A comparison of HPLC MS methods for GDGT analysis; should we make the switch?

Jayne Rattray, Francesco Muschitiello & Rienk Smittenberg

Department of Geological Sciences, Stockholm University, Svante Arrheniusväg 8, SE-106 91 Stockholm, Sweden jayne.rattray@geo.su.se; rienk.smittenberg@geo.su.se

Stockholms universitet

Bolin Centre for **Climate Research**

Aim

To explore potential improvements of GDGT analysis by reverse phase (RP) ultra high performance liquid chromatography mass spectrometry UHPLC-MS, compared to existing normal and reverse phase methods.

Introduction

Although GDGT analysis using normal phase atmospheric pressure chemical ionization (NP-APCI-HPLC) MS is a well-established method (Hopmans et al., 2000), our experience has been one of recurring pressure fluctuations, caused by the behaviour of hexane under high pressure in a serial dual piston HPLC pumping system (Fig. 1). This problem is not uncommon. In addition, the NP method is not amenable to UPLC.

Results and Discussion

Ionization: ESI vs APCI

The effect of ionization source was investigated by running the method using APCI and ESI (Fig. 3). Although ESI gave a higher response, it also gave a background high and we observed suppression of some

Therefore, we started to explore the possibility of setting up reverse phase HPLC, following the recent work of Zhu *et al.,* (2013) and reverse phase methods in used purification schemes (Ingalls *et al.*, 2006; Birkholz *et al.*, 2013).

Figure 1. An example of the erratic pump pressure when pumping Hexane: IPA (99:1%)

Methods

Core GDGTs were extracted from freeze dried sediment using either ultrasonic extraction or microwave extraction. Samples were passed over a small silica column, dried using a vacuum concentrator, dissolved in MeOH and filtered through a 0.45µm syringe filter. Measurement was performed using the instrument described in Fig. 1, scanning over *m/z* 1017-1024; 1031-1038; 1045-1052; and 1290-1304. NP chromatography was set up and performed as described by Hopmans et al., 2000. RP chromatography was performed on a reverse phase UHPLC column from Phenomenex. Mobile phase A was MeOH and mobile phase B Isopropyl alcohol, both with formic acid. The total run time was 38 minutes including column reequilibration.

compounds e.g. m/z = 1296. APCI was selected for further use in the method.

Figure 3. Comparison of ESI with APCI ionization. Base Peak chromatograms of a Black Sea sediment extract are shown.

Chromatography and separation of GDGTs

the Figure 4a. shows separation of isoGDGTs using the RP method. Note the peaks of m/z 1300, 1298 1296 and 1292 that elute around 15 min, these are suspected to be isomers of the main peaks eluting between 25-30 min.

Figure 2. The HPLC MS/MS system used; a Thermo-Dionex Ultimate 3000RS Quaternary Rapid Separation Pump LPG-3400RS (left), auto sampler and column compartment, linked to a Thermo TSQ contrast to the NP method.

Figure 4a. BP and extracted ion chromatograms of isoprenoid GDGTs from a Black Sea sediment sample, using the RP method.

Conclusions

Compared to the established NP HPLC method, this RP UHPLC method:

- gives a very stable back pressure and is set up easily \bullet
- gives an improved separation of the branched GDGTs, within 15 minutes.
- gives a similar separation and ret. time of the isoprenoid GDGTs \bullet
- gives a (different) separation of structural isomers, allowing to \bullet further explore GDGT sources and potential novel proxies.
- APCI appears to work better than ESI ionization

Acknowledgments

We would like to thank Kweku Yamoah at SU and Mandana Fatash and Sven Josefsson from Phemomenex Sweden for their contributions. Funding: Bert Bolin Centre for Climate research, SU, and the Swedish Research council (grant 621-2011-4916)

Time (min)

11

13

14

10

Figure 4b. BP and extracted ion chromatograms of branched GDGTs from a Hässeldala (SE) lake sediment sample

environmental potential and relative of their controls abundance.

Future work

- Resolving the regio-isomer of crenarchaeol (1292r) from the main isomer
- Resolving the issue of apparent relative difference in abundance of the 1020 GDGTs, when compared to the NP method

References

Birkholz, A., Smittenberg, R.H., Hajdas, I., Wacker, L., Bernasconi, S.M. (2013) Org. Geochem 60, 9-19. Hopmans, E. C., Schouten. S., Pancost, R. D., van der Meer, M. J. T. & Sinninghe Damste⁷, J. S. (2000) Rapid Comm. Mass. Spec. 14, 585-589.

Ingalls, A.E., Shah, S.R., Hansman, R.L., Aluwihare, L.I., Santos, G.M., Druffel, E.R.M., Pearson, A. (2006). PNAS 103, 6442-7. Zhu, C., Lipp, J. S., Wörmer, L., Becker, K. W., Schröder, J., and Hinrichs, K.-U. (2013) Org. Geochem. 65, 53–62.