21-cm signal from Epoch of Reionization

Raghunath Ghara

Dept of Astronomy & Oskar Klein Center, Stockholm University

Collaborators: Garrelt Mellema, Tirthankar Roy Choudhury, Kanan K. Datta, Sambit Giri, Samir Choudhuri, Suman Majumdar

April 19, 2017

Cosmic dawn and epoch of reionization (EoR)

Cosmic dawn and epoch of reionization (EoR)

Why is this fascinating?

- When did reionization occur?
- Sources responsible ?
 - Galaxies?
 - Quasars?
- Thermal and ionization state of the IGM ?
- Impact of the reionization process on the structure formation ?

Probes of reionization

 Quasar absorption spectra (z_{end} ~ 6)

X. Fan, et al. 2006

Probes of reionization

- Quasar absorption spectra (z_{end} ~ 6)
- CMBR observations $(z_{
 m re} \sim 8.8)$

Planck Collaboration, 2016

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Probes of reionization

- Quasar absorption spectra (z_{end} ~ 6)
- CMBR observations $(z_{
 m re} \sim 8.8)$
- Others : High-z GRBs, IGM temperature, High-z Galaxies...
- ▶ 21-cm line from neutral hydrogen (H I).
 - Most promising probe of EoR.
 - Can be used for imaging the topology of reionization.

- Probes thermal history of IGM before reionization.
- Probes various radiation background.

Differential brightness temperature ($\delta T_{\rm b}$)

Example / parameters

Sources

- $M_{\star} = 10^8 \ {
 m M}_{\odot}$ (depends on star-formation efficiency f_{\star}).
- Mini-QSO spectral index lpha=1.5
- Composite SED of HMXBs : α = 0.24 at soft X-ray range (5 years observation with MAXI)
- Ratio of X-ray and UV luminosity $f_{\rm X}=0.05$
- UV escape fraction $f_{
 m esc}=0.1$
- $t_{age} = 20 \text{ Myr}$

.. in preparation

3

・ロト ・四ト ・ヨト ・ヨ

Problems: Foregrounds, System noise, Ionosphere..

|▲□▶|▲□▶|▲目▶|▲目▶||目|||のへで

|▲□▶|▲圖▶|▲≣▶||▲≣▶||| 重||||の�@

What Simulations can do?

- Detection of the signal is itself challenging.
 - Foregrounds
 - system noise
 - ionosphere
 - calibration
 - signal extraction schemes
- Better understanding of the signal properties.
- ► For developping better calibration, signal extraction schemes.
- Simulations of 21-cm signal is necessary to make observational strategies.
- Extract information about the sources, IGM etc.
- ► Need faster simulations to cover huge parameter space $(f_{\star}, n_{\gamma}, f_{\text{esc}}, f_X, \alpha, ..)$.

Different approaches

- Analytical : Reionization model based on excursion set principle
 - Furlanetto et al 2004
- Semi analytical : ionization based on excursion set principle

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 21cmFAST (Mesinger et al 2007)
- SimFAST21 (Santos et al 2010)
- Choudhury et al 2009

- ...

- Numerical : ionization using 3D radiative transfer
 - C²-RAY (Mellema et al 2006)
 - CRASH (Ciardi et al 2001)

- ...

Using 1D radiative transfer

- BEARS (Thomas et al 2009)
- GRIZZLY (-BEARS) (Ghara et al 2015)

21-cm signal for Mini-QSO and HMXBs model sources

- Composite spectrum do heating less inhomogeneously than the mini-QSOs.
- Heating peak amplitude is less for composite spectrum.
- More partial ionization by soft X-rays in mini-QSOs results in early end of reionization.
- bump around k ~ 0.2 Mpc⁻¹ at redshift 11.96 (mini-QSO) corresponds to R_{heat} ~ 12 cMpc ... in preparation

・ロット (雪) (日) (日) (日)

Isolated source detection using SKA1-low Ghara et al., 2016, MNRAS, 460, 827

- ► Source : Mini-QSO ($M_{\star} = 10^7 \text{ M}_{\odot}$, $\alpha = 1.5$, $f_{X} = 0.05$, $f_{\text{esc}} = 0.1$, $t_{\text{age}} = 20 \text{ Myr}$)
- ► Noise : SKA1-low, z = 15, t_{obs} = 2000 h, Frequency resolution = 100 kHz, band width =16 MHz.
- Foregrounds :Galactic Synchrotron radiation, Unresolved extragalactic point sources

・ロット (雪) (日) (日) (日)

Using filters (Matched filter?)

Imaging?

Ghara et al 2017, MNRAS, 464, 2234

(日)、

э.

- '×' marks: θ_x, θ_y positions of the sources.
- ▶ SNR : 4.8, 14.2
- Resolution : 30 arcmin

Summary

- Fast simulations of the 21-cm signal are important for parameter estimations, predicting new observation strategies etc.
- One-dimensional radiative transfer can be efficiently used for generating 21-cm maps from the Cosmic dawn and EoR.
- SKA should be able to detect the sources in 21-cm signal even from the cosmic dawn. Images can be used for parameter estimation.
- Matched filtering method can be efficiently used for detecting the sources in cosmic dawn.

Summary

- Fast simulations of the 21-cm signal are important for parameter estimations, predicting new observation strategies etc.
- One-dimensional radiative transfer can be efficiently used for generating 21-cm maps from the Cosmic dawn and EoR.
- SKA should be able to detect the sources in 21-cm signal even from the cosmic dawn. Images can be used for parameter estimation.
- Matched filtering method can be efficiently used for detecting the sources in cosmic dawn.

Thank you