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Abstract

We study generalized quantifiers on finite structures. With every
function f : ω → ω we associate a quantifier Qf by letting Qfxϕ
say “there are at least f(n) elements x satisfying ϕ , where n is the
size of the universe”. This is the general form of what is known as a
monotone quantifier of type 〈1〉 . We study so called polyadic lifts of
such quantifiers. The particular lifts we consider are Ramseyfication,
branching and resumption. In each case we get exact criteria for
definability of the lift in terms of simpler quantifiers.

1 Introduction and preliminaries

Monadic generalized quantifiers express properties of isomorphism types of
monadic structures, or equivalently, relations between cardinal numbers. Ar-

∗Partially supported by a grant from the University of Helsinki. This research was
initiated while the first author was a Junior Researcher at the Academy of Finland.
†Partially supported by grant 1011040 from the Academy of Finland and a grant from

the University of Helsinki.
‡Supported by the Swedish Council for Research in the Humanities and Social Sciences,

and by the Academy of Finland (during a visit to the University of Helsinki).



bitrary (polyadic) generalized quantifiers, however, express properties of iso-
morphism types of arbitrary relational structures. Apart from the issue of
the adequacy of the term ‘quantifier’ here — only monadic generalized quan-
tifiers deal with quantities — the step from monadic to polyadic quantifiers
entails a marked increase in difficulty as to issues of expressive power.

Generalized quantifiers are added to first-order logic — or to some other
logic — as a means of increasing its expressive power in certain respects (you
might want to be able to talk about infinity, or well-order, or compare cardi-
nals, in your logic). But precisely how expressive is the new logic? This leads
to basic definability questions like: When is quantifier Q definable in the
logic obtained by adding quantifiers Q1, . . . , Qn to a given logic? Such ques-
tions can be quite hard. On finite models, answering some of these questions
would mean solving notoriously difficult open problems about computational
complexity.

The results on (un)definability in the literature usually concern particular
quantifiers; few general definability results for interesting classes of quanti-
fiers are known. For monadic quantifiers, however, the definability question
above has recently been given a complete answer in algebraic terms (cf. [19]),
an answer which also permits complete classifications with respect to expres-
sive power of various classes of monadic quantifiers.

Nothing similar is in sight for polyadic quantifiers, not even for the sim-
plest kind whose signature consists of one binary relation. A rough way of
measuring complexity of a quantifier is by its arity, i.e., the largest arity of
the relations occurring in the corresponding signature. So monadic quan-
tifiers are unary, and an early result by Lindström [14] is that the binary
well-ordering quantifier is not definable by means of any monadic quantifiers
added to first-order logic. This leads to the question of the existence of arity
hierarchies of quantifiers: sequences 〈Qn〉n∈ω where Qn is n-ary and not
definable in terms of Qk for k < n , or even in terms of any quantifiers of
lower arity. Several such hierarchies are known; a systematic treatment is
given in [6].

These hierarchy results make essential use of infinite models. Recently,
some hierarchy results have also been obtained for finite models. One result
by Luosto [15] is that the relativization of the binary quantifier “R contains
at least half of the ordered pairs of elements of the universe” is not definable
from any monadic quantifiers over finite models. The proof uses advanced
finite combinatorics. Another recent result, the Hierarchy Theorem of [8],
states that, with respect to a more fine-grained complexity ordering than the
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arity ordering, there exists at every step quantifiers not definable in terms
of quantifiers of lower complexity, over finite models. However, the exis-
tence of these quantifiers is proved by probabilistic methods, not by explicit
construction.

In this paper we shall give definability characterizations over finite models
for certain classes of polyadic quantifiers, more precisely for polyadic quanti-
fiers that are obtained from monadic ones by means of certain operations. We
call these operations polyadic lifts. Three such lifts are studied: branching,
Ramseyfication and resumption.

Let Q be a simple unary quantifier (one whose signature contains just one
unary predicate symbol), which is also monotone. Then there is a function
f from natural numbers to natural numbers such that on a universe with n
elements Q means “at least f(n)”. The branching of Q (with itself) says of
a binary relation R that there are subsets X, Y of the universe with at least
f(n) elements such that the ‘rectangle’ X × Y is contained in R . Similarly
we can branch two distinct monotone simple unary quantifiers (requiring
then that |X| ≥ f(n) and |Y | ≥ g(n)), or k such quantifiers. The k -ary
Ramseyfication of Q says that there is a set X of cardinality at least f(n)
which is homogeneous for R , i.e., any k distinct elements of X stand in the
relation R to each other. A resumption of a monadic quantifier, finally, says
the same thing about tuples of individuals that the monadic quantifier says
about individuals. So the k -ary resumption of Q says, on a universe with n
elements, of a k -place relation that it contains at least f(nk) k -tuples.

These polyadic lifts turn up in various contexts. The Ramseyfication
operation is familiar from model theory. The ability to quantify over k -tuples
is sometimes assumed in finite model theory in order to be able to describe
certain behavior of Turing machines. And all three lifts have been proposed
in natural language semantics. Actually, this is the context where the idea of
polyadic lifts and their definability arose, even though the definability issues
themselves are standard mathematical-logical questions.

The most immediate question to ask about a polyadic lift is whether
it really gives anything new, i.e.: Is Lift(Q1, . . . , Qn ) definable in terms of
Q1, . . . , Qn? This is the question we deal with in this paper. We prove
that for the three lifts under consideration, the lifted quantifiers are usually
not definable in first-order logic augmented with the argument quantifiers.
More precisely, we show that a certain condition of unboundedness of the
functions associated with monotone simple unary quantifiers is sufficient for
undefinability of branching and Ramseyfication. Actually, our results are
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stronger. We show that, if Q is unbounded, the (k+1)-ary branching of Q is
not definable from any monadic quantifiers added to first-order logic (k ≥ 1).
And for Ramseyfication we obtain undefinability even if any quantifiers of
arity at most k are allowed, and even if first-order logic is replaced by the
stronger logic Lω∞ω (a logic which extends fixed point logic). Moreover, we
also show that unboundedness is a necessary condition for undefinability.
That is, if Q is bounded, branching and Ramseyfication of Q is definable
in terms of Q . We have a similar characterization for the definability of the
branching of k + 1 quantifiers.

For resumption, our results are similar but a little weaker. We show that a
slight strengthening of unboundedness is necessary and sufficient for the (k+
1)-ary resumption of Q to be undefinable from any monotone simple unary
quantifiers added to first-order logic. We also identify another necessary
condition for the (k + 1)-ary resumption of Q to be undefinable from Q ,
roughly that the behavior of Q on universes of size n does not determine its
behavior on universes of size nk+1 .

In natural language semantics, the basic quantifiers are not the simple
unary ones but instead those of type 〈1, 1〉 , whose signature has two unary
predicate symbols. English determiners like all, some, no, at least five, most,
all but three, more than two thirds of, etc., denote such quantifiers. The lift
operations arise from the way noun phrases containing determiners are com-
bined with each other in sentences. The standard lifts here give polyadic
quantifiers which are definable from the determiner denotations, but some
sentences appear to use the three lifts studied in this paper. We show that our
results about branching and Ramseyfication generalize to type 〈1, 1〉 quan-
tifiers, provided these satisfy two conditions. These conditions are believed
to hold (almost) universally for determiner denotations.

We restrict attention to finite models, a constraint which is common in
natural language semantics and model theory for computer science. The
undefinability results of course hold for arbitrary models — it’s just that
the counter-examples we give to definability are finite. But our results that
certain quantifiers are definable in certain logics require the assumption of
finiteness.

In the remainder of this section we first recall the relevant notions per-
taining to logics with generalized quantifiers, and then introduce the three lift
operations in the context of natural language semantics. The brief linguistic
excursion there is included for background and motivation, but not used in
the rest of the paper. In Section 2 we state some facts about monotone quan-
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tifiers and establish that boundedness implies definability (of branching and
Ramseyfication). Sections 3,4, and 5 deal with branching, Ramseyfication
and resumption, respectively. In each case, undefinability is established by
means of a suitable Ehrenfeucht-Fräıssé game, although the three proofs are
quite different. Section 6 concludes the paper with some open questions.

1.1 Generalized quantifiers and definability

We begin by recalling the concept of a generalized (Lindström) quantifier,
and of logics with such quantifiers (cf. [13]).

A (generalized) quantifier is a class Q of structures of a finite relational
signature which is closed under isomorphism. The type of Q can be identified
with a finite sequence 〈k1, . . . , kn 〉 of positive natural numbers (n > 0).
Equivalently, Q can be defined as a functional assigning to each non-empty
set A a quantifier QA of type 〈k1, . . . , kn 〉 on A , i.e., a subset of P(Ak1)×
. . .×P(Akn) (a second-order relation over A). Instead of (A, R1, . . . , Rn ) ∈
Q we then write QA(R1, . . . , Rn ) or simply QAR1 . . . Rn . The arity of Q is
max{k1, . . . , kn} . Q is monadic if it is unary (k1 = . . . = kn = 1); otherwise
polyadic. We let Qk be the class of all quantifiers of arity ≤ k .

A quantifier Q of type 〈k〉 is called simple. It is monotone if for all
A and all R, S ⊆ Ak , QAR and R ⊆ S implies QAS . The notion of a
type 〈k1, . . . , kn 〉 quantifier being monotone in the i:th argument is defined
similarly.

With many familiar logics L one can uniquely associate a logic L(Q)
obtained by adding the quantifier Q : a new formation rule yields formulas

Qx1, . . . ,xn (ϕ1, . . . , ϕn )

where ϕ1, . . . , ϕn are formulas, xi is a string of ki distinct variables, and the
semantics is given by the clause

A |= Qx1, . . . ,xn (ϕ1(a,x1), . . . , ϕn(a,xn)) ⇐⇒ (A,ϕA
1 (a, ·), . . . , ϕA

n (a, ·)) ∈ Q.

Here A is the universe of A , a is a finite sequence of elements in A , and
ϕA
i (a, ·) = {b ∈ Aki | A |= ϕi(a,b)} . Similarly one defines the logic L(Q)

when Q is a class of quantifiers.
In this paper L will be either first-order logic Lωω , or Lk∞ω (which is like

L∞ω except that it only has k variables), or Lω∞ω =
⋃
k<ω Lk∞ω . As usual,

A ≡L(Q) B
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means that the same L(Q)-sentences are true in A and in B . When ϕ is an
Lωω(Q)-formula, its quantifier rank qr(ϕ) is the maximal number of nestings
of quantifier symbols (including ∀ and ∃) in ϕ , and

A ≡qLωω(Q) B

means that the same Lωω(Q)-sentences of quantifier rank at most q are true
in A and in B .

The relativization of a type 〈k1, . . . , kn 〉 quantifier Q is the type 〈1, k1, . . . , kn 〉
quantifier Qrel defined by

Qrel
A (X,R1, . . . , Rn) ⇐⇒ QX(R1 ∩Xk1 , . . . , Rn ∩Xkn).

This can be extended to formulas of L(Q): if P is a (new) unary predi-
cate symbol and ϕ such a formula one defines inductively a formula ϕ(P )

of L(Qrel) which says the same thing about (A, X) as ϕ says about the
substructure of A generated by X .

The quantifier Q is definable in L(Q) if the sentence

Qx1, . . . ,xn (P1(x1), . . . , Pn(xn))

is logically equivalent to some L(Q)-sentence in those predicate symbols. A
logic extends another logic if every sentence in the latter is equivalent to some
sentence in the former. In particular, L(Q′) extends L(Q) iff each Q ∈ Q
is definable in L(Q′).

1.2 Polyadic lifts and natural language quantification

Before defining the polyadic lifts we briefly explain how they turn up in
natural language semantics. More details can be found in [10].

Monadic generalized quantifiers provide the most straightforward way to
give the semantics of noun phrases (NPs) in natural languages. Consider a
sentence like

(1) No students smoke

It consists of a noun phrase no students, in turn constituted by the deter-
miner no and the noun students, and a verb phrase smoke, in this case a
simple intransitive verb. In a model A the noun and the verb phrase denote
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subsets of A . Thus, the determiner is naturally taken to denote a binary
relation between subsets of A , i.e., with varying A , a type 〈1, 1〉 generalized
quantifier.

In (1) the quantifier used is noAXY ⇔ X ∩Y = ∅ (using the same
symbol for the determiner as for its denotation). Changing the determiner in
(1) we obtain other familiar type 〈1, 1〉 quantifiers such as all, some, at least
five, most, all but three, more than two thirds of, etc., where, for example,
mostAXY ⇔ |X ∩ Y | > |X − Y | , and all but threeAXY ⇔ |X − Y | = 3.

The first argument in these quantifiers is called the noun argument, and
the second the verb argument. Some determiners take more than one noun
argument, as in

(2) More students than teachers smoke

where more. . . than denotes the type 〈1, 1, 1〉 quantifier more . . . thanAXY Z ⇔
|X ∩ Z| > |Y ∩ Z| . The role of type 〈1〉 quantifiers in this context is as NP
denotations. For example, the denotation of most students is obtained by
fixing the noun argument of most to the denotation of students. Other NPs
do not involve determiners, like something and everything which denote ∃
(∃AX ⇔ X 6= ∅) and ∀ (∀AX ⇔ X = A), respectively, and phrases like
John or Mary, which denotes the set of X ⊆ A such that j ∈ X ∨m ∈ X .
But note that whereas the determiner denotations above are all closed un-
der isomorphism, most NP denotations are not, and thus do not qualify as
quantifiers in the present sense.

Determiners usually denote type 〈1, 1〉 quantifiers, but not all such quan-
tifiers are determiner denotations. Indeed, the following two constraints have
been found to hold (almost) universally:

CONS QAXY ⇐⇒ QAX X∩Y
EXT QAXY ⇐⇒ QA′XY for X, Y ⊆ A,A′

CONS predicts, for example, that the Härtig quantifier

IAXY ⇐⇒ |X| = |Y |

is not the denotation of any English determiner. And EXT implies that
no determiner can mean, say, some on universes with less than 10 elements
and all on other universes. Nevertheless, the determiner denotations form a
rich class of quantifiers: as further examples we may take the proportional
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quantifiers |X ∩ Y | > m/n · |X| and |X ∩ Y | ≥ m/n · |X| , 1 ≤ m < n ,
expressed by more than (at least) m n:ths of the, and Boolean combinations
of these, such as less than half of the, between ten and twenty percent of the,
not more than ten or at least twenty percent of the, etc.

Together, CONS and EXT express a characteristic asymmetry between
the two arguments of determiner denotations: the role of the noun argument
is to restrict the domain of quantification. A precise statement is the following

1.1 Fact. A type 〈1, 1〉 quantifier is CONS and EXT iff it is the relativiza-
tion of some simple unary quantifier.

Clearly, Qrel is always CONS and EXT and, conversely, if Q′ is CONS
and EXT then, for Q defined by QAY ⇔ Q′AAY , Qrel = Q′ . This simple
fact often enables one to generalize results about simple unary quantifiers to
determiner denotations.

Notice also that a simple unary Q is monotone iff Qrel is right monotone
(monotone in the verb argument). For example, the proportional quantifiers
above are right monotone.

Thus, NP semantics involves monadic quantifiers. But sentences can
combine several NPs, together with transitive or ditransitive verbs denoting
not sets but binary or ternary relations. Their truth conditions can then be
given by means of polyadic quantifiers. Indeed, common sentential structures
correspond to ways of lifting monadic quantifiers to polyadic ones. The most
ubiquitous lift is iteration, as in

(3) Most students criticized three teachers

with a quantified subject and object (most X and three Y ) and a transitive
verb (R). The truth conditions (of one of the two readings of (3)) are

(4) most x, y(Xx, three z, u(Y z,Ryu))

or, equivalently, the result of applying the lifted quantifier It(most , three) to
the arguments X, Y and R : define (suppressing A)

(5) It(Q1, Q2)XY R ⇐⇒ Q1X{a | Q2Y Ra}

(Ra = {b | Rab}). However, seemingly similar sentences sometimes corre-
spond to other lifts than iteration. For example,
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(6) Forty researchers wrote thirty-two papers for the Handbook

presumably means neither that each of the forty researchers wrote thirty-
two papers, nor that each of the thirty-two papers was written by forty
(co)authors. Instead, this is an instance of so-called cumulative quantifi-
cation: each of the forty researchers authored at least one paper for the
Handbook, and each of the thirty-two papers was authored by at least one
researcher. Thus, we have the lift

(7) Cum(Q1, Q2)XY R ⇐⇒ It(Q1, some)XY R ∧ It(Q2, some)Y XR−1.

We now come to the lifts studied in this paper. The first was introduced
by Barwise in [1] with examples such as

(8) Most boys in your class and most girls in my class have all dated each
other

Here the lift in question, on at least one plausible reading, is branching.

1.2 Definition. For right monotone type 〈1, 1〉 quantifiers Q1, . . . , Qk ,
define (again suppressing the universe)

Br(Q1, . . . , Qk)X1 . . . XkR ⇐⇒
∃Y1 ⊆ X1 . . . ∃Yk ⊆ Xk[Q1X1Y1 ∧ . . . ∧QkXkYk ∧ Y1 × . . .× Yk ⊆ R].

We write Brk(Q) for Br(Q, . . . , Q) (k arguments). The branching of k
monotone type 〈1〉 quantifiers is defined analogously by suppressing X1, . . . , Xk .

So (8) means that there is a set X containing more than half the boys in
your class and a set Y containing more than half the girls in my class such
that any pair in X × Y is a ‘dating’ pair.

A similar lift occurs in certain reciprocal sentences like

(9) At least two thirds of the boys in your class all like each other

which can be taken as saying that there is a set containing at least two thirds
of the boys in your class such that any two distinct boys in this set are in
the ‘like’ relation:
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1.3 Definition. Let Q be a right monotone type 〈1, 1〉 quantifier.

Ramk(Q)XR ⇐⇒ ∃Y ⊆ X[QXY ∧ Y k − I(Y ) ⊆ R]

(where I(Y ) = {(a1, . . . , ak ) ∈ Y k | ∃i, j(i 6= j ∧ ai = aj)}). Similarly for a
monotone simple unary Q .

We call the values of this lift Ramsey quantifiers, extending slightly the
common usage of this term (where Q is the quantifier ‘there exists a least
ℵα ’).

Our final example of a polyadic lift, resumption, amounts to using a
monadic quantifier to quantify over k -tuples of individuals. This lift has
found uses in computer science (cf. [4] and [16]) but can be given a linguistic
motivation as well; cf. cases like

(10) Most neighbours like each other

(11) Most twins never separate

1.4 Definition. Let Q be a unary quantifier. Define

(Resk(Q))AR1 . . . Rn ⇐⇒ QAkR1 . . . Rn

where n is the length of the type of Q .

The route to the lifts here went via linguistics, but they are natural in
other contexts too. For example, to say that a graph contains so and so
many vertices of degree 3 one iterates monadic quantifiers. But to say that a
graph contains a clique of such and such size, one needs a Ramsey quantifier.
Of course, one could also use second-order logic. But the Ramsey quantifier
gives a better estimate of just how much expressive power one needs to add
to first-order logic in this case.

To know how powerful the lifts are one needs first of all to answer the
basic logical definability question:

When is Lift(Q1, . . . , Qn ) definable in L(Q1, . . . , Qn )?

(The question is also significant in a linguistic context. For example, non-
definability may imply that a certain kind of grammar for the corresponding
expressions does not exist.) Trivially, iterations and Boolean combinations
thereof are so definable. We shall prove below that the other polyadic lifts
– branching, Ramseyfication and resumption – are usually not definable in
this way.
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2 Monotone quantifiers

From now on, unless otherwise noted, we restrict attention to finite models.
Then, a monotone simple unary quantifier can be identified with a function
f : ω → ω such that for all n ∈ ω , f(n) ≤ n + 1; the quantifier Qf

corresponding to f says of a set X that it has at least f(n) elements, where
n is the cardinality of the universe (if f(n) = n + 1 this is trivially false).
More precisely, given f , define

(Qf )AX ⇐⇒ |X| ≥ f(|A|)

for X ⊆ A . Conversely, if Q is monotone, and

f(n) =

{
least k s. t. ∃A∃X ⊆ A(|A| = n ∧ |X| = k ∧ QAX) if such a k exists
n+ 1 otherwise

then Q = Qf .
Rather perspicuous definability criteria can be given for monotone simple

unary quantifiers. A full characterization can be found in [19]; here we quote
for illustration the following special cases:

2.1 Theorem.

1. ([11], [21]) The quantifier Qf is first order definable iff either f(n) or
n− f(n) is eventually constant.

2. ([19]) Suppose that limn→∞ f(n) = limn→∞(n − f(n)) = ∞ and that
either limn→∞(n/2 − f(n)) = ∞ or limn→∞(f(n) − n/2) = ∞. Then
Qg is definable in Lωω(Qf ) iff at least one of g(n), n − g(n), f(n) −
g(n), n− f(n)− g(n) is eventually constant.

In the second of these statements Qf is assumed to satisfy a strong un-
boundedness condition. For most of this paper, the following weaker notion
is sufficient.

2.2 Definition. We say that the function f (or quantifier Qf ) is unbounded
if ∀m∃n(m ≤ f(n) ≤ n−m). Otherwise f is bounded.
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Canonical examples of unbounded functions are [n
2
], [
√
n ] , and [log(n)]

(where [a] is the integer part of a). Typical bounded functions are f(n) = 1
(corresponding to ∃), f(n) = n (∀), and f(n) = 1 for even n and f(n) =
n− 1 otherwise.

2.3 Theorem. If f is bounded, then for any k ≥ 2, Brk(Qf ) and Ramk(Qf )
are definable in Lωω(Qf ).

Proof. By hypothesis, there is a number m such that for every n , either
f(n) = 0, or f(n) = n + 1, or 0 < f(n) < m , or n −m < f(n) ≤ n . We
can use Qf to uniquely characterize each of these possibilities for f(n). To
see this, note first that f(|A|) = 0 ⇐⇒ A |= ξ and f(|A|) = |A|+ 1 ⇐⇒
A |= θ , where ξ and θ are the sentences Qfx(x 6= x) and ¬Qfx(x = x),
respectively. Second, for p > 0 we have f(|A|) = p ⇐⇒ A |= ϕp , where
ϕp is

∃x1 . . . ∃xp[
∧

1≤i<j≤p

xi 6= xj ∧ Qfy(

p∨
i=1

y = xi) ∧ ¬Qfy(

p−1∨
i=1

y = xi)].

Third, let ψq be the conjunction of

∃x1 . . . ∃xq∃xq+1[
∧

1≤i<j≤q+1

xi 6= xj ∧ Qfy(

q∧
i=1

y 6= xi) ∧ ¬Qfy(

q+1∧
i=1

y 6= xi)]

and ¬ξ . Then f(|A|) = |A| − q > 0 ⇐⇒ A |= ψq .
Moreover, for each one of these finitely many possibilities, the branching

condition

∃X1 . . . ∃Xk[|X1|, . . . , |Xk| ≥ f(|A|) ∧ X1 × . . .×Xk ⊆ R]

is expressible in first-order logic. Indeed, if f(|A|) = p > 0, this condition is
equivalent to the sentence

ηp = ∃x1 . . . ∃xk[
∧

1≤i≤k

α(xi) ∧
∧
h∈H

R(x1h(1), . . . , x
k
h(k))],

where xi = (xi1, . . . , x
i
p), 1 ≤ i ≤ k , α(x) states that all components of x

are distinct, and H is the set of all functions h : {1, . . . , k} → {1, . . . , p} . In
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the case f(|A|) = |A| − q > 0, q > 0, the branching condition is equivalent
to the sentence

ζq = ∃x1 . . . ∃xk∀y[(
∧

1≤i≤k

yi 6∈ xi)→ R(y1, . . . , yk)],

where xi = (xi1, . . . , x
i
q), 1 ≤ i ≤ k , and y = (y1, . . . , yk) (for q = 0, ζq

is simply ∀x1, . . . , xkR(x1, . . . , xk)). And finally, if f(|A|) = 0 (f(|A|) =
|A|+ 1), then the branching condition is trivially true (false).

Putting all this together we conclude that Brk(Qf )x1, . . . , xkR(x1, . . . , xk)
is equivalent to the sentence

ξ ∨
∨

1≤p<m

(ϕp ∧ ηp) ∨
∨
q<m

(ψq ∧ ζq).

The case of Ramk(Qf ) is similar. 2

The relativization Qrel
f of Qf is the right monotone type 〈1, 1〉 quantifier

(Qrel
f )AXY ⇐⇒ |X ∩ Y | ≥ f(|X|).

We say that Qrel
f is bounded if f is bounded. Notice that Qf is definable

in Lωω(Qrel
f ), that Br(Qf1 , . . . , Qfk) is definable in Lωω(Br(Qrel

f1
, . . . , Qrel

fk
)),

and that Ramk(Qf ) is definable in Lωω(Ramk(Qrel
f )). From Fact 1.1 we see

that right monotone determiner denotations usually are of the form Qrel
f . For

example, the quantifier most is Qrel
f for f(n) = [n

2
] + 1. And in most of these

cases, relativization increases expressive power. In fact, the following result
tells us precisely when this happens.

2.4 Theorem. ([11], [21]) The quantifier Qrel
f is definable in Lωω(Qf ) (or

in Lω∞ω(Qf )) iff either f(n) or n− f(n) is eventually constant (i.e., iff Qf

is first-order definable).

Note that Qrel is definable in L(Q) iff L(Q) has the relativization prop-
erty, i.e., for any L(Q)-sentence ϕ , ϕ(P ) is equivalent to an L(Q)-sentence.
We end this section by stating a relativized version of Theorem 2.3 (these
theorems will be generalized to the branching of several quantifiers in section
3).
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2.5 Theorem. If f is bounded, then Brk(Qrel
f ) and Ramk(Qrel

f ) are defin-

able in Lωω(Qrel
f ).

Proof. Similar to the proof of Theorem 2.3. To formulate the branch-
ing condition Brk(Qrel

f )X1 . . . XkR over a universe A , we need to express
statements of the form

f(|Xi|) = 0

f(|Xi|) = |Xi|+ 1

f(|Xi|) = p

f(|Xi|) = |Xi| − q

(p > 0, q ≥ 0), and this can be done with the quantifier Qrel
f . 2

3 Definability of branching

In this section we first recall definitions and basic properties of some Ehrenfeucht-
Fräıssé type games, and then apply these games to the definability of branch-
ing.

The bijective Ehrenfeucht-Fräıssé game of length q , BEFq(A,B), has two
players, which we call Duplicator and Spoiler , respectively. In each round
1 ≤ i ≤ q of the game Duplicator chooses first a bijection fi : A → B and
Spoiler responds by choosing an element ai ∈ A . These q pairs of moves of
the players determine a relation p = { (a1, f1(a1)), . . . , (aq, fq(aq)) } ⊆ A×B .
Duplicator wins the game if p is a partial isomorphism A→ B , i.e., if p is an
injective function such that for each relation R of A and the corresponding
relation R′ of B , and for all tuples (b1, . . . , bk) ∈ (dom(p))k ,

(b1, . . . , bk) ∈ R ⇐⇒ (p(b1), . . . , p(bk)) ∈ R′.

Spoiler wins if this is not the case, or if Duplicator cannot make his moves,
i.e., if there are no bijections A→ B .

As usual, what happens in some particular play of BEFq(A,B) is not
important. It is rather the question “which one of the players has a winning
strategy” that is relevant for us. Here we say that Duplicator (Spoiler) has
a winning strategy if he has a systematic way of choosing the bijections fi
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(the elements ai ) such that using it he always wins the game, no matter how
the other player moves.

The following result is a direct consequence of Theorem 2.5 of [6]. For
the sake of completeness we will explain here the basic idea behind its proof.
Recall that A ≡qLωω(Q) B means that A and B satisfy the same Lωω(Q)-
sentences of quantifier rank at most q .

3.1 Proposition. If Duplicator has a winning strategy in the game BEFq(A,B),
then A ≡qLωω(Q1)

B.

Proof. (idea) Consider a formula ϕ(y) = Qx1, . . . , xm (ψ1(y, x1), . . . , ψm(y, xm))
of Lωω(Q1) and a partial function p : A → B , a 7→ b . If f is a bijection
A → B such that for every a ∈ A and each 1 ≤ j ≤ m , A |= ψj(a, a) ⇔
B |= ψj(b, f(a)), then the function f is an isomorphism between the defined
structures (A,ψA

1 (a, ·), . . . , ψA
m(a, ·)) and (B,ψB

1 (b, ·), . . . , ψB
m(b, ·)). Hence,

A |= ϕ(a) if and only if B |= ϕ(b), no matter what the interpretation of
the quantifier Q is. Using this observation it is easy to prove by induction
on r that if f1, . . . fq−r are bijections A → B which Duplicator has chosen
according to his winning strategy, and a1, . . . , aq−r ∈ A are the elements
chosen by Spoiler, then

A |= ϕ(a1, . . . , aq−r) ⇐⇒ B |= ϕ(f1(a1), . . . , fq−r(aq−r))

for every formula ϕ of Lωω(Q1) with qr(ϕ) ≤ r . In particular, the equiva-
lence A |= ϕ ⇔ B |= ϕ holds for every sentence ϕ of quantifier rank ≤ q .
2

If the structures A and B are finite, then the converse of Proposition 3.1
is also true: A ≡qLωω(Q1)

B if and only if Duplicator has a winnning strategy

in BEFq(A,B). Furthermore, this equivalence holds for infinite structures,
too, if the logic Lωω(Q1) is replaced with the infinitary logic L∞ω(Q1) (cf.
[6]). However, the implication stated in Proposition 3.1 is all that is needed
for proving undefinability results.

3.2 Corollary. Let K be a class of structures. If for every natural number
q there exist structures A and B such that A ∈ K , B 6∈ K and Duplicator
has a winning strategy in BEFq(A,B), then K is not definable in Lωω(Q1).
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Below we will give a non-trivial application of BEFq(A,B) to finite mod-
els. But to get a feeling for the game, it may be helpful to to first see the
use of Corollary 3.2 with a much simpler example, which involves infinite
models.

3.3 Example. For each natural number m , let Em be an equivalence
relation on ω with m equivalence classes, all of cardinality ω . Similarly, let
Eω ⊆ ω2 be an equivalence relation with ω equivalence classes of cardinality
ω . We claim that (ω,Em) ≡qLωω(Q1)

(ω,En) whenever q ≤ m,n ≤ ω . To see

this, consider an arbitrary partial isomorphism p = {(a1, b1), . . . , (ar, br)}
such that |p| = r < q . For each i , let Ai = { a ∈ ω − {a1, . . . , ar} |
(a, ai) ∈ Em } and Bi = { b ∈ ω − {b1, . . . , br} | (b, bi) ∈ En } . Clearly
all these sets A1, . . . , Ar and B1, . . . , Br are of cardinality ω . Furthermore,
since r < q ≤ m,n , the sets A = ω − (A1 ∪ · · · ∪ Ar) and B = ω −
(B1 ∪ · · · ∪ Br) are also of cardinality ω . Hence, there exists a bijection
f : ω → ω extending p which maps Ai onto Bi for 1 ≤ i ≤ r , and A onto
B . But then p ∪ {(a, f(a))} is a partial isomorphism (ω,Em) → (ω,En)
for any a ∈ ω . In particular, Duplicator can keep choosing bijections fi ,
1 ≤ i ≤ q , in the game BEFq((ω,Em), (ω,En)) in such a way that the
mapping { (a1, f1(a1)), . . . , (ai, fi(ai)) } is always a partial isomorphism.

Let K be the class of all structures (A,E) such that E is an equivalence
relation on A with finitely many equivalence classes. Since (ω,Em) ∈ K
for every m < ω , but (ω,Eω) 6∈ K , it follows from Corollary 3.2 that K
is not definable in Lωω(Q1). In a similar fashion we see that the class K′
consisting of those equivalence relations (A,E) that have an even number of
equivalence classes is not definable in Lωω(Q1).

Historical remark. The example is a variant of Keisler’s counterexample
to interpolation in Lωω(Q1). It was realized by Caicedo [3] and Väänänen
(cf. [12]) that this kind of example (though with infinitely many equivalence
classes) works for all monadic quantifiers; a proof using the BEF game was
given in [6].

3.1 Branching of one quantifier

In Section 2 we saw that branching a bounded quantifier does not have any
effect on its expressive power. However, the following result shows that
branching usually increases the expressive power even beyond the reach of
any monadic quantifiers.

16



3.4 Theorem. Let Q be a monotone simple monadic quantifier. If Q is
unbounded, then Br2(Q) is not definable in Lωω(Q1).

Putting together Theorems 2.3 and 3.4 we obtain a complete characteri-
zation of the definability of Br2(Q) in terms of Q for any monotone simple
monadic quantifier Q . Using Theorem 2.5 (and the fact that Br2(Qf ) is
definable in Lωω(Br2(Qrel

f ))) we get the same characterization for relativiza-
tions of such quantifiers. Moreover, 2 can be replaced by any k > 1, since
we have

3.5 Lemma. If Q is a monotone simple unary quantifier, or the relativiza-
tion of such a quantifier, then Brk(Q) is definable in Lωω(Brk+1(Q)).

Proof. When Q = Qf , we have simply

Brk(Q)x1, . . . , xkR(x1, . . . , xk ) ↔ Brk+1(Q)x1, . . . , xk+1R(x1, . . . , xk )

which is seen by considering separately the three cases (1) f(|A|) = |A|+ 1,
(2) f(|A|) = 0, and (3) f(|A|) 6= 0, |A| + 1. The relativized case is similar.
2

Applying also Fact 1.1, we obtain the following characterization.

3.6 Corollary. Suppose that Q is either a monotone type 〈1〉 quantifier,
or a right monotone type 〈1, 1〉 quantifier satisfying CONS and EXT. Then
the following conditions are equivalent, for any k > 1:

(1) Brk(Q) is definable in Lωω(Q).
(2) Brk(Q) is definable in Lωω(Q1).
(3) Q is bounded.

In [9], Hella and Sandu proved, modifying a model construction by Fagin
[5], that connectivity of (finite) graphs is not definable in terms of monadic
quantifiers. Their proof implies a special case of Corollary 3.6: Br2(most) is
not definable in Lωω(Q1) (cf. [22]). Here we will use a simple trick to modify
this proof so that it works for any unbounded quantifier Qf .

3.7 Definition. Let n be a natural number and A = (A,E) a graph.
We say that A is n-separable if there exist subsets C,D ⊆ A such that
|C| = |D| = n and (C×D)∩E = ∅ . Furthermore, if f is a function ω → ω ,
we denote by Kf the class of all graphs A which are f(|A|)-separable.
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Here all graphs are assumed to be undirected, but not necessarily irreflex-
ive. Thus, a structure (A,E) is a graph if E is a symmetric binary relation
on A , possibly containing self-loops (a, a).

Observe now that a graph (A,E) is in the class Kf if and only if its
complement graph (A,A2−E) is in the quantifier Br2(Qf ). Hence, we have

3.8 Lemma. For any function f : ω → ω , the class Kf is definable in the
logic Lωω(Br2(Qf )).

We shall now define two families of graphs that are the heart of the proof
of Theorem 3.4.

3.9 Definition. Let q , r and s be natural numbers, and let P , P ′ , R and
S be mutually disjoint sets of cardinalities 2q+2, 2q+2, r and s , respectively.
Assume further that P = {c0, . . . , c2t−1} and P ′ = {d0, . . . , dt−1, e0, . . . , et−1} ,
where t = 2q−1+1. We define two graphs Aq,r,s = (A,E) and Bq,r,s = (B,E ′)
as follows:

• A = P ∪R ∪ S ;

• B = P ′ ∪R ∪ S ;

• E = (S × A) ∪ (A× S) ∪ { (ci, cj) | |i− j| ∈ {0, 1, 2t− 1} } ;

• E ′ = (S ×B) ∪ (B × S) ∪ { (di, dj), (ei, ej) | |i− j| ∈ {0, 1, t− 1} } .

In the case r = s = 0 we denote Aq,r,s and Bq,r,s simply by Aq and Bq .

Thus, one can visualize the graphs Aq,r,s and Bq,r,s as follows. Aq,r,s

consists of a cycle (with self-loops) of length 2q +2 and two ‘boxes’ R and S
containing r and s elements, respectively. Each element in S is connected
by an edge to all elements of A (including itself), whereas the elements in R
are not adjacent to any elements other than those in S . The graph Bq,r,s is
similar, except that instead of the big cycle it contains two cycles of length
2q−1 + 1.

3.10 Lemma. For all natural numbers q , r and s, Duplicator has a win-
ning strategy in the game BEFq(Aq,r,s,Bq,r,s).
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Proof. We start by observing that the subsets R and S of the universe
of Aq,r,s and Bq,r,s can be omitted in this proof without loss of generality:
Duplicator has a winning strategy in BEFq(Aq,r,s,Bq,r,s) if and only if he
has one in BEFq(Aq,Bq). Indeed, the mapping f 7→ f ∪ idR ∪ idS for each
bijection f : P → P ′ , transforms any winning strategy of Duplicator in
BEFq(Aq,Bq) to a winning strategy in BEFq(Aq,r,s,Bq,r,s). On the other
hand, if Duplicator wins the game between the larger structures Aq,r,s and
Bq,r,s , then he wins the game between Aq and Bq simply by choosing the
restrictions of his bijections to the set P . Hence, it suffices to show that
Duplicator can always win the game BEFq(Aq,Bq). This was already done
in [9] (for cycles without self-loops), but for the sake of completeness we give
here a new proof.

For each k < 2t = 2q + 2, let gk : P → P ′ be the bijection defined by

gk(ci) =

{
di, if i ≡ j (mod 2t) for some j ∈ [k, t+ k − 1]
ei, if i ≡ j (mod 2t) for some j ∈ [t+ k, 2t+ k − 1]

(Here we are stipulating that if t ≤ i < 2t , then di = di−t , and similarly
for ei .) Thus, gk arises by splitting the big cycle in Aq into two halves and
mapping each of these halves, in a uniform way, onto one of the small cycles
in Bq . We will show below that Duplicator wins the game BEFq(Aq,Bq) by
choosing bijections of the form gk for suitable k .

Before describing this winning strategy we need to introduce some auxil-
iary concepts. Let C be a subset of P and k and l integers less than 2t . We
say that gk and gl are C -equivalent if gl(a) = gk(a) for every a ∈ C . The
splitting points of gk are ck−1, ck, ct+k−1 and ct+k . The distance of C from
the splitting corresponding to gk is

dk(C) = min{ d(a, b) | a ∈ C, b a splitting point of gk},

where d(a, b) denotes the usual distance between elements in a graph. Fur-
thermore, for each a ∈ P , we denote by hk(a) the splitting point which is
closest to a . Note that if dk(C) > 0, then the restriction of the bijection gk
to the set C ∪ {a} is a partial isomorphism Aq → Bq for any a ∈ P .

We claim now that Duplicator can choose his bijections fi , 1 ≤ i ≤ q , in
the game BEFq(Aq,Bq) in such a way that, for each 1 ≤ i ≤ q ,

(1) there is k < 2t such that fi = gk and dk({a1, . . . , ai−1}) ≥ 2q−i , and

(2) fi is {a1, . . . , ai−1}-equivalent to fi−1 ,
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where a1, . . . , aq ∈ A are the elements chosen by Spoiler. This constitutes
the promised winning strategy for Duplicator, since condition (2) implies that
the mapping { (a1, f1(a1)), . . . , (aq, fq(aq)) } is the restriction of fq to the set
{a1, . . . , aq} , and this restriction is a partial isomorphism by condition (1)
for i = q . The claim is proved by induction on i :

(i) We let f1 = g0 , and note that conditions (1) and (2) are trivially
satisfied (d0(∅) =∞).

(ii) Let a1 = cj . If j ≤ t − 1, then we let f2 = gk where k is the unique
natural number < 2t such that k + 2q−2 ≡ j (mod 2t). Otherwise let
f2 = gk for the unique k such that k − 2q−2 ≡ j (mod 2t). In both
cases dk({a1}) = 2q−2 , and f2(a1) = gk(cj) = g0(cj) = f1(a1).

(iii) Let 1 < i ≤ q , and assume as induction hypothesis that conditions (1)
and (2) hold for the bijection fi = gk . There are two possibilities: If
hk(ai) ∈ {ck−1, ct+k−1} , we choose fi+1 = gl for l ≡ k+2q−i−1 (mod 2t).
Then we have

dl({a1, . . . , ai}) = min{dl({a1, . . . , ai−1}), dl({ai})}
≥ min{dk({a1, . . . , ai−1})− 2q−i−1, d(ck−1, cl−1)} = 2q−i−1,

and since there are no elements of {a1, . . . , ai} between ck and cl or
between ct+k and ct+l , gl is {a1, . . . , ai}-equivalent to gk . In the case
hk(ai) ∈ {ck, ct+k} we let fi+1 = gl for l ≡ k − 2q−i−1 (mod 2t);
conditions (1) and (2) are seen to hold by a similar argument.

2

Remark. A slightly weaker version of Lemma 3.10 can also be proved
by using a recent result of Nurmonen [18]. This alternative argument goes
as follows. For each natural number e , the e-type of an element a of a graph
A is the isomorphism type of the structure (Ne(a), a), where Ne(a) is the
subgraph of A generated by the set of all elements b such that d(b, a) < e .
Two graphs A and B are e-equivalent if there is a bijection f : A→ B which
preserves e-types. Nurmonen proved that if A and B are 3q -equivalent, then
Duplicator has a winning strategy in BEFq(A,B). It is easy to see that
Aq′,r,s and Bq′,r,s are always 2q

′−2 -equivalent, and consequently Duplicator
has a winning strategy in BEFq(Aq′,r,s,Bq′,r,s) whenever 2q

′−2 ≥ 3q .
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Proof of Theorem 3.4. Note first that in the graph Bq,r,s there are no
edges between the sets C = {d0, . . . , dt−1} ∪ R and D = {e0, . . . , et−1} ∪ R ,
for t = 2q−1 +1, whence Bq,r,s is (t+r)-separable. On the other hand, Aq,r,s

is not (t+ r)-separable, since if C,D ⊆ A are sets of cardinality t+ r , then
either there is an element a of S in C or D , or there are elements ci ∈ C
and cj ∈ D such that |i− j| ∈ {0, 1, 2t− 1} . In the former case, there is an
edge between a and every element of C and D , and in the latter case, there
is an edge between ci and cj (here is where the self-loops are used).

Assume then that Q = Qf is unbounded, and q is a natural number.
Since f is unbounded, we can choose n such that t ≤ f(n) ≤ n − t where
t = 2q−1 . Set r = f(n) − t and s = n − t − f(n). Thus, n equals the
size of the graphs Aq,r,s and Bq,r,s , and f(n) = t + r . By the observation
above, Bq,r,s is f(n)-separable, but Aq,r,s is not. From Corollary 3.2 and
Lemma 3.10 it follows that the class Kf is not definable in Lωω(Q1). Since,
by Lemma 3.8, Kf is definable in Lωω(Br2(Qf )), it follows that Br2(Qf ) is
not definable in Lωω(Q1). 2

3.2 Branching of several quantifiers

We shall now extend the characterization in Corollary 3.6 to the branching
of more than one quantifier. The first thing to observe is that if both f
and g are unbounded, it does not necessarily follow that Br(Qf , Qg) is un-
definable in Lωω(Qf , Qg). For example, let f(n) be n/2 if n is even and
n+ 1 otherwise, and let g(n) be (n+ 1)/2 if n is odd and n+ 1 otherwise.
Then Br(Qf , Qg) is trivially false of every relation, hence definable in Lωω ,
although Br2(Qf ) and Br2(Qg) are both undefinable in Lωω(Q1).

What we need for Br(Qf , Qg) is that f and g are ‘jointly unbounded’ in
the sense that ∀t∃n(t ≤ f(n), g(n) ≤ n− t). Then the proof of Theorem 3.4
can be modified to show that Br(Qf , Qg) is not definable in Lωω(Q1). And
in fact the converse also holds: if f, g are not jointly unbounded it can be
shown that Br(Qf , Qg) is definable in Lωω(Qf , Qg). (Both of these claims
will follow from Theorem 3.12 below.)

But these observations on the branching of two quantifiers do not gen-
eralize immediately to the branching of k quantifiers. First, the condition
on f, g, h of not being jointly unbounded in the above sense turns out to
be too weak to permit the conclusion that Br(Qf , Qg, Qh) is definable in
Lωω(Qf , Qg, Qh). And second, Lemma 3.5 does not generalize directly to
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the branching of several quantifiers. This is because on a model A where
h(|A|) = |A|+ 1, Br(Qf , Qg, Qh)xyz ϕ is always false, whereas if h(|A|) = 0,
we have

Br(Qf , Qg, Qh)xyz ϕ ⇐⇒ Qfx(x = x) ∧Qgy(y = y).

If we know that h(n) is never 0 or n + 1, then Br(Qf , Qg) is definable in
terms of Br(Qf , Qg, Qh) as in the proof of Lemma 3.5, but not necessarily
otherwise.

It turns out, however, that with a more careful generalization of the notion
of (un)boundedness to sequences of functions, we can obtain a necessary and
sufficient condition for the definability of the branching of k quantifiers.

3.11 Definition. Let k > 1. 〈f1, . . . , fk〉 is bounded if there exists a num-
ber t such that for all n , either fi(n) = n+1 for some i , or fi(n) = 0 for some
i , or t ≤ fi(n) ≤ n− t holds for at most one i . Otherwise 〈f1, . . . , fk〉 is un-
bounded. We also say that 〈Qf1 , . . . , Qfk〉 and 〈Qrel

f1
, . . . , Qrel

fk
〉 are (un)bounded

under these circumstances.

The relation to the previous concept of boundedness for one function is
the following:

If f1 = . . . = fk = f, then f is bounded iff 〈f1, . . . , fk〉 is bounded

(observe that if P holds of fi for at most one i , k > 1, and all the fi are
equal, then P does not hold of any fi ). Also, note that if each of f1, . . . , fk
is bounded, or even if all but one of them are bounded, then 〈f1, . . . , fk 〉 is
bounded.

The following theorem generalizes Corollary 3.6.

3.12 Theorem. Let 〈Q1, . . . , Qk 〉 be either a sequence of monotone type
〈1〉 quantifiers, or a sequence of right monotone type 〈1, 1〉 quantifiers satis-
fying CONS and EXT (k > 1). Then the following conditions are equivalent:

(1) Br(Q1, . . . , Qk ) is definable in Lωω(Q1, . . . , Qk ).
(2) Br(Q1, . . . , Qk ) is definable in Lωω(Q1).
(3) 〈Q1, . . . , Qk 〉 is bounded.

Proof. Let 〈Q1, . . . , Qk 〉 = 〈Qf1 , . . . , Qfk〉 .
(1) ⇒ (2): Trivial.

(2) ⇒ (3): Suppose 〈f1, . . . , fk 〉 is unbounded.
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Claim: There are i, j with 1 ≤ i, j ≤ k and i 6= j such that for every t there
is n such that

(i) for all l , fl(n) 6= 0 and fl(n) 6= n+ 1

(ii) t ≤ fi(n), fj(n) ≤ n− t .

For, by the unboundedness of 〈f1, . . . , fk 〉 it holds that for every t there is
n and a pair i, j with i 6= j such that (i) and (ii) hold. But there are only
finitely many pairs i, j , so for at least one of them, (ii) holds for infinitely
many t . From this the Claim readily follows.

Let, then, fi and fj be as in the Claim. Note that now we are essentially
back to the case mentioned above with two ‘jointly unbounded’ functions.
The proof of Theorem 3.4 is modified as follows. In the two models Aq,r,s

and Bq,r,s , split the ‘box’ R into two subsets R1 and R2 with r1 and r2
elements, respectively. R1 and R2 need not be disjoint but their union is
R . Expand the models to Aq,r1,r2,s and Bq,r1,r2,s by adjoining two unary
predicate symbols P1 and P2 , which in Aq,r1,r2,s are interpreted as P ∪ R1

and P ∪ R2 , respectively, and in Bq,r1,r2,s as P ′ ∪ R1 and P ′ ∪ R2 . Since
elements in R1 and R2 are only connected to elements in S , Duplicator still
has a winning strategy in the game BEFq(Aq,r1,r2,s,Bq,r1,r2,s). Consider the
sentence

Br(Qf1 , . . . , Qfk)x1, . . . , xk (P1(xi) ∧ P2(xj) ∧ ¬E(xi, xj))

Take any quantifier depth q and choose n such that (i) and (ii) of the Claim
hold. Say fi(n) ≤ fj(n). Let r1 = fi(n) − t , r2 = r = fj(n) − t , and
s = n − t − fj(n). So we take R2 = R of size r2 , and R1 as a subset of
R of size r1 . Then n is the size of the models Aq,r1,r2,s and Bq,r1,r2,s and
fi(n) = t+ r1 , fj(n) = t+ r2 . It is then easy to see, using the fact that none
of f1(n), . . . , fk(n) is 0 or n+ 1, that the sentence above is true in Bq,r1,r2,s

but false in Aq,r1,r2,s .

(3) ⇒ (1): Assume that 〈f1, . . . , fk 〉 is bounded and let t be the bound. For
1 ≤ i ≤ k and r ≤ t , let θi , ξi , ϕ

r
i and ψri be Lωω(Qfi)-sentences such that

(cf. the proof of Theorem 2.3) in a model with universe A ,

θi says that fi(|A|) = |A|+ 1

ξi says that fi(|A|) = 0

ϕri says that fi(|A|) = r

ψri says that fi(|A|) = |A| − r
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Let Θ = θ1 ∨ . . . ∨ θk and Ξ = ξ1 ∨ . . . ∨ ξk . Finally, let Φ1, . . . ,Φs be a list
of all conjunctions built up from the sentences ¬θi , ¬ξi , ϕri and ψri which
specify the value of fi(|A|) for all but one i , and also state that fi(|A|) is
not |A|+ 1 or 0 for any i .

It follows from the assumption that in any model, either Θ or Ξ or one
of Φ1, . . . ,Φs is true. In models of Θ the branching sentence

Br(Qf1 , . . . , Qfk)x1, . . . , xkR(x1, . . . , xk )

is false, and in models of ¬Θ∧Ξ it is true. Moreover, we make the following

Claim: For each Φj there is a sentence Ψj in Lωω(Qf1 , . . . , Qfk) such that in
models of Φj ,

Br(Qf1 , . . . , Qfk)x1, . . . , xkR(x1, . . . , xk ) ↔ Ψj .

¿From this it follows that the branching sentence is logically equivalent
to the sentence

(¬Θ ∧ Ξ) ∨
s∨
j=1

(Φj ∧Ψj).

Proof of the Claim: An example will suffice to give the idea. Suppose that
k = 3 and that Φj says that f2(|A|) = p , f3(|A|) = |A|−q , and that none of
f1(|A|), f2(|A|), f3(|A|) is |A|+ 1 or 0. Then Ψj (written semi-formally) is

∃ distinct y1, . . . , yp ∃ distinct z1, . . . , zq

Qf1x1∀x2∀x3(x2 ∈ {y1, . . . , yp} ∧ x3 6∈ {z1, . . . , zq} → R(x1, x2, x3)).

(We have p > 0 and |A| − q > 0. If q = 0, delete “∃ distinct z1, . . . , zq ” and
the conjunct “x3 6∈ {z1, . . . , zq}” above.) For this sentence says that there
are sets Y and Z (Z = A−{z1, . . . , zq}) such that |Y | = p and |Z| = |A|−q
and

(A, {a1 | ∀a2, a3(a2 ∈ Y ∧ a3 ∈ Z → R(a1, a2, a3))}) ∈ Qf1 .

Using the monotonicity of Qf1 one sees that this is the same as saying that
there are sets X, Y, Z such that |Y | = p and |Z| = |A| − q and

(A,X) ∈ Qf1 ∧ X × Y × Z ⊆ R

which, by the monotonicity of Qf2 and Qf3 , is precisely what the branching
sentence Br(Qf1 , Qf2 , Qf3)x1, x2, x3R(x1, x2, x3) says, provided Φj holds.
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This proves the Claim, and thereby the Theorem in the unrelativized case.
The case with relativized quantifiers is similar (cf. the proof of Theorem 2.5).
2

4 Definability of Ramseyfication

In this section we show that the Ramsey lift Ramk+1(Q) of an unbounded
quantifier Q is not definable in Lωω(Q). So the situation is analogous to the
case of the branching lift: the lift of Q is definable in Lωω(Q) if and only
if Q is bounded. However, in two important respects our results about the
Ramsey lift are stronger. Namely, we prove that for unbounded Q the lift
Ramk+1(Q) is not definable even in Lω∞ω(Qk). Recall that Lω∞ω is the frag-
ment of the infinitary language L∞ω in which every formula contains finitely
many different variables only, and Qk is the family of all k -ary generalized
quantifiers. Thus we can prove the undefinability of Ramk+1(Q) even with
respect to infinite disjunctions and conjunctions and even with arbitrary k -
ary generalized quantifiers.

The main interest of Lω∞ω(Qk) is in the fact that it contains various
fixpoint extensions of Lωω(Qk) (see [7, 11]). Intuitively speaking, Lω∞ω(Qk)
extends Lωω(Qk) by allowing (among other things) recursive definitions.

In Section 3 we introduced the game BEFq(A,B). The point of this was
that if Duplicator has a winning strategy in BEFq(A,B), then A ≡qLωω(Q1)

B . We shall now recall a modification BPl
k(A,B) of BEFq(A,B) from [7]

in order to get a criterion for A ≡Ll∞ω(Qk) B .

The k -bijective l -pebble Ehrenfeucht-Fräıssé game, BPl
k(A,B) is defined

as follows: In each round q of the game Duplicator chooses first a bijection
fq : A → B and Spoiler responds by choosing sets Cq ⊆ A and Dq ⊆ A so
that |Dq| ≤ k and |Cq∪Dq| ≤ l . Intuitively speaking, Duplicator claims that
fq is an isomorphism and Spoiler tries to dispute this by pointing to the part
Cq ∪Dq of A where he thinks fq does not preserve structure. To check this
out the referee defines pq = (pq−1 � Cq)∪(fq � Dq) (letting p0 = ∅). An extra
rule dictates that Spoiler has to play in such a way that Cq ⊆ dom(pq−1).
Duplicator wins the game if for all q the relation pq is a partial isomorphism
A → B . Spoiler wins if this is not the case, or if Duplicator cannot make
his moves, i.e., if there are no bijections A→ B .

The difference between BPl
1(A,B) and BEFq(A,B) is the following: In
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the latter game all moves of Spoiler remain in the game and Duplicator
has to create bigger and bigger partial isomorphisms, whereas in the former
game Spoiler can keep only up to l previously played elements so the task of
Duplicator is easier but, on the other hand, Duplicator does not know how
many moves the game has. The game BPl

k(A,B) introduces the new feature
that Spoiler can let the set Dq of “new” elements contain up to k elements.

4.1 Proposition. A ≡Ll∞ω(Qk) B iff Duplicator has a winning strategy in

the game BPl
k(A,B).

Proof. See the proof of Proposition 3.1 and the proof of Corollary 5.9 in
[7]. 2

4.2 Corollary. Let Q be a quantifier. If for some sentence ϕ of Lωω(Q)
and for all natural numbers l there exist structures A and B such that
A |= ϕ, B 6|= ϕ and Duplicator has a winning strategy in BPl

k(A,B), then
Q is not definable in Lω∞ω(Qk).

We shall consider the lift Ram2(Q) first, because the construction behind
our result on the general case of Ramk(Q) is different.

4.3 Theorem. If f is unbounded, then Ram2(Qf ) is not definable in
Lω∞ω(Q1).

Proof. Let l ≥ 1 be arbitrary. We show that Ram2(Qf ) is not definable
in Ll∞ω(Q1). The proof is based on a modification of the proof of the main
result of [2]. As in [2], let Xn = (Vn, En) be the colored graph which has the
following vertices:

• a1, . . . , an ,

• b1, . . . , bn ,

• mS , for each subset S of {1, . . . , n} of even cardinality.

• The vertices ai and bi have the same color i and are called mates of
each other,

• The vertices mS are colored magenta (which is different from 1, . . . , n),
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• If i 6= j , then ai and aj have different color,

and the following edges:

• ai and mS are joined by an edge if i ∈ S ,

• bi and mS are joined by an edge if i 6∈ S .

The relevant properties of these graphs are ([2]):

• For any even number of pairs {ai, bi} there is an automorphism of Xn

which swaps ai and bi for these i and leaves other aj and bj fixed.

• Every automorphism of Xn is obtained in this way.

Let n = l + 2. Let T be a copy of Kn , i.e. the complete graph with
n vertices. We define a new graph G as follows: For each vertex v of T ,
we replace v by a copy X(v) of Xn−1 . These copies are called gadgets. We
endow X(v) with an additional color which is different for different v . For
each w 6= v in T we select one pair {ai(v,w), bi(v,w)} from X(v) and one
pair {ai(w,v), bi(w,v)} from X(w), in such a way that all selected pairs in each
gadget are distinct. Then we connect with an edge ai(v,w) to ai(w,v) and bi(v,w)
to bi(w,v) . This ends the description of G . The graph H is defined similarly,
except that for one edge (v0, w0) of T , we create a “twist” by connecting
ai(v0,w0) to bi(w0,v0) and bi(v0,w0) to ai(w0,v0) .

Note that because of the coloring, an automorphism of G or H induces
an automorphism of each gadget, and vice versa. The crucial properties of
G and H are:

• For any even number of edges {(v1, w1), . . . , (vl, wl)} of T there is an
automorphism of G (H) which twists {(v1, w1), . . . , (vl, wl)} and leaves
other edges fixed. Every automorphism of G and H is obtained in this
way.

• For any edge (v, w) of T there is an isomorphism G∗ → H , where G∗

is obtained from G by twisting (v, w) and leaving other edges fixed.

• G and H are not isomorphic.
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Since f is unbounded, there is a natural number m so that d ≤ f(m) ≤
m − d , where d = n(2n−2 + 2(n − 1)). Let G′ be the disjoint union of G
and two complete graphs Ku and Kv , where

u = f(m)− n, v = m− f(m)− d+ n.

Likewise, let H′ be the disjoint union of H , Ku and Kv . In both graphs the
clique Ku is colored beige and Kv violet. Note that the number of vertices
of both G′ and H′ is exactly m .

The automorphisms of G′ consist of an automorphism of G plus permu-
tations of Ku and Kv . The same holds for H′ . Thus all the automorphisms
of G′ and H′ are known. The same is true of isomorphisms G′∗ → H′ ,
where G′∗ is obtained from G′ by twisting an edge (v, w) of T and leaving
other edges fixed.

We shall now show that G′ ≡Ll∞ω(Q1) H′ by describing a winning strategy

of Duplicator in BPl
1(G

′,H′). The task of Duplicator is to choose bijections
G′ → H ′ . Suppose Duplicator has played fq−1 , Spoiler has played Cq−1
and Dq−1 and the referee has defined pq−1 = (pq−2 � Cq−1) ∪ (fq−1 � Dq−1)
which is indeed a partial isomorphism G′ → H′ . (Let p0 = f0 � D0 .)
We assume that Duplicator found fq−1 by choosing a vertex vq−1 from T ,
twisting an edge adjacent to it and letting fq−1 be the resulting isomorphim
onto H′ . Naturally, vq−1 had to be chosen carefully. Now, Duplicator chooses
vq 6= vq−1 so that X(vq) does not meet Cq−1∪Dq−1 . This is possible because
n > l + 1. Then he twists the edge (vq, vq−1) and lets fq be the resulting
isomorphism onto H′ such that pq−1 ⊆ fq . Next Spoiler plays Cq and Dq

and the referee defines pq = (pq−1 � Cq) ∪ (fq � Dq). This is a partial
isomorphism G′ → H′ , because Dq is a singleton and no edge with one end
in dom(pq−1) was twisted when fq was defined. This ends the description of
the winning strategy of Duplicator in BPk

1(G′,H′), thereby ending the proof
of G′ ≡Ll∞ω(Q1) H′ .

We shall next describe the sentence of Lωω(Ram2(Q)) that separates these
two graphs. The sentence stipulates the existence of a set which contains all
beige elements and exactly one element from the magenta part of each gadget
Xn−1 . Once we have this one fixed element x in the magenta part of a gadget,
we can divide each pair (ai, bi) into the element with an edge to x – call it
“lower” – and the element without an edge to x – call it “upper” . The
sentence we need says: There is a set X such that |X| ≥ f(m) and any two
distinct elements x and y from X satisfy:
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1. x is magenta or beige,

2. If x and y are not beige, then they are in different gadgets,

3. If there is a connection from the gadget of x to the gadget of y , it
connects “upper” elements to “upper” elements.

To see that this sentence really separates G′ and H′ we first note that the
sentence is true in G′ , since we can let X consist of all beige elements plus
the element m∅ from all gadgets. Then |X| = u + n = f(m). On the
other hand, suppose such a set X existed in H′ . Since elements of X are
either beige or in different gadgets, |X| ≤ u + n = f(m), whence actually
|X| = f(m). Thus X consists of exactly the beige elements and exactly one
vertex from the magenta part of each gadget. This element has the form mS

for some set S of even cardinality, so the ai for i ∈ S are “lower”. Now,
in each gadget, flip the even number of pairs (ai, bi), i ∈ S, but leave the
others. This results in an automorphism h of H′ such that, in each gadget,
h(mS) = m∅ . But with respect to m∅ , all the ai are “upper”. Since part
3 of the sentence is true (for h(x) and h(y)), it follows that H′ must be
isomorphic to G′ , which is a contradiction. Thus the sentence is false in H′ ,
and the proof is finished. 2

4.4 Theorem. If f is unbounded, then Ramk+1(Qf ) is not definable in
Lω∞ω(Qk).

Proof. The case k = 1 is Theorem 4.3, so we assume k > 1. Fix
l ≥ 1. We use the models A = A(G) and B = B(G) constructed in [7]. By
general results in [7] we have A ≡Ll∞ω(Qk) B . By [7, Corollary 8.8] A and B

can be separated by Ramk+1(Qf ) for f(n) = [n/2]. We shall make a little
modification to the proof of [7, Corollary 8.8] in order to cover an arbitrary
unbounded f .

Let x be the size of the graph G . Note that A has a homogeneous
subset of cardinality x(k + 1) while B does not. With this in mind, and
since f is unbounded, we choose an n with x(k+ 1) ≤ f(n) ≤ n− x(k+ 1).
Note that |A| = 2x(k + 1). We extend the model A with two disjoint sets
U and V , where |U | = f(n) − x(k + 1) and |V | = n − x(k + 1) − f(n).
The elements of U are colored beige and the elements of V violet. The
same extension is applied to B . We get two new models A′ and B′ of size
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n . Clearly still A′ ≡Ll∞ω(Qk) B′ . We can separate these models with the

sentence Ramk+1(Q)x1, . . . , xk+1ψ
′(x1, . . . , xk+1), where ψ ′(x1, . . . , xk+1) is

the disjunction of ψ(x1, . . . , xk+1) from [7, Corollary 8.8] and the formula
“x1 is beige”. 2

Combining Theorems 2.3 and 4.4 we obtain a complete characterization
of the definability of Ramseyfication for all monotone simple monadic quan-
tifiers. And as in the case of branching, the same characterization holds also
for relativizations of such quantifiers (this follows from Theorem 2.5 and the
fact that Ramk(Qf ) is definable in Lωω(Ramk(Qrel

f ))).

4.5 Corollary. Suppose that Q is either a monotone type 〈1〉 quantifier,
or a right monotone type 〈1, 1〉 quantifier satisfying CONS and EXT. Then
the following conditions are equivalent, for any k ≥ 1:

(1) Ramk+1(Q) is definable in Lωω(Q).
(2) Ramk+1(Q) is definable in Lω∞ω(Qk).
(3) Q is bounded.

5 Definability of resumption

We do not have as strong results for Resk(Q) as for Brk(Q) and Ramk+1(Q)
above. In fact, it is proved in [11] that for type 〈1〉 Q , Resk(Q) is al-
ways definable in Lω∞ω(Q1) (this extends to resumptions of any monadic
quantifiers). But we prove that if f is unbounded in a sense which is appro-
priate from the resumption point of view, then Resk(Qf ) is not definable in
Lω∞ω(Q1, . . . , Qm) for any Q1, . . . , Qm ∈M and hence not in Lωω(M), where
M is the collection of all monotone type 〈1〉 quantifiers. For this result we
need again a new version of an Ehrenfeucht-Fräıssé type game from [11].

Let Q = {Qi | i ∈ I} be a family of type 〈1〉 quantifiers, A and B two
structures, and l a positive integer. The game MEFl(Q,A,B) has the fol-
lowing rules: There are l pairs of pebbles. During the game Spoiler may take
a pebble and put it on an element of one of the models, and then Duplicator
has to take the corresponding pebble and put it on an element of the other
model. If all pebbles have been used already, Spoiler can remove one of his
pebbles from one of the models and reposition it on another element of one
of the model. In such a case Duplicator has to reposition the corresponding
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pebble on some element of the other model. These pebble moves are called
elementary moves.

There is another type of move that Spoiler can choose to make. This
is called a quantifier move. In this move Spoiler takes a pebble, one of the
structures A and B , say A , a quantifier Qj from the family Q , and a
subset X of the universe A of A such that the structure (A,X) is in the
quantifier Qj , and the set X is invariant under all automorphisms of A that
fix all pebbled elements. Duplicator must respond by choosing a subset Y
of the universe of the other structure (in this case Y must be a subset of
the universe B of B) such that the structure (B, Y ) is in the quantifier Qj .
Then Spoiler places the pebble on an element b1 ∈ Y and Duplicator must
respond by placing a pebble on an element a1 ∈ X .

In each round of the game Spoiler first makes an elementary move or a
quantifier move and then Duplicator responds as described above. This is
repeated indefinitely. In each round, if ai and bi , 1 ≤ i ≤ l′, l′ ≤ l , are the
elements of A and B respectively pebbled by the two players using the up
to l pebbles available, then Spoiler wins if the mapping ai 7→ bi , 1 ≤ i ≤ l′ ,
fails to be a partial isomorphism between A and B . Otherwise, the game
goes on. If the game lasts for infinitely many moves without Spoiler winning,
then Duplicator is declared the winner.

5.1 Proposition. ([11]) Let Q = {Qi | i ∈ I} be a family of monotone
type 〈1〉 quantifiers, A and B two finite structures, and l a positive integer.
Then the following statements are equivalent (where Llωω is like Lωω but with
only l variables):

(1) A ≡Llωω(Q) B
(2) A ≡Ll∞ω(Q) B

(3) Duplicator has a winning strategy for the game MEFl(Q,A,B).

5.2 Corollary. ([11]) Let Q be a quantifier and Q a family of monotone
type 〈1〉 quantifiers. If for some sentence ϕ of Lωω(Q) and for all natural
numbers l there exist structures A and B such that A |= ϕ, B 6|= ϕ and
Duplicator has a winning strategy in MEFl(Q,A,B), then Q is not definable
in Lω∞ω(Q).

We shall now give some examples concerning the definability of Resk(Qf )
in Lωω(Qf ). The examples display characteristic features of resumption in
this respect.
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5.3 Proposition. Both boundedness of f and unboundedness of f are
consistent with Resk(Qf ) being definable in Lωω(Qf ), but neither condition
is sufficient or necessary for this to hold.

Proof. Suppose f(n) = 1 if n is a k ’th power of an integer and f(n) = 2
otherwise. Then f is bounded and Qf is not first order (cf. Theorem 2.1),
but Resk(Qf ) is. Hence Resk(Qf ) is trivially definable from Qf . Thus
boundedness is consistent with Resk(Qf ) being definable in Lωω even when
Qf is not.

To see that boundedness is not sufficient for Resk(Qf ) to be definable
from Qf , suppose f(n) = 1 if n is the k ’th power of a prime and f(n) = 2
otherwise. Then f is bounded and Qf is not first order. Moreover, Resk(Qf )
is not definable from Qf , as the following argument shows: We can use
Resk(Qf ) to define the property “the size of the universe is a prime”. But
we can use Corollary 5.2 to show that this property is not definable from Qf :
Suppose l is a natural number. Let p > l be a prime such that p + 1 6= 2k .
Then Duplicator wins the game MEFl(Qf , {1, . . . , p}, {1, . . . , p+ 1}).

Unboundedness of f is consistent with Resk(Qf ) being definable in Lωω
even when Qf is not. To see this, suppose f(n) = 1 if n is a k ’th power and
f(n) = [n/2] otherwise. Then f is unbounded and Qf is not first order, but
Resk(Qf ) is.

Finally, suppose f(n) = 1 if n is the k ’th power of a prime and f(n) =
[n/2] otherwise. Then f is unbounded, Qf is not first order, and Resk(Qf )
is not definable from Qf , because “the size of the universe is a prime” is
definable from Resk(Qf ), but not from Qf . 2

The next result shows that there are reasonable conditions for f which
guarantee that Resk(Qf ) is definable in terms of Qf .

Let f and g be functions ω → ω . We say that g is determined by f , if
for all m,n ∈ ω , f(n) = f(m) =⇒ g(n) = g(m). Furthermore, f is upwards
bounded if there exists t such that f(n) < t for all n .

5.4 Proposition. Suppose f is upwards bounded and the function g : n 7→
f(nk) is determined by f . Then Resk(Qf ) is definable in Lωω(Qf ).

Proof. Let ξ and ϕp (p > 0) be as in the proof of Theorem 2.3, and
let ϕ0 = ξ . Thus, ϕp says that f(|A|) = p . For i ≥ 0 let Φi be a sen-
tence in Lωω saying of a k -ary predicate R that the number of k -tuples
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it contains is at least i . By assumption there is a function h such that
f(nk) = h(f(n)). Let t be an upper bound for f , i.e., f(n) < t for all n .
Now Resk(Qf )x1, . . . , xkR(x1, . . . , xk) is equivalent to the Lωω(Qf )-sentence∨
i<t(ϕi ∧ Φh(i)). 2

The condition of Proposition 5.4 holds, for example, for the following f :

fp(n) =

{
0 if p divides n
1 otherwise.

Thus Resk(Qfp) is definable from Qfp . By a result of M. Mostowski ([17]),
resumptions of the stronger divisibility quantifiers

Dpxφ(x) ⇐⇒ p divides the number of elements x satisfying φ(x) .

are likewise definable from the quantifiers themselves.

5.5 Definition. Let X ⊆ ω . A function f : ω → ω is unbounded on X , if
∀m∃n ∈ X(m ≤ f(n) ≤ n−m). Otherwise f is bounded on X .

The following theorem is the main result of this section:

5.6 Theorem. Suppose f is unbounded on {nk | n < ω}, where k ≥ 2.
Then Resk(Qf ) is not definable in Lω∞ω(Q1, . . . , Qm) for any Q1, . . . , Qm ∈
M.

Proof. For every m there is an n so that m ≤ f(nk) ≤ nk − m .
This f(nk) is either ≤ [nk/2] or > [nk/2]. One of these possibilities occurs
infinitely often, and hence we have

∀m∃n((m ≤ f(nk) ≤
[
nk

2

]
) (1)

or

∀m∃n(

[
nk

2

]
< f(nk) ≤ nk −m)). (2)

We start by assuming (1) and indicate at the end of the proof how to handle
the case that (2) holds.

Suppose g1, . . . , gm are functions and l is a natural number. We are going
to prove that Resk(Qf ) is not definable in Ll∞ω(Qg1 , . . . , Qgm). For any n ≥ l
let In consist of intervals of the following form:

33



• [0, l] ,

• [n− l, n] ,

• [gi(n)− l − 1, gi(n) + l + 1], where i = 1, . . . ,m ,

• [n− gi(n)− l − 1, n− gi(n) + l + 1], where i = 1, . . . ,m .

We call a real a ∈ [0, n] n-good, if a is not on any of the intervals in In .
A set X ⊆ [0, n] is n-good if each of its elements is. A direct calculation
reveals that if I is a subinterval of [0, n] of length ≥ C(x) = (2m + 1)x +
2(2m + 1)(l + 1), then there is an n-good subinterval J of I of length x .
Let C1 = C(1) and C2 = C(C1).

Let E = (C2 + C2/(
k(k−1)
√

2 − 1))k . By (1) there is an n such that
E ≤ λ = f(nk) ≤ nk/2. Let µ = k

√
λ and ν = k−1

√
λ/n .

Claim 1. µ− ν ≥ C2 .

Let D = (C2/(
k(k−1)
√

2− 1))k−1 . If λ ≥ Dn , then

µ− ν = ν(
k(k−1)

√
nk

λ
− 1) ≥ k−1

√
λ

n
(

k(k−1)
√

2− 1) ≥ k−1
√
D(

k(k−1)
√

2− 1) = C2.

If λ < Dn , then

µ− ν ≥ k
√
E − k−1

√
D = C2 +

C2

( k(k−1)
√

2− 1)
− k−1
√
D = C2.

In either case we have proved the claim.

Claim 2. There are an n-good x and a non-integer n-good y > x on [0, n]
so that xk−1 · y = λ .

By Claim 1, there is an n-good subinterval I of [ν, µ] of length > C1 .
On the interval [ν, µ] the function F (x) = λx1−k is one-one onto [µ, n] with
derivative F ′(x) < −1, and so the interval F ′′I has length > C1 . Hence
there is a non-integer n-good y = F (x) on F ′′I . Now also x is n-good and
xk−1 · y = λ . Claim 2 is proved.

Let a be the integer part of x , and b the integer part of y . We define
now two structures A = (A,P,R) and B = (A,P ′, R′) as follows:

• A = {1, . . . , n}

• P = {1, . . . , a+ 1}, P ′ = {1, . . . , a}
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• R = {1, . . . , b+ 1}, R′ = {1, . . . , b} .

Claim 3. Duplicator wins the game MEFl({Qg1 , . . . , Qgm},A,B).

The elementary moves are easy for Duplicator. Suppose then Spoiler
chooses a pebble, the model A , the quantifier Qgj , and an invariant subset
X of A with |X| ≥ gj(n). Suppose furthermore that the pebbled elements
in A are a1, . . . , as , where s < l , and that Duplicator has not lost the game
yet. Let the correspondingly pebbled elements of B be b1, . . . , bs . For any
set Z and d ∈ {0, 1} let Z0 = ∅ and Z1 = Z . Since X is invariant under
automorphisms of A that fix the elements a1, . . . , as , there are d1, d2, d3 ∈
{0, 1} so that

(X −X?) ∪ (X? −X) ⊆ {a1, . . . , as},

where
X? = P d1 ∪ (R− P )d2 ∪ (A−R)d3 .

Let
Y ? = P ′d1 ∪ (R′ − P ′)d2 ∪ (A−R′)d3

and
Y = (Y ? ∪ {br | ar ∈ X})− {br | ar 6∈ X}.

If t = |X| − |X?| , then t = |Y | − |Y ?| . Moreover, |X?| = |Y ?| and |X| =
|Y | , unless |Y ?| ∈ {a, b, n − a, n − b} but even then ||X?| − |Y ?|| ≤ 1 and
||X| − |Y || ≤ 1. Therefore we can make the following inference, making use
of the n-goodness of x and y : If |Y | < gj(n), then |Y ?| < gj(n)− t . Hence
|X?| < gj(n) − t and |X| < gj(n), contrary to assumption. This inference
shows that |Y | ≥ gj(n). So Duplicator can play the set Y . Next Spoiler puts
the pebble on some element y of Y . It is now easy for Duplicator to put his
pebble on an element x of X so that the following condition are satisfied:

• x = ai if and only if y = bi for i = 1, . . . , s .

• x ∈ P if and only if y ∈ P ′ .

• x ∈ R if and only if y ∈ R′ .

Claim 3 is proved.
To end the proof we have to exhibit a sentence of Lωω(Resk(Qf )) which

distinguishes A and B . Consider the sentence ϕ = Resk(Qf )x1, . . . , xk(P (x1)∧
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. . . ∧ P (xk−1) ∧ R(xk)) of Lωω(Resk(Qf )). This sentence is true in A but
false in B because

ak−1 · b < f(nk) = xk−1 · y ≤ (a+ 1)k−1 · (b+ 1)

We made the assumption that (1) holds. Suppose now (2) holds. We
proceed as above until the definition of n and λ . This time we use (2) to
find an n so that [nk/2] < f(nk) ≤ n−E and let λ = nk − f(nk) + 1. Now
E ≤ λ ≤ nk/2, so we can continue as above. When we come to the sentence
ϕ , we replace it with

¬Resk(Qf )x1, . . . , xk(¬(P (x1) ∧ . . . ∧ P (xk−1) ∧R(xk)).

The theorem is proved. 2

A special case of the above theorem — that Res2(Qf ) is not definable in
Lωω(Qf ) for f(n) = [n/2] — was proved in [20].

5.7 Theorem. The following conditions are equivalent for any monotone
simple monadic quantifier Q and any k ≥ 2:

(1) Resk(Q) is definable in Lωω(M).
(2) Q is bounded on {nk | n < ω}.

Proof. Theorem 5.6 gives (1) ⇒ (2). Assume then (2). So there is a
number m such that for all n , either

g(n) = f(nk) < m

or
h(n) = nk − f(nk) < m.

Let θi (χi ) be a sentence in Lωω(Qg) (Lωω(Qh)) saying that g(|A|) = i
(h(|A|) = i), and let Φi and Ψi be as in the proof of Proposition 5.4.
Also, let ϕ ,ψ be Lωω -sentences such that ϕ says that the universe has
size < m and ψ defines Resk(Qf ) on such universes. Then the sentence
Resk(Qf )x1, . . . , xkR(x1, . . . , xk) is equivalent to the Lωω(Qg, Qh)-sentence

(ϕ ∧ ψ) ∨ (¬ϕ ∧ (
∨
i<m

(θi ∧ Φi) ∨
∨
i<m

(χi ∧Ψi))).

2
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6 Conclusion

The field of definability of generalized quantifiers on finite structures is full
of open problems. Especially the polyadic quantifiers as well as the non-
monotone ones give rise to problems that no one knows how to approach. In
this paper we have considered certain polyadic lifts of monotone quantifiers,
obtaining the following results (k ≥ 2):

I. Br(Qf1 , . . . , Qfk) is definable in Lωω(Qf1 , . . . , Qfk)
iff Br(Qf1 , . . . , Qfk) is definable in Lωω(Q1)
iff 〈f1, . . . , fk 〉 is bounded.

II. Ramk(Qf ) is definable in Lωω(Qf )
iff Ramk(Qf ) is definable in Lω∞ω(Qk−1)
iff f is bounded.

III. Resk(Qf ) is definable in Lωω(M) iff f is bounded on {nk | n < ω} .

I and II were also proved for relativizations of monotone simple unary quan-
tifiers. The following questions seem to be the most natural direction to
continue the work of this paper:

1. Find necessary and sufficient conditions for Br(Qf1 , . . . , Qfk) to be de-
finable in Lω∞ω(Q1).

2. Find necessary and sufficient conditions for Resk(Q) to be definable
in Lωω(Q). This question makes sense for non-monadic and non-
monotone quantifiers, too.

3. Find necessary and sufficient conditions for Res2(Qf ) to be definable
in Lωω(Q1). (As we mentioned in the Introduction, K. Luosto [15] has
proved that Res2(Qf ) is not definable in Lωω(Q1) for f(n) = [n/2].)

4. Find a suitable extension of III to relativizations of monotone simple
unary quantifiers.
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