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ABSTRACT. The efficiency of observational studies may be increased by applying multistage
sampling designs. It is, however, not always transparent how to construct such a design to obtain
increased efficiency. We here present a general statistical framework for describing and constructing
multistage designs. We also provide tools for efficiency and cost-efficiency comparisons, to facilitate
the choice of sampling scheme. The comparisons are based on Fisher information matrices and the
results are presented in graphs, where either efficiency or cost-adjusted efficiency is plotted against
a normalized measure of cost. The former curve resides in the unit square and is analogous to the
receiver operating characteristic curve used for testing.
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1. Introduction

Likelihood-based methods exhibit good efficiency under rather weak regularity conditions
when the underlying model is correctly specified, see, for instance, Lehmann & Casella (1988).
However, if the cost of collecting the full sample is large, one may collect a subsample at
lower total cost, which, by careful choice of the sampling mechanism, only looses little effi-
ciency compared with the full maximum likelihood (ML) estimator or likelihood ratio (LR)
test. To choose an effective design, it is necessary to be able to calculate, and to compare,
the effectiveness of different sampling strategies. The aim of this article is to provide tools for
such comparisons within a multistage design framework that is general enough to be appli-
cable for a broad range of statistical models and sampling schemes.

The term two-stage design was introduced by White (1982), and has since then been
explored for different settings in various areas of research. Stage 1 data are first collected
for all sampled individuals and Stage 2 data subsequently for a subset of them. It is moti-
vated by differential costs and informativity of collecting data on different variables and
individuals. Maydrech & Kupper (1978) allow for different costs of exposed/non-exposed
or cases/controls when calculating required sample sizes for cohort and case—control stud-
ies. Reilly (1996) investigates optimal allocation of available resources for two-stage data,
where either precision is maximized for a fixed budget or cost is minimized for a fixed preci-
sion. Thomas et al. (2004) provide cost-efficiency calculations for a genetic application where
association between single-nucleotide polymorphism markers and disease status are tested,
and the two-stage design is motivated by the cost of genotyping. Further examples of two-
stage designs are provided in section 9.

Designs with k& >2 stages is the natural generalization of two-stage designs, with Stages 1
and k corresponding to minimal and full information. For a bottom-up design (BUD), indi-
viduals sequentially enter higher stages, and often data are increasingly more costly to collect.
For instance, if the objective is to determine risk factors of a disease, a possible three-stage
BUD is based on collecting registry data (affection status, sex, age, ...) at Stage 1, question-
naire variables (smoking, exercise, diet, at family history of disease, ...) at Stage 2 and more
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expensive biological variables that require laboratory work (genetic maps, expression levels
of DNA, protein data, ...) at Stage 3. Alternatively, for a top-down design (TDD), data are
initially available up to Stage k for all individuals, but is then coarsened down to lower stages
(Heitjan & Rubin, 1991). Here, the cost must be interpreted in a different way, since data are
already collected. For instance, the cost of computing an estimate or ethical restrictions may
force the data analyst to remove data at higher stages, she may choose to disregard unin-
formative data or she may act as a fusion centre, receiving information from several external
sources that is compressed to various degrees.

Since a general statistical theory of multistage designs is lacking, it is the purpose of this
article to contribute to filling this gap. Mathematically, the top-down perspective is more
general. Therefore, we introduce a hierarchical multistage model where the full data set for an
individual is coarsened down to Stage J €{1,...,k} and retained at this level. The sampling
scheme 7 is defined as the distribution of J, and the aim is to choose it in a cost-effective
way. In contrast, in most applications, a bottom-up perspective is more appropriate, with
data collected sequentially from Stage 1 up to Stage J. If uncollected data (for BUDs) or
data lost after coarsening (for TDDs) is missing at random (Rubin, 1976; Little & Rubin,
2002), we obtain a Missing at Random Design (MARD). A BUD is always, and a TDD is
sometimes, a MARD.

To systematically describe the efficiency-cost tradeoff, we introduce plots of efficiency and
cost-adjusted efficiency as functions of average cost. We use the full sampling scheme (J =k)
as reference, and thus report efficiency as well as average cost in relative terms. Our frame-
work can be viewed as a generalization of Griinewald & Hdssjer (2010a), where two-stage
retrospective designs are treated.

Our efficiency calculations are based on ML estimation. The likelihood theory for two-
stage designs is well developed, with algorithms, Fisher information, asymptotic normality,
variance and efficiency derived for estimators within quite a large class of models, see, for
instance, Scott & Wild (1997), Breslow & Holubkov (1997), Breslow et al. (2003) and refer-
ences therein. Here, we generalize some of these findings by deriving the Fisher information
and efficiency of a general design and simplify these formulas for MARD:s, a result we believe
is of independent interest.

This article is organized as follows: in section 2, the multistage sampling model is described.
The cost and efficiency of samples are defined in section 3 and the choice of cost function is
discussed in section 4. Section 5 defines stage-dependent cost functions and MARDs, whereas
strategies for comparing, visualizing and comparing designs are presented in section 6. In
section 7, we outline how Monte Carlo methods can be used to approximate efficiency and
cost. Related to multi-stage designs is the ascertainment problem, treated in section §, where
data are not recorded on units without full data. In section 9, the general theory is illus-
trated with a number of examples. The calculations are run in the software R (R Develop-
ment Core Team, 2008), and the code used to produce efficiency and cost efficiency plots is
available at http://www2.math.su.se/~ola/, or at request from the authors. Finally, the main
conclusions of the article are discussed in section 10, and proofs are collected in the
appendix S1.

2. A multistage model

2.1. Data coarsening or level of sampling

Let Z denote full data of an individual, a random variable defined on a sample space Z.
Then, introduce a sequence of reduced sampling spaces Z=Z;, Z;_|,..., Z,, where reduc-
tion of complexity (or coarsening) from Stage j+ 1 to Stage j is achieved by means of the

© 2011 Board of the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist 39 A general multistage design framework 133

9k72+

92i G

Z

Fig. 1. A multistage model where sampling spaces are reduced sequentially. Stage k represents the most
complex sampling space and Stage 1 represents the most sparse one.

non-invertible transformation g;: Z;,1 — Z; and the coarsening from Stage k& down to Stage
Jj is described by G;=g;jog;+10...gx—1, as shown in Fig. 1.

Let Z; = G;(Z) denote the random variable obtained if full data Z=Z; are coarsened down
to Stage j (or if data are sampled up to Stage j). In general, the observed level of coarsen-
ing J €{1,...,k} may be random, giving a coarsened random variable Z=Z, defined on the
combined sample space Z=Z,U...UZ,. The joint distribution of Z and J is determined by

m(2)=P(J =j|Z=z),

the probability of using information up to Stage j for z€ Z, so that J | Z =z~ Mult(1, n(z))
is multinomial, with 7(z) =(n,(2),..., nx(2)). Also, let

k
() =P(J >j| Z=2)= m(z)
I=j
be the probability that information on z is obtained at least up to Stage ;.
For a TDD, a more relevant variable is

KM= P <jIT<j+ 12 =1 =TGN =T,

the conditional probability of coarsening data down to Stage j given that it has already been
coarsened down to Stage j+1, j=k—1,...,1. A TDD example is given in section 9. For a
BUD, we rather use

W) =PU>j|J>j-1, Z=z)=IL(z);(2),

that is, the conditional probability of collecting data from Stage j, given that data have al-
ready been collected from Stage j—1, j=2,...,k.

Example 1 (Binary response-selective sampling). Let z=(x,y), where x is a set of co-
variates and y a binary response. A healthy control individual has y=0 and an affected
case y=1. Suppose affection status is available for all individuals, whereas covariates are
collected for all cases but only for a small fraction 5 of controls. We formalize this as a
two-stage BUD with
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AP(x, 1)=1, A3°(x,0)=n. The idea behind this design is that little efficiency is lost for the
reduced sample (y<1) when estimating the effect parameter in a logistic regression model
compared with that of the much more costly full sample (3=1).

2.2. Likelihood-based inference

Assume Z has a density fi(z; 0) w.r.t. some underlying measure y;, on Z;, where 0=(0,,...,0,)
€ 0 is the p-dimensional parameter vector which we wish to make inference on. To this end,
there is a collection of i.i.d. full data random variables Z',..., Z" defined on a Z with the
same common density f;(z;0) as Z.

Example 2 ( Regression model). In example 1, assume 0=y, ) and

S2(z:0)= P(x;9)P(y | x; ), (@)

where y contains nuisance parameters involved in the covariate distribution, and ¢ the regres-
sion parameters. For the logistic regression model, the response is binary, with

P(y
where ¢=(a, f§) consists of one intercept parameter o, a number of slope parameters  and
F(x)=-exp(x)/(1+exp(x)).

Let J' be the stage up to which we have information on individual i, either due to coarsen-

ing down to this stage or sampling information up to this stage. Then, (Z',J),...,(Z",J") is
an i.i.d. sequence of random variables, not fully observed (or which we do not use all infor-

;&) =Fa+pxM=1 [1 = Fla+ px")] "™, 3)

mation from). Instead, only the reduced i.i.d. sample 7z 1,. . .,Z~", where Z~i225[, is used for
inference.
If estimation of 0 is of concern, we may employ the ML estimator
Onp () = argmax L(0, 1), “4)
0c®
where
LO.m=] [f(:0.7) )

i=1

is the likelihood function, Z' the observed value of Z~i, n={n(z);z € Z} the (possibly infinite-
dimensional) sampling (coarsening) parameter and f(-;6,n) the density of Z on Z. The
density of Z is

fGEO,M=fEGEM(D) | G(2)=z], ifZ=z€Z), ©)

relative to some reference measure y; on Z;, typically the counting measure for discrete X;
or the Lebesgue measure for Euclidean A;. For proof, see appendix S1.

Example 3 (Binary response-selective sampling, continued). Continuing examples 1 and 2,
we find that

5= { (1=m() [ Px;y)P(y]x; ) dx, if 2=y,
‘ ()P )Py | x;9), if Z=(x, ).
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If we wish to test Hy:0€ ®, against H;:0¢0®,, given some null parameter set @, C O, we
may use the log-LR test statistic

Tin(m)=2| maxlog L(6, ™)~ maxlog L(®. m) (7)

with Hj rejected if T g exceeds a given threshold.

The full sample corresponds to m(-)=1. We denote this sampling scheme by 7y, so that
0 — L(0, mgyy) is the ordinary likelihood function. At the other extreme, we let m,;, denote
the design 7;(-)=1, yielding a data set with minimal possible amount of information.

3. Cost and efficiency
Let Cj(z) be the individual cost of using data z€ Z up to Stage j. Assume
OSC](Z)SSC/((Z)’ VZEZ, (8)

so that the cost increases when more information on z is used. For a BUD, C;(z) — C;_i(2)
is the cost of sampling data from z at Stage j, whereas for a TDD, it is the cost of retain-
ing data from z at Stage j not present at Stage j — 1. The total average cost (TAC) of the
cost-reduced sample is

k
TAC(0. m)=nE(C/(Z)=n _ / () Ci(2)fie(2: 0) dpy(2), ©)]
j=1"%
and the relative average cost RAC(0, n)=TAC(0, n)/ TAC(0, nr) compared with the full
sample. Let
- dlogf(Z;0,n
y(z:0,m = 08T E0T) (10)

a0
be the score fl_lnction, which is a 1 x p vector-valued function defined on Z. The Fisher infor-
mation of {Z'}_, is a p x p matrix

1(0,m) =nEWY(Z; 0, )" W(Z; 0, )], (1
where YT is the transpose of Y. Let /(1) be a scalar function of I satisfying

h(tI)=th(I) for any >0, (12)

W) <h(h) if I <D,

where I} <1, means that I, — I; is positive semidefinite. We define the relative efficiency of
the cost-reduced sample compared with the full one as

e(0, m)= h{1(0, VAL (0, wrun)]- (13)

The first part of (12) ensures that e has the usual interpretation in terms of relative
sample sizes: asymptotically, when #n is large, a sample of size n/e(0, n) is needed for design
7 to attain the same accuracy as a sample of size n using the full design 7mgy.

The cost-adjusted efficiency,

CE(0, 1) =e(0, 1)/RAC(0, 1),

quantifies the relative efficiency of design 7 at parameter 0 compared with a simple random
sampling (SRS) with sample size RAC(0, n)n, which exhibits the same TAC. It thus summa-
rizes with a single number whether = is cost efficient (CE>1) or not (CE <1). It is frequently
referred to as asymptotic relative cost efficiency and has been used by several authors (cf.,
e.g. Reilly, 1996; McNamee, 2003; Thomas et al., 2004, and references therein).
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4. Choice of efficiency function

If the estimation of 0 is of interest, 4(/) in (12) is typically a function of the asymptotic
covariance matrix V' =71"! :(Vrs)f,szl' If 0, is the parameter of main interest, h="V,! is a
natural choice. In example 8, we define /i for a three-stage design to depend on the asymp-
totic variance of three effect parameters, which are the parameters of main interest in this
model. For other examples, such as det(V)~"'” and tr(V)~!, see, for example, Silvey (1980)
and Melas (20006).

For testing, other functions can be used. Assume a simple null hypothesis ®, = {0}, and
a true parameter value 6y +«a. Then asymptotically, in the limit of large samples (large I)
and local alternatives (small a), Tir(n) in (7) has a non-central x> distribution with p
degrees of freedom and non-centrality parameter A(I)=a'la, where I=1(0,,7) (see, for
instance, Serfling, 1980). Hence, the power of the LR test is asymptotically a monotone func-
tion of A(I). More general choices of / for testing are discussed in Griinewald & Hossjer
(2010b).

If 6=(&,y) can be split into structural parameters ¢ and nuisance parameters y, with
parameter space @ =E x I', we write

155(0’ ) If';’(e’ 7())

L0,m)  I,(0,m) (14)

1(0,m)= (
The estimation-based functions / are defined as before. For testing, consider a composite
null hypothesis @y ={&,} x I'. Then, an appropriate function, when &,+a is the true struc-
tural parameter, is A(1) = alpofica’, where Lyofie(0, 7) = I:: — I@,I},T,,II}@ is the profile likelihood

Fisher information. More generally, i(/ )=E(Ipr0ﬁ]¢) can be used, where /1 is a function used
for testing when the nuisance parameters are known.

5. MARDs and stage-dependent cost functions

We define the class P of MARD:s as m;(-) being constant on sets Gj"(zj)= {ze Z;G(2)=2z}.
We will use the somewhat sloppy notation

nj(2) =m(z;), (15)

to denote this, not only for 7;, but also for other functions; and (15) means that the prob-
ability of including information from z up to but not exceeding Stage j should not depend
on information about z at stages above j. The name MARD is more transparent if we notice
that (15) is equivalent to

I(z) =1(z;-1), (16)

and hence 1 —IT;(z), the probability of ‘missing’ data above Stage j — 1 should only depend
on parts of z available up to Stage j — 1, which corresponds exactly to the MAR condition
of Rubin (1976). We always require a BUD to be MAR, and hence it is easily seen that
4P(2)=2"(z;-1), that is, the probability of collecting more data only depends on the data
already present.

With condition (15), the density function of Z simplifies to

[0, m)=mi(z)fi(z;;0), ifZ=z€Z, 17)

where f;(z;; 0) is the density of Z;, cf. appendix S1. Inserting (17) into (10) and (11), we show
in the appendix S1 that the Fisher information matrix can be expressed as a sum of k terms
in two ways, either

© 2011 Board of the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist 39 A general multistage design framework 137

k
100, m)="> " I(0.7), (18)
j=1
with I; the part of all information obtained from individuals sampled up to (but not above)
Stage j, or
k
10, 1) =1(0, i) + Y _ 1210, ), (19)

Jj=2
where [;;_; is the total information from Stage j data (i.e. not present at Stage j—1).
For cost functions, a simplification,

Gi(2)=G(z)), (20)

similar to (15) is possible, which may be violated for TDDs (cf. example 14), but always holds
for BUDs, since the cost of gathering information at Stage j does not depend on information
from stages above j not yet present. We refer to (20) as a stage-dependent cost function, for
which (9) becomes

k
TACOm=nY" [ )G 0 dy(z)
=173

k
Z”Z/Z 0(z;-DICi(2) — Gima (Z- )i (53 0) Ay (2)), 1)
=172

where, for a BUD, the terms of the first sum regard the average cost of sampling individuals
up to but not above Stage j, whereas the terms of the second sum regard the average cost of
sampling at Stage ;.

6. Cost-efficiency plots and optimal designs
6.1. Cost-efficiency

The tradeoff between cost and efficiency at a given parameter 0 can be illustrated by varying
7 and plotting e(0, n) as a function of RAC(0, ) (see Griinewald & Hossjer, 2010a). Some
simple but useful properties of such cost-efficiency plots are summarized as follows.

Proposition 1. Consider a fixed 0 € © and function h satisfying (12). Let n, 7' be two designs
with n <, that is, I1;(z) < H]/-(z) forall ze Z and j=1,...,k. Then,

0 < RAC(0, mpin) < RAC(0, 1) < RAC(0,7") < RAC(0, ) =1,

0 < e(0, imin) < e(0, 1) < e(0, ') < e(0, mpun) =1,

with equalities 0=RAC(0, Tyin) and 0=e(0, tyin) on the left-hand sides of (22) if Stage 1
corresponds to no cost (Ci(-)=0) and no information (1(0, m,;,) =0), respectively.

(22)

It follows from proposition 1 that each design 7 corresponds to a point in the unit square
[0, 1] x [0, 1] of the (RAC, e)-plane, with (1, 1) for the full design and (0,0) for the minimal
design if Stage 1 has zero cost and no information.

6.2. Optimal designs
Consider a finite-dimensional subclass

O={neP;n(-)=n(;n) for some n} (23)
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of all MARDs, parameterized by n=(n,,...,#,). Keep 0 € ® fixed and define a Q-optimal
cost-efficiency curve

R — epax (0» R) = sup 6(9, T[)r (24)

neQp

where Qr={n€ Q;RAC(0, 7)< R}. Any design attaining the maximum in (24) is referred to
as Q-optimal, since it maximizes e(0,-) over Q subject to a cost constraint RAC(0, ) < R.
It will typically be locally optimal, that is, depend on the unknown 6. In practice, we may
use training data to compute a preliminary estimate of 0, which is used as plug-in for the
optimal design.

Proposition 2. Assume h satisfies (12) and that Q is convex with ngy € Q. Then, given any
0 € ®, the optimal efficiency curve (24) satisfies

emax(0, R) = sup e(0, ), (25)

7€ Q;RAC(0, 1) =R

for any R € (Ruin, 1], where Ruyin =mingco RAC(0, ). Hence, the maximal cost efficiency
satisfies

CEax(0, R): = sup CE(0, 1) = emax (0, R)/R.

{ne Q;:RAC(0,n)=R}

Proposition 2 applies with Q=7P, since P is convex by definition. It is easily seen that
nrn 1S optimal, with (1, 1) the right-hand end point of the optimal-efficiency curve. The
minimal design 7.,;, is optimal as well if we have strict inequalities in (8) and then (Ruyin, €min)
is the left-hand end point of the optimal-efficiency curve, where ep, =min,cg e(0,n).
Griinewald & Hossjer (2010b) establish some other properties of the en.x and CEpax
curves.

6.3. ROC curve analogy

The performance of a statistical test, which rejects Hy, when a test statistic 7" exceeds a given
threshold ¢, is usually assessed by reporting the significance level a(¢)=P(T > ¢| H,) and
power f(0,t)=P(T >t|0) for 6 ®\ @y. For a given 0, we may vary the threshold and obtain
a receiver operator characteristic (ROC) curve by plotting f§ against « within the unit square.
This could be compared with a cost-efficiency plot, with (RAC, ¢) replacing («, f) and in-
stead of a threshold the single parameter # of a one-dimensional Q is varied. Interestingly,
the cost-adjusted efficiency corresponds to

p_1-c 1 |

« ¢ |[FDR [
where FDR =(1 — ¢)a/[(1 — ¢)a+¢f] is the false discovery rate, that is, the expected rate of
false positives within a large population in which a fraction 1 — ¢ is drawn from the null dis-

tribution and a fraction ¢ from a distribution parameterized by 0. Hence, for fixed ¢, maxi-
mizing CE is analogous to minimizing FDR in multiple testing.

7. Computation

For complex models, it may be needed to approximate efficiency (18) and cost (21) by,
for instance, Monte Carlo. To this end, generate an i.i.d. sample {Z'}¥ , from fi(-;60) and
estimate
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N k
TAC(O.m)=nN">" 3" m(Z)C(Z).

i=1j=1
RAC(0, 1) =TAC(0, 1)/ TAC(0, 7),
vk (26)
10, m=nN" " " m(Zh (20" ¥,(Z;0),

i=1j=1
&0, my= h{1(0, VA1 (0, mp)],

where Z{ = G;(Z'). Since y,(Z];0) is defined by means of an integral when j<k (cf. appendix
S1, eq. (S.1)), we may need to approximate it by a Monte Carlo estimate l/;j(Z; ;0). When Z;
is finite, we put

B0=5 3 4750,

I opzi=
z,ijL,

provided N, =|{i;Z} =z;}| is positive. When Z; is continuous, more refined methods can be
used, for example, based on non-parametric regression.

If 1(0, =) and e(0, ) are to be computed for several 6, one may use importance sampling
(Hammersley & Handscomb, 1964). Instead of generating a new sample for each 6, it suffices
to use one sample {Z'}Y_, from fi(-; /), with

N k
TAC(O.m)=nN""> "> " m(Z)C(Z)Hw(Z';0),
i=1j=1

27
N Kk
[0.m)=nN""> "> " m(Z)W)(Z:0)"y,(Z): Ow(Z': 0),
i=1j=1
and weight function w(z; 0) = fi(z; 0)/fi(z; 0). Each term %(Z} ;0) with j<k may be replaced
by an estimate l/;j(Z; ;0). For discrete Z;,

i@i0= 3 wziowzio | Y wzio,

i i
2=z 2=z

The accuracy of importance sampling is sometimes poor if the candidate parameter ¢ is far
away from 6 (Hesterberg, 1995). Approximate g-gptimal designs can be found using (26) or
(27) and maximizing é(0, -) over Qg = {ne Q;RAC(0, n) < R}.

8. Ascertainment

Ascertainment is typically regarded as a one-stage model with an underlying complete data
set Z',...,Z". Each Z' is either completely observed or not observed at all, depending on the
ascertainment events 4'={Z’observed}. The sampling scheme m,.(z) = P(4’| Z' =z) is often
not known exactly. For regression models Z' = (X’ Y7), prospective and retrospective designs
mean that observations are ascertained based on their covariates X’ and response variables
Y’ respectively.

It is well known that in general, 7,, has to be included into analysis to avoid inconsistent
estimators (Fisher, 1934; Rao, 1965), either by relying of previous knowledge of 7, esti-
mating 0 and 7, jointly or conditioning away the impact of m,s.. To this end, depending
on the type of ascertainment, one may use a likelihood conditioned on ascertainment {4},
a retrospective likelihood conditioned on {Y'}, a prospective likelihood conditioned on { X'},
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an ascertainment-corrected prospective likelihood conditioned {X’, 4’}, a semiparametric
profile likelihood (Zhou et al., 2007), or a full likelihood (Griinewald et al., 2010). The case—
control study is the most well-known retrospective example of ascertainment, for which the
ascertainment scheme can be ignored in statistical analysis in two important cases;
effect parameter estimation for logistic regression (Prentice & Pyke, 1979) or Cox regression
(Prentice & Breslow, 1978) models.

To highlight the efficiency loss incurred by not including unascertained data, case—
control sampling can be thought of as originating from example 1, where data are discarded
for individuals without covariate information. In the same way, Griilnewald & Hossjer (2010a)
view ascertainment as a two-stage problem, where data are retained only for individuals
sampled up to Stage 2. We now generalize this to multistage designs, where individuals
sampled up to Stage k are ascertained, that is, 4'={J =k} and m,.(z) =m(z). Thus, we
think of n=(ny,...,n) as a MARD, although the mathematical development below does
not require this.

8.1. Unconditional ascertainment

If it is known which observations that are not ascertained, we get a likelihood
Lase(0.7) = | [ fuse(E': 0. ), (28)
i=1
slightly different from (5), where n is the total population size, including both ascertained

and not ascertained individuals,

7 (2)fi (25 0); if ze 2,

faSC(Z;O’n)z{l—P(Aw, n; ifZEZ U 2,

A={J=k} is the ascertainment event and P(4 |0, n)= P(J=k|0) the probability of ascer-
tainment, respectively. The TAC becomes

TAC;e(0, 1) =nP(A| 0, m)E[C/(Z) | ] = k] (29
and the Fisher information (11) changes to
Luse(0, )= (0, ) +nP' (4]0, 1) P'(4] 0, m)/[1 — P(A] 0, m)], (30)

where I, is the information from sampled individuals and P'(4]|0,n)=90P(A4|0,n)/00
the information from unsampled ones. Efficiency is calculated as e, (0, 7) =h[ls.(0, 7))/
A[I(0, )] Since L (0, 1) <1(0, ), it follows from (12) that e,s.(6, 7) <e(0, 7).

8.2. Conditional ascertainment

More commonly, the unascertained observations and hence also n, are unknown. We then
condition on ascertainment status and use the likelihood

J210=kG: 0, ) = ()i (2, 0)/P(A [0, 7),  if Z€ Z,
1’

condasc(Z; 0, m) = .
f d (Z TC) { 1fZ€Z]U"'UZk,1,

for one individual, giving a total likelihood
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Leondasc(0, 1) = Hf;:ondasc(fi; 0,m)
i=1

H f;:ondasc(fi; 0: 713)

iJi=k

=[] =iz 0)/P(4|6,7)
iJi=k

o P(A] 0.1 T filz':0).

iJi=k
where n? = |{i;1<i<n,J'=k}| and E(n*)=nP(A4]|0, ). The resulting total average cost
TAC ondasc(0, 7) is the same as for unconditional ascertainment, cf. (29), but the Fisher infor-
mation (11) changes to
Icondasc(ﬁs TE) = }’IP(A ‘ (7)3 n)COV[W(Z; 67 75)]
=1,(0,m)—nP'(4|0,7)"P' (4]0, n)[P(A|0,7),
where cov[y(Z)] is the p x p covariance matrix of W(Z). Efficiency is calculated as

eCOHdaSC(Os TE) = h[lcondasc(es ﬂ)]/h[](@, nfull)]- Since Icondasc(Ba 71?) < Iasc(g’ 7-[), it follows from (12) that
econdasc(ga TE) < easc(ea TE)

9. Examples

Example 4 ( Two-stage designs and missing data). Samples with missing data can be viewed
as a two-stage design, where the Stage 2 variables are missing for some individuals and ob-
served for others. If there is only a cost involved in collecting the Stage 2 variables, we put

Cl(')EOs CZ()E 17 (31)
which implies
RACO,n)=P(J=2)= / 1 (2)f5(z; 0) dz. (32)
z
Since k=2, the design is characterized by n,(-). For a MARD,

m(2) =m(21), (33)

that is, the probability of including Stage 2 data only depends on Stage 1 data.

When no variables are collected in Stage 1, Z; =0, and data are either completely missing
or completely observed. This is essentially equivalent to unconditional ascertainment, with
Stages 1,...,k — 1 condensed into one new Stage 1. Hence, the likelihood and the Fisher
information can be obtained from (28) and (30). Further, (33) simplifies to

m() =1, (34)

for some 0 <7 <1, giving a one-dimensional class of MARDs. The resulting design is essen-
tially a SRS with sample size nn (Bin(n, n) to be exact). Condition (34) is referred to as data
missing completely at random (MCAR), cf. Little & Rubin (2002), and a cost-efficiency plot
(RAC, e)=(n,n) is then located along the diagonal within the unit square.

Example 5 (Design of ‘x-random’ experiments). Assume full data z=(x,y), where x is a
set of covariates and y the response, and a two-stage BUD
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e (35)
= (X, y)

The density of full data is given by (2), and a MARD satisfies

7(2) = ma(x) = 25" ().

Suppose cost function (31) is used, so that RAC= [ my(x)P(x;y) dx equals the proba-
bility that y is collected for a randomly chosen x, cf. (32). Finding an optimal design 45°(-)
amounts to deciding for which fraction R of covariates {x'}”_, we should collect responses
»' to maximize efficiency when estimating or testing &. This is very similar to optimal design,
cf. Silvey (1980) and Melas (2006), although we focus on random x. Since x is ancillary for
estimating &, the likelihood function factorizes as

LO.mx< [P [T PO/ X0, (36)
i=1

iJi=2

with proportionality constant not depending on 6. This implies that only the last term of
(36), the prospective likelihood, is important for estimating ¢ and 7,:(0, 1) =1;,(0,7)=0 in
(14). Hence, any function A[I(0, 7)] that involves estimation or testing of ¢ will be a function
of I::(0, m) alone. Formula (36) gives rise to a decomposition

N 0 0 _ 155(9,7'[) 0
10, tmin) = I:O I;-;v(O,Tfmin):|’ Iz|1(0,7‘£)—|: 0 0l

of the Fisher information matrix, cf. (19). It follows that (i) the design = has no effect on
estimation of y and (ii) all information about the effect parameters ¢ is contained in the pro-
spective likelihood.

Example 6 (Binary response-selective sampling, contd). An important difference of the
response-selective design (1) compared with the prospective design (35) is that the x-variables
are no longer ancillary and therefore, the first stage sample is informative for inference on ¢&.
The likelihood of response-selective sampling no longer factorizes as in (36) and any MARD
in P must satisfy 4,°(z)=25"(y). It is parameterized by 1= (1, 1,), where 1, =7;"(y). The
subclass Q with #; =1 was treated in example 1.

In Fig. 2, efficiency for a logistic regression model with X ~ Bin[l, F(y)], and Y | X ~
Bin[1, F(a+ )] is illustrated, with F the logistic distribution function. To investigate sensitivity
to the parameter specification, we simultaneously plot efficiencies for =0, 2 and 4. Note that
while the scenario with =4 has the highest efficiency gain from the sampling scheme in the
estimation of y and o, the scenario with =0 has the largest efficiency gain in the estimation
of p.

In Fig. 3, RAC for the same logistic regression model as before, with f=2, is illustrated.
Three different costs are here included, (C;, C;)=(0,1), (1/3,1) and (1/2,1), representing
scenarios where the cost per individual of collecting y is none, half and the same as the cost of
collecting x. As x-axis 7, is chosen. It translates easily into sampling probabilities when plan-
ning a study and is a linear transformation of RAC = C,/C, +[15,P(Y =0;0)+ P(Y =1;0)] x
(C, — C)/C,. The graphs show a larger cost-efficiency gain of response-selective sampling
for all parameters the smaller C; is. Oversampling of cases is most beneficial for o, with a
maximum CE over 2.5, followed by f, whereas for 7 there is little gain in oversampling cases.

Example 7 (Continuous response-selective sampling, with a genetic application). For con-
tinuous y, P is infinite-dimensional, so we consider a subclass Q
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Fig. 2. Efficiency for a logistic regression model. y=—1 and a=—2. Solid, dashed and dotted lines
represent =0, 2 and 4, respectively.
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Fig 3. Cost-adjusted efficiency for a logistic regression model. Solid, dashed and dotted lines represent
costs C; =0, 1/3 and 1/2, respectively, for C; =1, y=—1,a=-2, f=2.

B3)=Y i lpesyys (37
m=1
corresponding to a decomposition {S,,}",_, of the response region into r mutually disjoint
strata on which the Stage 2 inclusion probability is constant. It is parameterized by n=
y»---»n,), where 0<n,,...,n, <1.
Lyon et al. (2007) investigate the association between the C/C genotype of genetic marker
rs7566605 and body mass index (BMI) in a number of cohorts. One of these samples (Maywood)
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was enriched for obese individuals (BMI > 30), whereas four other cohorts (FHS 1, Iceland,
KORA S3 and Scandinavia) were not. We investigate if over-sampling of obese individuals
would have been cost efficient in these four samples, if analysing the data as two-stage
samples with continuous response variables ¥ =BMI and binary covariate X = 1genotype=cc}-
Assume X ~ Bin[1, F(y)], and a linear regression model

log(Y)| X =x~N(a+ Bx, 6%),

for the logarithm of BMI. This yields regression parameters £ = (o, 8, ). We use BMI=30 as
cut-off value, giving r=2 regions in (37), with S; =(0, 30), S, =[30, c0) and n=(n,, 1,), with
n, =1 kept fixed and 0<#, <1 varying. Parameter values are calculated as shown in Table 1,
with no adjustment for age and sex, which was done in Lyon et al (2007). In Fig. 4, the
cost-adjusted efficiency for the effect parameter f is illustrated for (Cy, C5)=(0,1), (1/11,1)
and (1/3,1), when the cost of collecting BMI is none, one tenth and half the cost of geno-
typing, respectively. It is evident that over-sampling of obese subjects for genotyping (1, <1)
is only beneficial if the cost of measuring BMI is substantially lower than the genotyping
cost. Over-sampling obese subjects was efficient only in three cohorts, while in the Iceland
cohort the most efficient sampling scheme was close to 1, =1. In all four cohorts, the opti-
mal proportions of subjects with BMI > 30 in the samples were approximately 50 per cent
(for high cost of genotyping). As seen from Table 1, the mean BMI in the original Iceland
cohort was higher than that for the other three cohorts, and very close to the cut-off, so there
was already a high proportion of obese individuals in the Iceland sample. However, the pro-
portion of the Icelandic population with a BMI >30 is 12.4 (Steingrimsdottir et al., 2003),
suggesting that the Iceland cohort already has an over-representation of subjects with high
BMI compared with the Icelandic population. Some of the participants in the Iceland cohort
were ‘relatives of probands’, so there might be an unintended correlation between BMI and
n in this cohort.

Example 8 (Sequential inclusion of covariates). We retain (2), but consider a k-stage BUD,
with z; =(x1,..., x;_1,y) containing an increasing number of covariates from x =(xi,..., Xx_1)
as j increases. Then,

F:0. 1) =1()P(x1s 2 157) / P(x| 1. ooxi 1 0)P(y | 33 6) dov, (38)

for z; € Z; and 4/°(2)=2"(x1,...,x;1,»). As an illustration, we consider a three-stage design.
In the first step of the design, y is collected for the whole sample. In the second step, a

Table 1. Specification of parameter values in example 7 that were used in

Fig 4

FHS Iceland KORA Scandinavia
i —2.04 -2.02 -2.12 —2.11
a 3.22 3.36 3.29 3.28
p 0.0136 0.0237 0.0016 0.0111
4 0.169 0.232 0.165 0.137
Mean BMI 25.08 28.74 26.91 26.55

They were derived from Tables 1-2 in Lyon et al. (2007) as follows:
F(p)=exp()/[1 +exp(P]=ncic/(ncic +ncic +naic),

d=log[(mean BMI¢yg x ncig +mean BMlg g X ngi)/(nciG +n6i6)ls
B= log(mean BMI¢y)— 4,

6% =(SD BMI)? x (1/BMI mean)?.
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Fig 4. Efficiency of over-sampling obese individuals (BMI > 30) in different cohorts in Lyon et al
(2007) when estimating the effect (f8) of the C/C genotype of genetic marker rs7566605 on log(BMI) in
a linear regression model. Solid, dashed and dotted lines represent C; =0, 1/11 and 1/3, respectively,
for C,=1.

proportion of x; is selected, with selection probabilities determined by the value of y. A cut-
off value ¢y is used, letting

a, y<[y,

up —
% (y)_{l; y>ty,

and varying the value of a. In the third step, x; is collected, with selection probabilities deter-

mined by the values of y and x; simultaneously. For individuals with x;, collected selection
probabilities are
b; y<ty,x <t

Jup , — > 5 ! X1
v (05 x1) {1; otherwise,

whereas for individuals with x; missing, x, is not eligible for selection. The design can
thus be summarized by two parameters: n=/(a, b). We specify dependencies between variables
in Fig. 5, where it is seen that X, acts as a confounder for the relation between X; and Y.
In more detail, we have
Xy ~Bin |1, - P0) ]
1+ exp(ay,)
exp(oy, + By, x, X X2)

Xi|{X2=x,}~Bin |1, ,
X2 =) L+exp(ory, + By, y, X X2)
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VAN
X, 1 Selection
NS

Fig 5. A three-stage design.

Y|{X1 :Xl,XzzxZ}NN(OCy+ﬁX]Y X X1 +ﬂX2Y Xx2,0'2}/).

The likelihood contains seven parameters: y=(oy,, %x,, By, x,) from the covariate distribu-
. P .0 .2 1 .
tion and ¢=(ay, By, y,Py,y,0v) from the regression. To simplify, we focus on By, ., fy y
and By, y. The efficiency can be assessed for each parameter separately, or for all three simul-
taneously, using

-1
h[I(O,n)]={ 3 V(@”)} , (39)

r=3.5.6 Vrr(ga 7'[full)

a generalized form of the A-criterion in experimental design, which in our case depends on
0 and puts equal interest into each of the three effect parameters. To visualize the results,
three-dimensional plots are used in Fig. 6. With equal cost of sampling x; and x,, there is
no cost-efficiency gain in not sampling the full data set (¢ =5b=1). However, with no cost of
sampling x;, a considerable gain (CE >2) is achieved by sampling optimally x; for a fraction
a~0.2 of individuals with non-extreme response variables. The optimum sampling fraction
of xy is b~ 1 for By, y, b~0.2 for By, y,, b~0.3 for By y and b~0.5 for all three parameters
combined.

Example 9 (Models with surrogate data and latent variables). Suppose the covariates of a
regression model are costly to sample but a cheaper surrogate variable S is available.
In the two-stage model,

1= (S > ) 5
2=(5,X,9),
the surrogate and response variable is collected at Stage 1 and covariate data at Stage 2 with a

BUD inclusion probability 1,°(s, ). The choice of likelihood depends on how Stage 1 data are
collected. If it is sampled randomly from the population, we use the population distribution

So(z:0)=P(s;9)P(x | s;9)P(y ] x; )

of Z=(S,X,Y), where 0=(y, &) contains covariate and regression parameters, cf. Scott &
Wild (1997). If Stage 1 data are sampled non-uniformly depending on Y, we use instead a
retrospective likelihood with f3(z; 0) = P(z | y;0), cf. Breslow & Holubkov (1997) and Scott &
Wild (2007). For binary responses, this is a two-stage case—control design.

When the covariates are not known, but a proxy X' is available for sampling, the more
general two-stage latent variable model

21 =(5,)s

2=(s,x,p)
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Fig 6. CE for three parameters in a three-stage design, as described in example 8. Efficiency calculated
for each parameter separately is presented in columns 1-3 (green), and efficiency calculated for all three
parameters simultaneously is presented in column 4 (red). In the upper graphs, a surface is representing
the cost efficiency. The same information is visualized in the graphs below, here instead projecting the
height of the surface on a two-dimensional grid, letting a colour gradient represent the cost efficiency.
Two cost functions are applied, (Cj, C;, C3)=(0,0, 1) (upper rows) and (C;, C3, C3)=(0,1,2) (lower
rows). ty=3,1y, =05, ax,=0,0y, =-3, ﬂXzXl :Z,O(Y:(),ﬁxlyzl,ﬁxzyzl,o'zyz 1. Monte Carlo
approximation, based on (26), is used with N =10,000.

can be used, cf. Thomas (2007). The BUD is still of the form 25°(s, »), but the likelihood for
randomly sampled data involves

Sfa(z;0)=P(s37) / P(x|s;9)P(y | x; EP(X' | x;7) dx,

which requires integration over the latent covariates. If Stage 1 data are sampled based on
Y, a retrospective likelihood is used instead.

Example 10 (Stratum selection). Consider a regression model with z=(x, y), for which the

sample space is divided into my,y disjoint strata, Z=U,"xS,,. A two-stage BUD

Z1=m,

= (x » Y )a
is defined by sampling stratum indicators m randomly from the population at Stage 1 and
then full data for a proportion 2,"(m) of individuals within Stratum m. Breslow et al. (2003)
consider ML estimation for this model when the covariate distribution parameter 7y is
infinite-dimensional.
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Example 11 ( Prevalence estimation with diagnostic tests). Let Y be a binary indicator of a
given disease and suppose the prevalence = P(Y =1) is of main interest. For complex dis-
eases, it may be costly to measure Y, and therefore a number of diagnostic tests (®y,..., Dy,)
are available, with significance level o,, = P(®,,=1| Y =0) and power f,,=P(®,=1|Y =1).
In the two-stage model

Zl:(¢ls""¢M)7
22=(¢15"'9¢M’y)9

patients are sampled randomly into Stage 1, undergo diagnostic tests and so that divide the
sample into 2™ strata. With a BUD, a proportion 4;7(¢y,. .., ¢,,) of Stratum (¢,..., d,,)
individuals proceed further to have disease status determined. If the diagnostic tests are
independent,

M M
Sz 0)=(1— 5){y=0} H(l _ am){(/)m=0}a£”(/7m=l} + é{yzl} H (1- ﬁm){’pnI:O}ﬂjn(bm: 1}’
m=1 m=1
where 0=(&, o1, f},...,0%u, B,). McNamee (2003) derives cost-efficient optimal designs for
this model when M =1. Salim & Welsh (2009) consider a related model when Y is replaced
by a costly test @, with higher precision than those of Stage 1 but yet not a perfect disease
predictor.

Example 12 ( Ascertainment versus two stage). The efficiency of conditional ascertainment
€condasc (0, ) 1s calculated for the logistic regression model (3), as presented in Fig. 7, together
with the two-stage design efficiency, e(6, n), for comparison. A two-stage design is preferable
to an ascertainment design if C; =0, since more information is available in the two-stage
data set at no extra cost. In this example, the efficiency gain is, however, most prominent in
estimating o, whereas no such effect is observed for the parameter of main interest, f.

More advanced examples of ascertainment occur in genetic applications with family data.
For instance, Ginsburg et al. (2004) review the ascertainment problem in linkage analysis and
another example is given here.

Example 13 (Ascertainment with three stages). Consider a population of families with
three children, divided into my.x strata Z=U,"S,,. We wish to estimate the prevalence of a
certain rare disease whose occurrence varies between strata. Full data for one family is z=
{m, (x;, yj)]3=,}, where m is the stratum indicator, x; the covariate data and y; the observed

affection status of the jth child. A possible three-stage model is
Z1=m,
2 =(m, y1,¥2,13)s
23=(m, (3, )})-

Using logistic regression with stratum-specific intercept parameters,

3
S3(z0)=pu [ [ POG [ 9)F (et + 381 =11 = F (o 4 ;8]0 =0,
Jj=1
where 0=(7,P1,..., Pimaxs %15 - -» Ommas» f)> P CONtains covariate distribution parameters and
Pm=P(M =m) are the strata proportions. The parameter of main interest is the covariate-
adjusted overall logodds prevalence o =>", p.o.. A possible subclass Q of BUDs is obtained
by collecting affection status with different proportions over strata and then covariates
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Fig. 7. Efficiency for estimation of parameters using two-stage (dashed line) likelihood and con-
ditional ascertainment likelihood (solid line) in logistic regression, cf. examples 6 and 12, with
y=—lLa=-2,=2,m=P(J=2|Y=1)=1and O0<yy=P(J=2|Y=0)<1.

for families with at least one affected child, that is, 23°(z)=1n,,, 457(2)=1(, 4y, 1,51} and
=15 M)

Now, suppose we have a (conditionally) ascertained data set, so that only families with
covariate data are retained. This is very similar to the model treated by Burton et al. (2001).
It is shown in this article that lost stratum indicators in the ascertained sample may result in
severely biased estimates of the overall prevalence when the whole population is treated as
one stratum, thereby mis-specifying the ascertainment procedure.

Example 14 (Distributed detection). Consider a wireless network of n sensors distri-
buted over a certain region. Their task is to locate a possible target. Sensor i registers data
Z'=(X],...,X}) during T time points, where X/~ N(0,¢?) are independent. Detection of
the target is performed by a fusion centre (FC), the task of which is to test a null hypothesis
of no target (©g={s3}) against the alternative of a present target (®\®o = (3, c0)). Sensor i
compresses data in the form of average power Y'=3""_ (X/)*/T ~a*x*(T)/T and transmits
it to the FC. To save energy and communication resources, this is only done when Y >/ for
some threshold /. A sent message from Sensor i may be lost with probability p. We formulate
this as a TDD with three stages

z3=(x1,...,X7),

zz=y=2xt2/T,
t

leﬂ.

Since messages are always compressed, ,1§°W“(x1,. ..,x7)=1. A compressed message is sent
and reaches the FC with probability A{°"(y)= plyssy. Thus, either J'=2 if the FC receives
a signal from Sensor i or J'=1 if it does not, in which case the signal is either not sent or sent
and lost. Since the send condition depends on y, this is not a MARD. The design is para-
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meterized by 1= (4, p). Suppose the cost for each sensor of compressing data is a and the cost
of sending y is b(p), a decreasing function of p, since a higher sending power is required to
achieve a small p. This gives cost functions Ci(y)=C,(y)=Cs3(y)=a+b(p)l;,>;;, of which
C; is not stage-dependent, and TAC=n[a+ b(p)P(Y > A)]. For more details on distributed
detection, see Chamberland & Veeravalli (2007) and references therein.

10. Discussion

Even though multistage designs are often used in observational studies, it is usually not trans-
parent in the design phase how the data selection will affect the efficiency of the study. This
article provides a framework describing the design procedure, in the attempt to facilitate
description and discussion of such. We also describe how efficiency and cost-adjusted efficiency
can be calculated using Fisher information matrices adjusted for the selection procedure.

The relative performance of different selection schemes n in the examples varied with costs
and assumed parameters 0, which illustrates that it is advisable to calculate efficiency for
several parameter values, and choose a design that has acceptable efficiency for most plaus-
ible values of 0.

One obtains a broader picture by presenting efficiencies for a whole class Q of designs in
graphs, rather than just calculating one optimal sampling scheme. In this setting, the area
under the optimal efficiency curve (25) may be used to quantify an average cost efficiency of
the designs in @ and compare it with (1 + Ryn)/2, the corresponding area for SRSs.

Alternatively, an iterative approach is often successfully used in experimental design, that
is, to first do a small study and then fill in more data where the initial sample suggests is
efficient (Montgomery, 1984). Similarly, pilot studies are sometimes used in observational
studies to identify practical issues in data collection, but can also be used for assessment of
crude parameter estimates for subsequent cost-efficiency calculations.

The choice of design may also affect the plausibility of the model assumptions, such as
normally distributed errors in regression. For example, Allison et al. (1988) argue that select-
ing only extreme outcomes is not advisable in genetic studies, since extremes are likely to
result from rare exposures with strong effects not in the model.

We have assumed in (4) that only 0 is estimated, whereas = is known. This is natural if the
sampling scheme is controlled by the investigator. If = is rather an unknown nuisance para-
meter, in general, it has to be estimated either from training data or from the data set at
hand by maximizing L(0, ) jointly w.r.t. § and n. However, for MARDs, it is not necessary
to estimate 7, since the likelihood can be factorized as:

L(0, )= A(0)B(m), (40)

so that inference on 6 can be based solely on A(6) if the joint parameter space of 6 and =
is the product of the individual parameter spaces, cf. Rubin (1976), Heitjan & Rubin (1991)
and Little & Rubin (2002).

The methodology described here is equally valid for other estimators than ML. Let 0(r)
be a given estimator of 0 using design 7, with asymptotic covariance matrix V(0;0, 7). Then,
the efficiency of estimating the rth component of 6, compared with the ML estimator Onr
of the full data set, is

e(0;0, )=V, (Ona; 0, 75a)/ V(0 0, ). (41)

This corresponds to our previous definition (13) when 0= Omr and A(1)=V'. When =g,
(41) is the usual definition of efficiency (see, e.g. Lehmann & Casella, 1998). Similarly, e(T'; 0, 7)
for a test statistic 7', with design =, is defined by comparing its non-centrality parameter
with that of Tir for the full data set. There may be several reasons for choosing other esti-
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mators and tests than ML and LR, such as (i) robustness against model mis-specification
(e.g. generalized estimating equations; Liang & Zeger, 1986), (ii) simple and explicit algo-
rithms (e.g. inverse probability weighted ML estimates; Breslow & Wellner, 2007), (iii) approx-
imations of likelihood methods with explicit optimal cost-efficient designs (e.g. mean score
method estimates; cf. Pepe et al, 1994; Reilly & Pepe, 1995; Reilly, 1996). Also, we have
focused on asymptotic expressions of the covariance matrix based on the Fisher information
matrix. Another possibility is to use distributional properties of finite sample estimators of
the covariance matrix, for example, based on a sandwich estimator (see, e.g. Kauermann &
Carroll, 2001).
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