Tq.

4. Bibliographical note

My interest in questions of occurrence goes back to Westerstdhl [1976], where, among
other things, different notions of an abstract logic were compared. One such notion was
from Barwise [1974]. If one takes just the syntactic part of that notion, lets X be a set of
non-logical constants, forgetting the fact that these parameters are sorfed by arities etc.,
then one obtains, roughly, something which is almost an instance of an X-form system.
In fact, it could be called a semi-X-form system, which is defined as in Definition 1.1,
except that it has the weaker condition that if 6:Ca — X then

C(c-a) <€ range(o),
and accordingly the compositionality requirement that if T:range(c) — X then
(to0)-a = (tlC(o-a))(c-a).

In a semi-X-form system parameters may actually 'disappear’ during substitution. It is,
however, not hard to prove that

(18)  Under the condition (U), & semi-X-form system is in fact an X-form system.
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Now, one comparison was between Barwise's notion of a logic and what I called a se-
quence logic, where sentences are sequences of symbols. But what I was after was the
distinction which is the theme of the present note, i.c., that between a syntax with just an
‘occurs in' relation, and one which has occurrences. This has nothing to do with sequen-
ces really, and after reading Aczel [1988b], the notion of an occurrence system suggested
itself as a more elegant way of capturing the intuitive idea. Theorems 2.1 and 2.2 are,
essentially, reformulations of (the syntactic side of) results in Westerstdhl [1976].
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