App

Intergenerational Transmission of Family Influence

S. M. Sadegh Eshaghnia and James J. Heckman University of Chicago

> Rasmus Landersø Rockwool Foundation

Rafeh Qureshi University of Wisconsin

Nobel Symposium on Inequality August 27–28, 2022

Eshaghnia, Heckman, Landersø, & Qureshi

Decomposir

DEPARTMENT OF ECONOMICS

THE UNIVERSITY OF CHICAGO

THE ROCKWOOL FOUNDATION

Copenhagen, Denmark

CENTER FOR THE ECONOMICS OF HUMAN DEVELOPMENT The University of Chicago

Eshaghnia, Heckman, Landersø, & Qureshi

Conventional Approach to Measuring the Intergenerational Transmission of Family Influence

- IGE (intergenerational elasticity).
- Childhood is a single period stage of three-stage overlapping generations model followed by adulthood and retirement.
- Ignores uncertainty.
- Abstracts from timing considerations within stages of the life cycle.
- Focus: Realized lifetime incomes or welfare across generations, but uses snapshots of life cycles in practice due to data limitations.
- Implicitly invokes stationarity across generations or limited nonstationarity.

Eshaghnia, Heckman, Landersø, & Qureshi

Our Approach

- Also recognize powerful role of parental influence.
- Multiple periods within each stage of the life cycle.
- Recognize critical and sensitive periods for effective investment.
- Income realized over lifetimes is not the income and welfare **expected** at each period of the life cycle.
 - Information revealed within each stage.
 - Agents risk averse.
 - Credit constraints restrict the smooth transfer of income over the life cycle.
- Income expectations that govern child investment decisions not the same as the realizations of those expectations.
- A continuum of possible IGEs pairing different stages of parent and child life cycles.
- We pick IGEs of life-cycle measures that are most predictive of important childhood outcomes.

Data Measures

Life-Cycle Decision-Specific IGEs

- Account for fundamental nonstationarities of economic and social environments.
- Intergenerational changes in the patterns of educational attainment: main drivers of changes in life-cycle patterns of family formation.

What We Do

Eshaghnia, Heckman, Landersø, & Qureshi

.

Contributions

- Recognize importance of early years in shaping child development.
- Fundamental nonstationarity of life cycles across cohorts.
- Build and estimate a life-cycle model accounting for uncertainty and credit constraints.
- Measure role of uncertainty, education, and policy (*ex ante* vs. *ex post*).
- G Determine best predictors of successful childhoods.
- Age-specific life-cycle measures of social mobility that are most predictive of child outcomes.
- Surprisingly, the predictive power does not vary with the age of the child at which the life cycle measures are computed (but it does for snapshot measures).

Eshaghnia, Heckman, Landersø, & Qureshi

- Traditional proxy measures only weakly correlated with true lifetime measures.
- Life-cycle relative mobility < Proxy relative mobility (currently used proxies overstate relative mobility).
- Life-cycle absolute mobility > Proxy absolute mobility.
- Reforms in credit markets play a huge role in explaining IGE.
- Even in a generous welfare state with substantial social benefits and social insurance and redistribution through taxes and transfers, there is strong dependence in lifetime resource and welfare across generations.

Data Measure

App

Two Measures of Lifetime Resources and Well-Being

- **9** Present Discounted Value of Future Income (PDV).
- Lifetime Wealth: approximates lifetime value function and accounts for both uncertainty and liquidity constraints.

Eshaghnia, Heckman, Landersø, & Qureshi

Data	Measures	Nonstationarity	IGEs	Decomposing	Absolute	Conclusions	App

- Measures that predict important lifetime outcomes of children, like their participation in education and crime.
- Distinguish *ex post* and *ex ante* (realized vs. anticipated).

Data	Measures	Nonstationarity	IGEs	Decomposing	Absolute	Conclusions	App

- *Expected* income and expected well-being at different ages measure resources available for consumption and child investment at those ages.
- Measure of decision-relevant and age-specific welfare.

• Micro and full population register data.

Eshaghnia, Heckman, Landersø, & Qureshi

Measures

Figure 1: Data Availability and Our Sample of Parents and Children

Parent and Child income is averaged between ages 30-35, whenever available in register files

Measures

Measures of Lifetime Resources

Eshaghnia, Heckman, Landersø, & Qureshi

Table 1: Definitions of Welfare and Income Indicators Used in This Paper

	Variable
(1)	Wage Income
(2)	Income with Transfers
(3)	Income without Transfers
(4)	Disposable Income
(5)	Family Measures (Husband and Wife or Cohabitants)
(6)	Equivalized Family Measures
(7)	Household Consumption
(8)	Survey Imputed Consumption
(9)	Survey Imputed Consumption with Equivalence Scale
(10)	Expected Present Discounted Value
(11)	Realized Present Discounted Value
(12)	Expected Lifetime Wealth
(13)	Realized Lifetime Wealth
(14)	Equivalized Lifetime Measures

Traditional

Measures

New Measures of Life-Cycle Resources and Welfare

Eshaghnia, Heckman, Landersø, & Qureshi

(1)

 $\text{PDV}_{i,t} = \mathbb{E}_{i,t} \left[\left. \sum_{\tau=1}^{T-t} \beta^{\tau} \mathbf{y}_{i,t+\tau} \right| \underbrace{\mathcal{I}_{i,t}}_{\substack{\text{Information} \\ \text{set for} \\ \text{individual } i \\ \text{in period } t}} \right]$

Eshaghnia, Heckman, Landersø, & Qureshi

- Approximate value function (Huggett and Kaplan, 2016).
- Expected lifetime wealth at period *t*:

$$LW_{i,t} = \mathbb{E}_{i,t} \left[\sum_{\tau=1}^{T-t} s_{i,t+\tau} y_{i,t+\tau} \middle| \mathcal{I}_{i,t} \right].$$
(2)

$$\mathbf{s}_{i,t+1} = \mathbb{E}_{i,t} \left[eta rac{U_c(\mathbf{c}_{i,t+1})}{U_c(\mathbf{c}_{i,t})} \mid \mathcal{I}_{i,t}
ight].$$

• Accounts for uncertainty and credit constraints.

Eshaghnia, Heckman, Landersø, & Qureshi

Measures

• Household Euler Equation:

$$\mathbb{E}_{i,t} \left[\beta \frac{U_{c}(c_{i,t+1})}{U_{c}(c_{i,t})} (1 + r_{i,t+1}) (1 + \lambda_{i,t}) \right] = 1.$$
(3)

• CRRA utility function:

$$\boldsymbol{U}(\boldsymbol{c}_{i,t}) = \frac{\boldsymbol{c}_{i,t}^{1-\rho} - 1}{1-\rho}.$$

Eshaghnia, Heckman, Landersø, & Qureshi

Data Measures

Identifying and Estimating Information Sets

- Cunha and Heckman (2016).
- Use information that predicts outcomes each period.

Eshaghnia, Heckman, Landersø, & Qureshi

Example of How We Select Information Sets

- $Y_t =$ outcome at t.
- I_t = relevant information known and acted on at t.
- $W_t = \text{not known and/or acted on at } t$.

$$\mathbf{Y}_t = \mathcal{I}_t \boldsymbol{eta} + \mathbf{W}_t \Gamma + \mathbf{U}_t$$

 $\mathbf{U}_t \perp \perp (\mathcal{I}_t, \mathbf{W}_t)$

• Test: \mathcal{I}_t properly specified if $\beta \neq 0$, $\Gamma = 0$.

•
$$U_{t+j} = Y_{t+j} - E(Y_{t+j} \mid \mathcal{I}_t), \quad j > 0.$$

- Correct information set: U_{t+j} not predicted by \mathcal{I}_t .
- New information arrives later.

Eshaghnia, Heckman, Landersø, & Qureshi

Measures

Link to Test Results

Eshaghnia, Heckman, Landersø, & Qureshi

Figure 2: Uncertainty by Age and Education Level

Measures

Nonstationarity

IGEs

Decomposing

Absolu

Conclu

Apj

Nonstationarity across Cohorts

Eshaghnia, Heckman, Landersø, & Qureshi

App

Figure 3: Distributions of Years of Schooling for Parents and Children

(a) Females (b) Males - 33 8-3 ŝ 25 25 Fraction .15 .2 Fraction .15 .2 τ. 05 65 0 0 20 20 12 13 14 15 Years of schooling 15 12 13 14 15 Years of schooling 15 17 ÷ å 10 11 16 17 ÷ à 10 11 16 Mother Daughter Father Son

Eshaghnia, Heckman, Landersø, & Qureshi

App

Figure 4: Timing of Key Life Events across Generations

Link to Nonstationary Life Cycles

Eshaghnia, Heckman, Landersø, & Qureshi

App

Figure 5: Income across Cohorts

(a) Non-College

Decomposing

App

Figure 6: SDF across Cohorts

(a) Non-College

Link: By Age

Eshaghnia, Heckman, Landersø, & Qureshi

Comparing Measures

Eshaghnia, Heckman, Landersø, & Qureshi

Decomposing

App

Table 2: Correlations of Income and Welfare Measures

	Wage	Income without	Income with	Disposable
	Income	Transfers	Transfers	Income
Income without Transfers	0.55	-	0.98	0.42
Income with Transfers	0.50	0.98	-	0.42
Disposable Income	0.55	0.42	0.42	-
Household Consumption	0.45	0.63	0.61	0.38
Realized Lifetime Wealth	0.39	0.30	0.30	0.49
Realized PDV	0.37	0.43	0.42	0.37
Expected Lifetime Wealth	0.48	0.51	0.48	0.36
Expected PDV	0.45	0.45	0.42	0.35

Continues

Eshaghnia, Heckman, Landersø, & Qureshi

App

Table 2: Correlations of Income and Welfare Measures, Cont'd

	Household Consumption	Realized Lifetime Wealth	Realized PDV	Expected Lifetime Wealth
Income without Transfers	0.63	0.30	0.43	0.51
Income with Transfers	0.61	0.30	0.42	0.48
Disposable Income	0.38	0.49	0.37	0.36
Household Consumption	-	0.38	0.37	0.39
Realized Lifetime Wealth	0.38	-	0.64	0.35
Realized PDV	0.37	0.64	-	0.42
Expected Lifetime Wealth	0.39	0.35	0.42	-
Expected PDV	0.38	0.30	0.39	0.96

Best Predictors of Important Child Outcomes

Eshaghnia, Heckman, Landersø, & Qureshi

Figure 7: Parents' Resources and Children's Outcomes

(a) Mathematics Problem Solving

Eshaghnia, Heckman, Landersø, & Qureshi

Figure 7: Parents' Resources and Children's Outcomes, Cont'd

(b) College Attainment

App
Measures

Figure 8: Parental Resources Measured at Ages 0-4 and Child Outcomes

Eshaghnia, Heckman, Landersø, & Qureshi

App

Figure 8: Parental Resources Measured at Ages 0–4 and Child Outcomes, Cont'd

Figure 9: Parental Resources Measured at Ages 5–9 and Child Outcomes

Eshaghnia, Heckman, Landersø, & Qureshi

Figure 9: Parental Resources Measured at Ages 5–9 and Child Outcomes, Cont'd

Figure 10: Parental Resources Measured at Ages 10–14 and Child Outcomes

App

Figure 10: Parental Resources Measured at Ages 10–14 and Child Outcomes, Cont'd

Eshaghnia, Heckman, Landersø, & Qureshi

Link to Education, Crime, Fertility

Eshaghnia, Heckman, Landersø, & Qureshi

Measures

Decomposi

Intergenerational Elasticities

Eshaghnia, Heckman, Landersø, & Qureshi

Figure 11: Log-Log IGE Estimates

Eshaghnia, Heckman, Landersø, & Qureshi

Link to Rank-Rank Version

Eshaghnia, Heckman, Landersø, & Qureshi

Link to Additional Log-Log IGE Estimates

Eshaghnia, Heckman, Landersø, & Qureshi

Measures

IGEs

Decomposi

Absolut

Intergenerational Correlations and Cross-Sectional Inequality

Eshaghnia, Heckman, Landersø, & Qureshi

Table 3: IGE Estimates (Ages 30-35 of Parents and Children)

	Father-Child IGE	Family-Child IGE
	$\hat{\beta} = \rho_{\text{child,father}} \frac{\text{sd}(\text{child})}{\text{sd}(\text{father})}$	$\hat{\beta} = \rho_{\text{child,family}} \frac{\text{sd}(\text{child})}{\text{sd}(\text{family})}$
Traditional Measures		
Wage Income	$0.125^{***} = 0.107 \frac{0.930}{0.798}$	$0.287^{***} = 0.148 \frac{0.913}{0.471}$
Disposable Income	$0.085^{***} = 0.078 \frac{0.438}{0.402}$	$0.239^{***} = 0.118 \frac{0.434}{0.215}$
Income with Transfers	$0.209^{***} = 0.170 \frac{0.477}{0.387}$	$0.346^{***} = 0.193 \frac{0.475}{0.264}$
Income without Transfers	$0.232^{***} = 0.162 \frac{0.894}{0.623}$	$0.405^{***} = 0.194 \frac{0.879}{0.420}$
Household Consumption	$0.341^{***} = 0.188 \frac{0.279}{0.154}$	$0.426^{***} = 0.210 \frac{0.279}{0.138}$
Lifetime Measures		
Realized Lifetime Wealth	$0.178^{***} = 0.087 \frac{0.550}{0.258}$	$0.185^{***} = 0.087 \frac{0.550}{0.260}$
Realized PDV	$0.264^{***} = 0.119\frac{0.603}{0.272}$	$0.351^{***} = 0.156 \frac{0.608}{0.270}$
Expected Lifetime Wealth	$0.364^{***} = 0.305 \frac{0.237}{0.199}$	$0.480^{***} = 0.323 \frac{0.236}{0.158}$
Expected PDV	$0.371^{***} = 0.310 \frac{0.279}{0.233}$	$0.522^{***} = 0.341 \frac{0.277}{0.181}$

Eshaghnia, Heckman, Landersø, & Qureshi

Decomposing

Absolu

Non-Linear IGEs

Eshaghnia, Heckman, Landersø, & Qureshi

.

Measures

95%

Figure 12: Local-Linear IGEs for Lifetime Measures

(a) Disposable Income (b) Household Consumption 5% 95% 5% œ œ IGE estimates .4 .6 IGE estimates .4 .6 2 2 0 0 30000 40000 50000 60000 70000 ອດກ່າງ 20000 60000 50000 90000 Household Resources Household Resources Local linear regression IGE ---- 95% CI Local linear regression IGE ---- 95% CI

Eshaghnia, Heckman, Landersø, & Qureshi

Measures

App

Figure 12: Local-Linear IGEs for Lifetime Measures, Cont'd

(c) Expected PDV (d) Expected Lifetime Wealth 95% 5% 95% œ œ IGE estimates .4 .6 IGE estimates .4 .6 2 2 0 0 1000000 1200000 1400000 600000 800000 1000000 1200000 800000 1600000 1400000 Household Resources Household Resources Local Linear regression IGE ---- 95% CI Local Linear regression IGE ---- 95% CI

Link to Realized Values

Eshaghnia, Heckman, Landersø, & Qureshi

Decomposing IGEs: The Crucial Role of Change in Educational Attainment across Cohorts

Eshaghnia, Heckman, Landersø, & Qureshi

• Regression specification:

$$\boldsymbol{y}_{i,t}^{k} = \lambda^{k} + (\boldsymbol{\beta}^{k})' \boldsymbol{X}_{i,t}^{k} + \mu_{i}^{k} + \epsilon_{i,t}^{k}.$$
(4)

- $k \in \{p, c\}$.
- Average log-income ages 30 to 35:

$$\overline{y}_i^k = \lambda^k + (\beta^k)' \overline{\mathbf{X}}_i^k + \mu_i^k + \overline{\epsilon}_i^k.$$

• Decompose intergenerational covariance of log-income into components:

$$\operatorname{Cov}(\overline{y}_{i}^{\mathsf{c}}, \overline{y}_{i}^{\mathsf{p}}) = \operatorname{Cov}\left((\beta^{\mathsf{c}})' \overline{\boldsymbol{X}}_{i}^{\mathsf{c}}, \overline{y}_{i}^{\mathsf{p}}\right) + \operatorname{Cov}(\mu_{i}^{\mathsf{c}}, \overline{y}_{i}^{\mathsf{p}}).$$
(5)

Eshaghnia, Heckman, Landersø, & Qureshi

Figure 13: Decomposition of IGEs

Eshaghnia, Heckman, Landersø, & Qureshi

Link to Covariance Share

Eshaghnia, Heckman, Landersø, & Qureshi

Measures

Nonstationa

IGEs

Decomposir

Absolute

Conclusions

App

Absolute Upward Mobility

Eshaghnia, Heckman, Landersø, & Qureshi

App

Figure 14: Absolute Mobility

(a) Traditional Measures

Figure 14: Absolute Mobility, Cont'd

(b) Lifetime Measures

Eshaghnia, Heckman, Landersø, & Qureshi

Figure 15: Absolute Mobility of Disposable Income

Eshaghnia, Heckman, Landersø, & Qureshi

Figure 16: Father-Son Absolute Mobility in Lifetime Wealth: Accounting for Risk Aversion

Changes in Welfare across Generations

Eshaghnia, Heckman, Landersø, & Qureshi

App

Figure 17: Distribution of $\beta U_{c}(c_{i,t+1})/U_{c}(c_{i,t})$

Eshaghnia, Heckman, Landersø, & Qureshi

Measures

Decomposing

Summary and Conclusions

Eshaghnia, Heckman, Landersø, & Qureshi

Contributions

- Recognize importance of early years in shaping child development.
- Fundamental nonstationarity of life cycles across cohorts.
- Build and estimate a life-cycle model accounting for uncertainty and credit constraints.
- Measure role of uncertainty, education, and policy (*ex ante* vs. *ex post*).
- G Determine best predictors of successful childhoods.
- Age-specific life-cycle measures of social mobility that are most predictive of child outcomes.
- Surprisingly, the predictive power does not vary with the age of the child at which the life cycle measures are computed (but it does for snapshot measures).

Eshaghnia, Heckman, Landersø, & Qureshi

- Traditional proxy measures only weakly correlated with true lifetime measures.
- Life-cycle relative mobility < Proxy relative mobility (currently used proxies overstate relative mobility).
- Life-cycle absolute mobility > Proxy absolute mobility.
- Reforms in credit markets play a huge role in explaining IGE.
- Even in a generous welfare state with substantial social benefits and social insurance and redistribution through taxes and transfers, there is strong dependence in lifetime resource and welfare across generations.

Decompos

Absolut

Thank You

DEPARTMENT OF

THE ROCKWOOL FOUNDATION

Copenhagen, Denmark

THE UNIVERSITY OF CHICAGO

Department of Economics

CENTER FOR THE ECONOMICS OF HUMAN DEVELOPMENT The University of Chicago

Eshaghnia, Heckman, Landersø, & Qureshi

References

Eshaghnia, Heckman, Landersø, & Qureshi

.

- Aaronson, D. and B. Mazumder (2008). Intergenerational economic mobility in the United States, 1940 to 2000. *Journal of Human Resources* 43(1), 139–172.
- Andersen, T. M. and M. Svarer (2007). Flexicurity—labour market performance in Denmark. CESifo Economic Studies 53(3), 389–429.
- Atkinson, A. B. (1980). On intergenerational income mobility in Britain. Journal of Post Keynesian Economics 3(2), 194–218.
- Becker, G. S. and N. Tomes (1979, December). An equilibrium theory of the distribution of income and intergenerational mobility. *Journal of Political Economy* 87(6), 1153–1189.
- Becker, G. S. and N. Tomes (1986, July). Human capital and the rise and fall of families. *Journal of Labor Economics* 4(3, Part 2), S1–S39.

Eshaghnia, Heckman, Landersø, & Qureshi

- Behrman, J. and P. Taubman (1985). Intergenerational earnings mobility in the United States: Some estimates and a test of Becker's intergenerational endowments model. *The Review of Economics and Statistics*, 144–151.
- Bello, S. L. and I. Morchio (2017). Like father, like son: Occupational choice, intergenerational persistence and misallocation. Technical report, Discussion Paper.
- Berman, Y. (2018). Growth, inequality and absolute mobility in the united states, 1962-2014. Available at SSRN 3256993.
- Bjorkegren, E., M. Lindahl, M. Palme, and E. Simeonova (2019). Pre-and postbirth components of intergenerational persistence in health and longevity lessons from a large sample of adoptees. *Journal of Human Resources*, 0318–9421R1.

Eshaghnia, Heckman, Landersø, & Qureshi

- Bjorklund, A. (1993). A comparison between actual distributions of annual and lifetime income: Sweden 1951–89. *Review of Income and Wealth* 39(4), 377–386.
- Black, S. E. and P. J. Devereux (2011). Recent developments in intergenerational mobility. In O. C. Ashenfelter and D. Card (Eds.), *Handbook of Labor Economics*, Volume 4, Part B, Chapter 16, pp. 1487–1541. Amsterdam: Elsevier.
- Blundell, R., L. Pistaferri, and I. Saporta-Eksten (2016, February). Consumption inequality and family labor supply. *American Economic Review* 106(2), 387–435.
- Browning, M., P. A. Chiappori, and Y. Weiss (2014). Economics of the Family. Cambridge, UK: Cambridge University Press.
- Browning, M., O. Donni, and M. Gørtz (2021). Do you have time to take a walk together? Private and joint time within the household. *The Economic Journal* 131(635), 1051–1080.

Eshaghnia, Heckman, Landersø, & Qureshi
- Browning, M. and S. Leth-Petersen (2003). Imputing consumption from income and wealth information. *The Economic Journal* 113(488), F282–F301.
- Bruze, G. (2018). Intergenerational mobility: New evidence from consumption data. *Journal of Applied Econometrics* 33(4), 580–593.
- Caucutt, E. and L. J. Lochner (2020). Early and late human capital investments, borrowing constraints, and the family. *Journal of Political Economy* 128(3), 1065–1147.
- Chadwick, L. and G. Solon (2002, March). Intergenerational income mobility among daughters. *American Economic Review* 92(1), 335–344.

- Charles, K. K., S. Danziger, G. Li, and R. Schoeni (2014). The intergenerational correlation of consumption expenditures.
 American Economic Review 104(5), 136–40.
- Charles, K. K. and E. Hurst (2003). The correlation of wealth across generations. *Journal of Political Economy* 111(6), 1155–1182.
- Chetty, R., D. Gusky, M. Hell, N. Hendren, R. Manduca, and J. Narang (2017). The fading american dream: Trends in absolute income mobility since 1940. *American Economic Journal, Economic Policy* 356, 398–406.

- Corak, M. (2006). Do poor children become poor adults? Lessons from a cross-country comparison of generational earnings mobility. In J. Creedy and G. Kalb (Eds.), *Dynamics of Inequality and Poverty*, Volume 13 of *Research on Economic Inequality*, pp. 143–188. Emerald Group Publishing Limited.
- Corak, M. and A. Heisz (1999). The intergenerational earnings and income mobility of Canadian men: Evidence from longitudinal income tax data. *Journal of Human Resources*, 504–533.
- Orak, M. and P. Piraino (2011). The intergenerational transmission of employers. *Journal of Labor Economics* 29(1), 37–68.
- Couch, K. A. and T. A. Dunn (1997). Intergenerational correlations in labor market status: A comparison of the United States and Germany. *Journal of Human Resources*, 210–232.

- Cunha, F. and J. J. Heckman (2007, May). The technology of skill formation. American Economic Review 97(2), 31–47.
- Cunha, F. and J. J. Heckman (2016). Decomposing trends in inequality in earnings into forcastable and uncertain components. *Journal of Labor Economics* 34(S2), S31–S65.
- Cunha, F., J. J. Heckman, and S. Navarro (2005, April).
 Separating uncertainty from heterogeneity in life cycle earnings, The 2004 Hicks Lecture. Oxford Economic Papers 57(2), 191–261.
- Dahl, M. and T. DeLeire (2008, August). The association between children's earnings and fathers' lifetime earnings: Estimates using administrative data. Discussion Paper 1342-08, Institute for Research on Poverty, University of Wisconsin-Madison.

- Danmarks Statistik (1999). Forbrugsundersøgelsen. metodebeskrivelse. fradataindsamling til offentliggørelse. Copenhagen.
- De Nardi, M. (2004). Wealth inequality and intergenerational links. *Review of Economic Studies* 71(3), 743–768.
- De Økonomiske Rad [The Economic Council] (2021). Langsigtet økonomisk fremskrivning 2021 [Longrun economic projection 2021].
- Dobbie, W., H. Gr¨onqvist, S. Niknami, M. Palme, and M. Priks (2018). The intergenerational effects of parental incarceration. Technical report, National Bureau of Economic Research.
- Dogra, K. and O. Gorbachev (2016). Consumption volatility, liquidity constraints and household welfare. *The Economic Journal* 126(597), 2012–2037.

- Escanciano, J. C., S. Hoderlein, A. Lewbel, O. Linton, and S. Srisuma (2021). Nonparametric Euler equation identification and estimation. *Econometric Theory* 37(5), 851–891.
- Schaghnia, S. S. M., J. J. Heckman, and A. Ben Hassine (2022). Outcome-specific intergenerational mobility. Unpublished manuscript, University of Chicago.
- Garc´ıa, J. L., J. Heckman, and V. Ronda (2022). The lasting effects of early childhood education on promoting the skills and social mobility of disadvantaged African Americans and their children. *Journal of Political Economy*. Forthcoming.
- Grawe, N. D. (2006). Lifecycle bias in estimates of intergenerational earnings persistence. *Labour Economics* 13(5), 551–570.

- Hai, R. and J. J. Heckman (2017). Inequality in human capital and endogenous credit constraints. *Review of Economic Dynamics* 25, 4–36. Special Issue on Human Capital and Inequality.
- Heckman, J. J. and S. Mosso (2014, August). The economics of human development and social mobility. Annual Review of Economics 6(1), 689–733.
- Ho, T. K. et al. (1995). Proceedings of 3rd international conference on document analysis and recognition. In *IEEE*, pp. 278–282.
- Huggett, M. and G. Kaplan (2011). Human capital values and returns: Bounds implied by earnings and asset returns data.
 Journal of Economic Theory 146(3), 897–919.
- Huggett, M. and G. Kaplan (2012). The money value of a man. Technical report, National Bureau of Economic Research.

- Huggett, M. and G. Kaplan (2016). How large is the stock component of human capital? *Review of Economic Dynamics* 22, 21–51.
- Jantti, M. and S. P. Jenkins (2015). Income mobility. In *Handbook* of Income Distribution, Volume 2, pp. 807–935. Elsevier.
- Johnston, D.W., S. Schurer, and M. A. Shields (2013). Exploring the intergenerational persistence of mental health: Evidence from three generations. *Journal of Health Economics* 32(6), 1077–1089.
- G Karlson, K. B. and R. Landersø (2021, February). The making and unmaking of opportunity: Educational mobility in 20th century-denmark. Discussion Paper No. 14135, *IZA Institute of Labor Economics*.

- Landersø, R. and J. J. Heckman (2017). The scandinavian fantasy: The sources of intergenerational mobility in denmark and the us. Scandinavian Journal of Economics 119(1), 178–230.
- Li, M. and S. J. Goetz (2019). The intergenerational persistence of self-employment across China's planned economy era. *Journal* of Labor Economics 37(4), 1301–1330.
- Little, R. J. and D. B. Rubin (2002). Bayes and multiple imputation. Statistical Analysis with Missing Data, 200–220.
- Lo Bello, S. and I. Morchio (2020). Employment prospects across generations and the intergenerational persistence of earnings. Available at SSRN 3631750.
- Lucas, R. E. (1978). Asset prices in an exchange economy.
 Econometrica: Journal of the Econometric Society, 1429–1445.

- Manduca, R., M. Hell, A. Adermon, J. Blanden, E. Bratberg, A. C. Gielen, H. Van Kippersluis, K. B. Lee, S. J. Machin, M. Munk, et al. (2020). Trends in absolute income mobility in north america and europe. *IZA Discussion Paper* No. 13456.
- Mazumder, B. (2005). Fortunate sons: New estimates of intergenerational mobility in the united states using social security earnings data. *Review of Economics and Statistics* 87(2), 235–255.
- Meghir, C., M. Palme, and M. Schnabel (2012, June). The effect of education policy on crime: An intergenerational perspective.
 Working paper 18145, National Bureau of Economic Research.
- Mincer, J. (1974). Schooling, Experience, and Earnings. New York: Columbia University Press for National Bureau of Economic Research.

Data	Measures	Nonstationarity	IGEs	Decomposing	Absolute	Conclusions	App

Ministry of Industry, Business, and Financial Affairs (2013). Den finansielle krise i Denmark—arsager, konsekvenser og læing [the financial crisis in Denmark—causes, consequences, and lessons].

- Nilsen, Ø. A., K. Vaage, A. Aakvik, and K. Jacobsen (2008). Estimates of intergenerational elasticities based on lifetime earnings. *IZA Discussion Paper*, No. 3709.
- Parker, J. A. and B. Preston (2005). Precautionary saving and consumption fluctuations. *American Economic Review* 95(4), 1119–1143.
- Reville, R. T. (1995). Intertemporal and life cycle variation in measured intergenerational earnings mobility. Unpublished Manuscript, RAND.
- Solon, G. (1989). Biases in the estimation of intergenerational earnings correlations. *The Review of Economics and Statistics* 71(1), 172–174.

- Solon, G. (1992, June). Intergenerational income mobility in the United States. American Economic Review 82(3), 393–408.
- Solon, G. (1999). Intergenerational mobility in the labor market. In *Handbook of Labor Economics*, Volume 3, pp. 1761–1800. Elsevier.
- Solon, G. (2002, Summer). Cross-country differences in intergenerational earnings mobility. *Journal of Economic Perspectives* 16(3), 59–66.
- Solon, G. (2004). A model of intergenerational mobility variation over time and place. In M. Corak (Ed.), *Generational Income Mobility in North America and Europe*, Chapter 2, pp. 38–47. Cambridge: Cambridge University Press.
- Statistics Denmark (2001). 50 ars oversigten [The 50-year overview].

- 😚 Stuhler, J. and M. Nybom (2022). Interpreting trends in intergenerational mobility. Journal of Political Economy.
- 🚯 Szpiro, G. G. (1986). Relative risk aversion around the world. Economics Letters 20(1), 19–21.
- 🚳 Tominey, E., P. Carneiro, I. L. Garcia, and K. Salvanes (2020, July). Intergenerational mobility and the timing of parental income. Journal of Political Economy.
- 🔞 Waldkirch, A., S. Ng, and D. Cox (2004). Intergenerational linkages in consumption behavior. Journal of Human Resources 39(2), 355-381.
- 🕡 Willis, R. J. (1986).Wage determinants: Asurvey and reinterpretation of human capital earnings functions. In O. Ashenfelter and R. Layard (Eds.), Handbook of Labor Economics, Volume 1, pp. 525–602. New York: North-Holland.

Data

Measures

Appendix: Additional Slides

Eshaghnia, Heckman, Landersø, & Qureshi

App

Table 4: Specification Tests (\mathcal{Z}^{j} Is the Candidate Proxy for Information Set)

		(1)	(2)			
Panel A: Full Population						
		$y_{5^{\circ}}$	$\boldsymbol{y}_{50} - \mathbb{E}(\boldsymbol{y}_{50} \mid \boldsymbol{\mathcal{Z}}_{30}^{1})$			
Consumption (Age 30)	$eta_{\textit{OLS}}$ T -stat	0.35 (37.50)	0.25 (4.88)			
Panel B: Main Sample, Child Outcomes						
		$y_{3^{\circ}}$	$\boldsymbol{y}_{30} - \mathbb{E}(\boldsymbol{y}_{30} \mid \boldsymbol{\mathcal{Z}}_{29}^{1})$			
Disposable Income (Age 30)	β_{OLS}	0.10	0.07			
	T -stat	(14.75)	(10.89)			
Wage Income (Age 30)	β_{OLS}	0.18	0.10			
	T -stat	(31.49)	(19.10)			
College Attainment	β_{OLS}	0.32	0.15			
	T -stat	(11.91)	(5.53)			
Years of Schooling	β_{OLS}	2.04	1.23			
	T -stat	(15.28)	(9.02)			
			Continues			

Eshaghnia, Heckman, Landersø, & Qureshi

Table 4: Specification Tests (\mathcal{Z}^{j} Is the Candidate Proxy for Information Set)

		(3)	(4)				
Panel A: Full Population							
		$oldsymbol{y}_{50} - \mathbb{E}(oldsymbol{y}_{50} \mid oldsymbol{\mathcal{Z}}_{30}^2)$	$oldsymbol{y}_{50} - \mathbb{E}(oldsymbol{y}_{50} \mid oldsymbol{\mathcal{Z}}_{30}^3)$				
Consumption (Age 30)	β_{OLS}	0.23	0.03				
	T -stat	(4.55)	(0.72)				
Panel B: Main Sample, Child Outcomes							
		$oldsymbol{y}_{30} - \mathbb{E}(oldsymbol{y}_{30} \mid oldsymbol{\mathcal{Z}}_{29}^2)$	$oldsymbol{y}_{ m 30} - \mathbb{E}(oldsymbol{y}_{ m 30} \mid oldsymbol{\mathcal{Z}}_{ m 29}^3)$				
Disposable Income (Age 30)	β_{OLS}	0.05	-0.00				
	T -stat	(8.84)	(-0.12)				
Wage Income (Age 30)	β_{OLS}	0.07	0.01				
	T -stat	(13.60)	(1.57)				
College Attainment	β_{OLS}	0.06	-0.04				
	T -stat	(2.27)	(-0.80)				
Years of Schooling	$\beta_{\textit{OLS}}$	0.49	-0.09				
	T -stat	(3.60)	(-0.39)				

Eshaghnia, Heckman, Landersø, & Qureshi

Eshaghnia, Heckman, Landersø, & Qureshi

Figure 4: Timing of Key Life Events across Generations, Cont'd

(c) Females

(d) Males

Figure 4: Timing of Key Life Events across Generations, Cont'd

(e) Females

(f) Males

Eshaghnia, Heckman, Landersø, & Qureshi

Eshaghnia, Heckman, Landersø, & Qureshi

Figure 7: Parents' Resources and Children's Outcomes, Cont'd

(c) Danish Reading

Intergenerational Transmission

App

Figure 7: Parents' Resources and Children's Outcomes, Cont'd

(d) Years of Education

App

Decomposii

Figure 7: Parents' Resources and Children's Outcomes, Cont'd

(e) Criminal Behavior (Reversed)

Figure 7: Parents' Resources and Children's Outcomes, Cont'd

(f) Having a Child by Age 20 (Reversed)

Eshaghnia, Heckman, Landersø, & Qureshi

Figure 12: Local-Linear IGEs for Lifetime Measures, Cont'd

(e) Realized PDV

Figure 12: Local-Linear IGEs for Lifetime Measures, Cont'd

(f) Realized Lifetime Wealth

Eshaghnia, Heckman, Landersø, & Qureshi

Figure 26: SDF at Different Ages by Birth Cohort

Eshaghnia, Heckman, Landersø, & Qureshi

Data

Rank-Rank Version

Eshaghnia, Heckman, Landersø, & Qureshi

Figure 27: Rank-Rank Estimates of IGE

Eshaghnia, Heckman, Landersø, & Qureshi

Eshaghnia, Heckman, Landersø, & Qureshi

Intergenerational Transmission

App

Eshaghnia, Heckman, Landersø, & Qureshi
Figure 13: Decomposition of Covariances

Eshaghnia, Heckman, Landersø, & Qureshi

Intergenerational Transmission

Return to Main Text

Eshaghnia, Heckman, Landersø, & Qureshi

Intergenerational Transmission