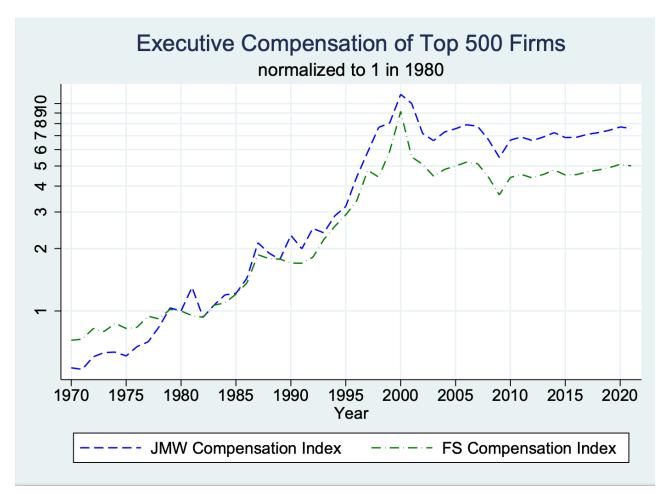
CEOs and the economics of superstars

Nobel Symposium on Inequality, August 2022

Xavier Gabaix, Harvard

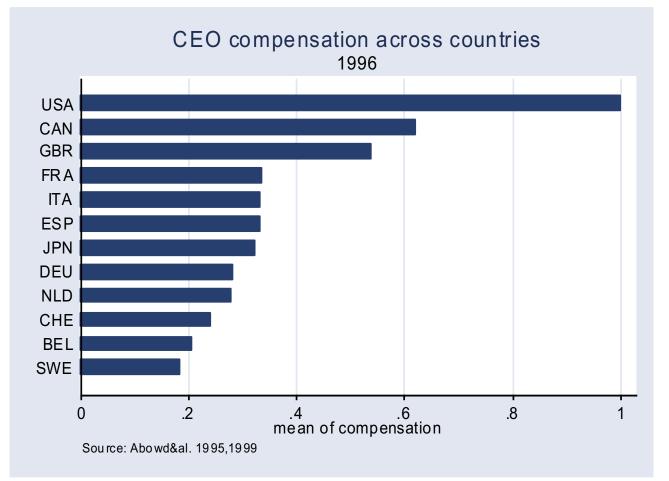
Motivation


- This talk is about the economics of superstars – inequality in income at the very top
- I'll focus first on CEOs (Chief Executive Officers = head of companies)
- Then I'll come back to more general superstars
- And the rest of the economy
- And policy
- Thanks to my coauthors: Alex Edmans, Dirk Jenter, Augustin Landier, Yuliy Sannikov, Julien Sauvagnat, Tomasz Sadzik

Why care about CEOs?

- Large popular and academic focus on the increase of CEO pay in the US since the 80s.
- Lots of good data (from forced disclosure) on CEO pay -> We can do precise work
- I'll start from G. Landier "Why has CEO pay increased so much?" (QJE '08)
- Changes in firm size appear to explain much of the variations in CEO pay, across time (since 1970s at least), industries, countries

Short Literature Review:


Fact 1: CEO pay has been multiplied by 5 to 7 between 1980 and 2003, with smallish rise afterwards

Source: Jensen Murphy Wruck (2003); Frydman Saks (2010), G. Landier Sauvagnat (2014)

Fact 2: US top CEOs are paid more than their foreign

COUNTERPARTS. (Kaplan (1994), Abowd and D.Kaplan (1998), Fernandes et al. (2013))

Theory 1: Higher Incentives \rightarrow Rents

Murphy (1985), Jensen-Murphy (1990):

importance of market-based incentives

Holmstrom – Kaplan (2001,2003):

discovery of high-powered incentives in the 80s?

Need strong *limited liability* & *risk-aversion* frictions to explain such higher *rents*.

(calibration: e.g. Gayle & Miller 2009, 2015)

Theory 2: "Skimming View"

- Bertrand Mullainathan (2001), Kuhnen Zwiebel (2009)
- Bebchuk Fried (2004)
 - Increased entrenchment & "camouflage" techniques
- Hall Murphy (2003), Jensen Murphy Wruck (2004)

Boards underestimate the cost of stock-options

- Difficulties with that view:
 - Governance seems to have improved, not worsened
 - Private equity firms pay their CEOs a lot, even more than publicly traded firms (Kaplan Rauh 2013, Cronqvist Fahlenbrach 2013)

Theory 3: Changes in CEO job/labor market

- Murphy and Zabojnik (2004), Frydman (2005)
 □ Higher importance of general (vs. specific) skills
 → higher CEO outside options, more external hires
- Garicano and Rossi-Hansberg (2006)
 - Technological change and hierarchies in equilibrium
- See also Bertrand and Schoar (2003), Bloom et al. (2006), Daines, Nair, Kornhauser (2005), Malmendier and Tate (2005), Geerolf (2018)

Our Approach: the "Size of Stakes" View

Focus on one important source of variation:
 firm size

- Assortative matching of firms and managers
 - Lucas (1978), Sattinger (1979), Rosen (1981,82), Himmelberg and Hubbard (2000), Tervio (2008)
- Frictionless talent market
- CEO pay = price of talent
 - Depends on:
 - Asset distribution
 - Production function
 - Talent distribution (unobservable!)

General results using Extreme Value Theory

CEO Pay in Equilibrium

N firms to match with N managers

- Firms have size S(m) (descending order)
- Managers talent T(n), paid w(n) in equilibrium.

Firm's Program: Hiring the CEO increases earnings by:

$$\max_{n} \underbrace{C \times T(n) \times S^{\gamma}}_{OEO impact} - w(n)$$

$$\underbrace{CEO impact}_{Price of talent \# n}$$

Relevant size measure?

- Permanent CEO impact → S=market value (D+E)
- Temporary CEO impact → S=earnings

Benchmark case: constant returns of talent

 $\gamma = 1$, empirically validated

Equilibrium:

An equilibrium consists of:

- (i) a compensation function W(T), which specifies the wage of a CEO of talent T
- (ii) an assignment function *M(m)*, which specifies the index *n=M(m)* of the CEO heading firm *m* in equilibrium, such that
- (iii) each firm chooses its CEO optimally:

 $M(m) \in \arg\max_{n} C \times S(m)^{\gamma} \times T(n) - W(T(n))$

(iv) the CEO market clears, i.e. each firms gets a CEO.

Equilibrium:

□ First order condition: $C \times S(m)^{\gamma} \times T'(n) = w'(n)$

Assortative matching:

Firm #n is matched with manager #n

$$\Rightarrow w(n) = w(N) - \int_{n}^{N} C \times S(m)^{\gamma} \times T'(m) dm$$

- Equilibrium wages depend on
 - Productivity
 - Scarcity of talent


How do we go further?

Distributions

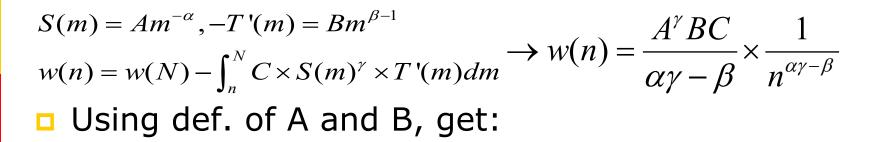
Firms: observable $S(n) = \frac{A}{n^{\alpha}}$

- Useful for calibration: Zipf's law $(\ddot{\alpha} \approx 1)$
- Simon (1955), Gabaix (1999, 2009 and ref. therein), Axtell (2001), Luttmer (2005, 2018), Axtell and Guerrero (2022)...

Zipf's law for size (market value) of firms

Distributions
$$w(n) = w(N) - \int_{n}^{N} C \times S(m)^{\gamma} \times T'(m) dm$$

Talent: unobservable → use Extreme Value Theory


$$T'(n) = -Bn^{\beta-1}$$

 Valid approximation for all "regular" distributions

Gaussian, log-normal, Weibull, log-gamma, etc.

Exact for uniform, exponential, Pareto

Main Proposition

$$w(n) = D \times S_{n^*}^{\beta/\alpha} \times S_n^{(\gamma - \beta/\alpha)}$$

$$w(n) = D \times S^{1/3} \times S^{2/3}_{**}$$

Own Firm Size

Reference Size

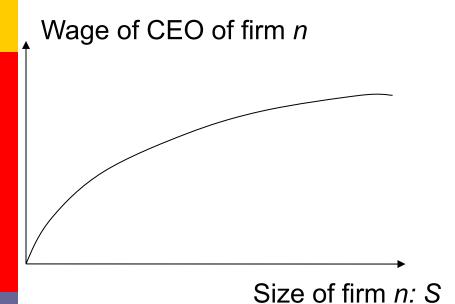
$$D = \frac{-n_*T'(n_*)}{\alpha\gamma - \beta} \times C$$

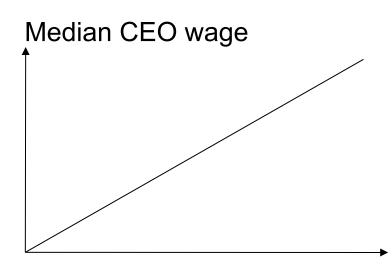
Can be country specific

Main Predictions $w(n) = D \times S_{n^*}^{\beta/\alpha} \times S_n^{(\gamma-\beta/\alpha)}$

Cross-sectional: (change n)

$$w(n) = (cste) \times S_n^{(\gamma - \beta / \alpha)}$$


Cross-time: (change A in $S(n) = A / n^{\alpha}$, keep n constant)

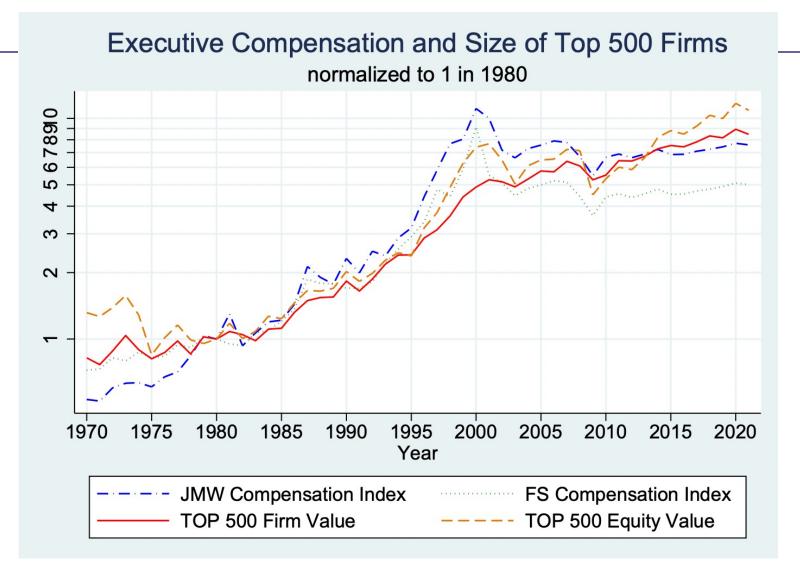

$$w(n^*) = (cste) \times S_{n^*}^{\gamma}$$

Cross-country: (keep S(n) & Pop. Size constant) $w(S) = (cste) \times S_{n^*}^{\beta/\alpha}$

Main Predictions

$$w(n) = D \times S_{n^*}^{2/3} \times S_n^{1/3}$$

Median firm size: S_{n*}

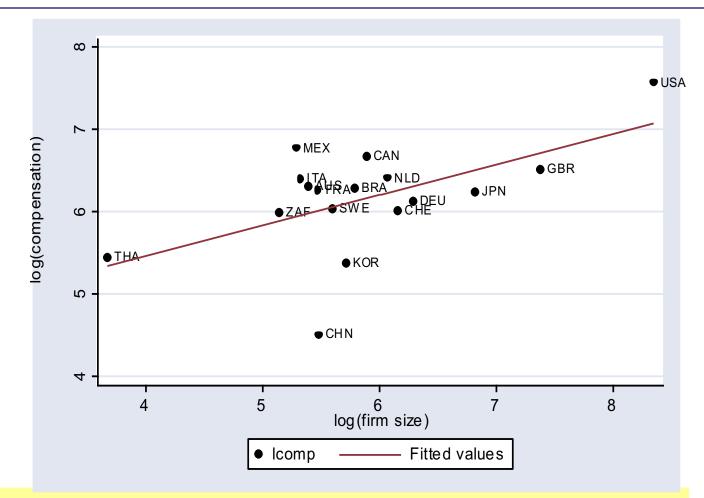

Cross-section: Wage is a **concave** function of size:

$$w_n = k S_n^{1/3}$$

Time series: Aggregate wage is a **linear** function of aggregate size: $w_{n^*} = k'S_{n^*}$

The relationship between size and pay is very different in the cross section and the time-series

Update (G, Landier, Sauvagnat 2014)


Thanks to J. Sauvagnat for the update

Panel Evidence: USA, 1992-2004

 $w_n = D \times S_n^{(\gamma - \beta / \alpha)} \times S_{n^*}^{\beta / \alpha}$

	ln(total compensation)				
	Top 1000				
ln(Market cap)	.37	.37	.38	.26	
	(18.28)	(18.84)	(16.59)	(4.60)	
	(24.20)	(25.13)	(29.94)	(6.14)	
$\ln(\text{Market cap of firm } \#250)$.72	.66	.68	.78	
	(13.60)	(12.22)	(11.37)	(14.97)	
	(10.70)	(10.06)	(10.84)	(9.71)	
GIM governance index		· ·	0.019		
			(1.80)		
			(6.82)		
Industry Fixed Effects	NO	YES	YES	NO	
Firm Fixed Effects	NO	NO	NO	YES	
Observations	7661	7661	6257	7661	
R-squared	0.22	0.29	0.32	0.60	

Empirical Evidence: cross-country

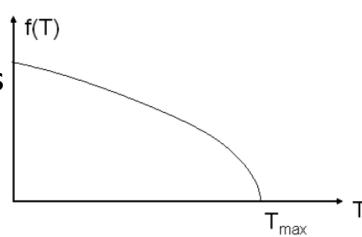
Source: Towers-Perrin (2001) for CEO compensation Compustat Global (2000) for firm size

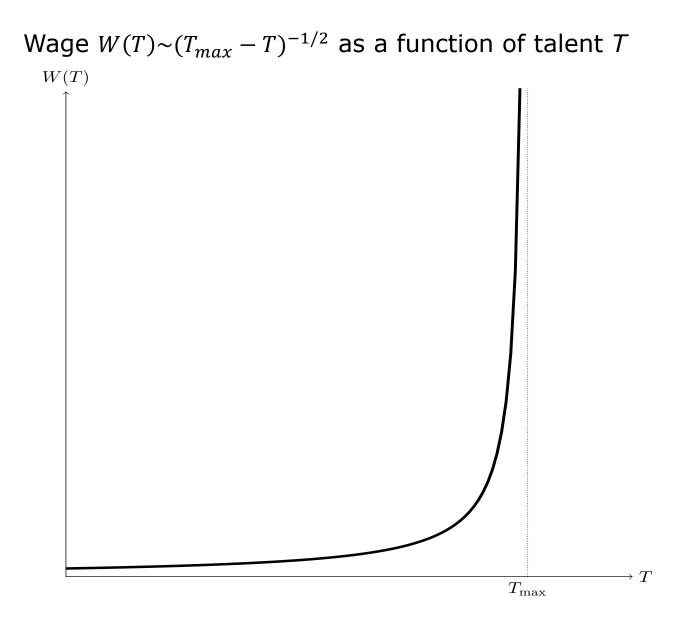
Empirical Evidence: cross-country

$\ln(\text{total compensation})$							
$\ln(\text{median net income})$	$0.38 \\ (3.7)$	0.41 (4.2)	$0.36 \\ (3.8)$	$0.36 \\ (3.1)$			
$\ln(pop)$	()	-0.16 (1.76)	()	()			
$\ln(\mathrm{gdp}/\mathrm{capita})$			0.12 (1.8)				
"Social Norm"			~ /	-0.018 (1.5)			
Observations	17	17	17	17			
R-squared	0.48	0.57	0.58	0.52			

Social Norm = mean agreement to

"We need large income differences as incentives for individual effort"


in World Value Survey, 1990. S.e. of Social Norm is 10.


Calibration, I

- \square $\alpha = 1$ (Zipf's law)
- $\square \gamma = 1$ from time-series
- Distribution of talent: w~S^{1/3}

$$\frac{1}{3} = \gamma - \frac{\beta}{\alpha} \longrightarrow \beta = 2/3 \longrightarrow \qquad f(T) = k(T_{\max} - T)^{1/\beta - 1} = k(T_{\max} - T)^{1/2}$$

It would be interesting to compare to: movie stars, lawyers pianists, sport stars...

Conclusion for all of us: work hard and accumulate talent, the rewards are very large (unbounded here)

Calibration, II

- Take year=2004. Look at median of *top* 500 firms and top CEOs. A la Tervio ('08) ■ n*=250: W(n*)=\$8.3 Mil, S*=\$25 Bil $\Rightarrow BC = (\alpha - \beta) \frac{W_* n_*^{-\beta}}{S_*} = 2.6 \times 10^{-6}$
- Interpretation: #1 CEO, compared to #250 CEO
 - increases market value by: $C(T(1) - T(250)) = \frac{BC}{\beta} \times (250^{\beta} - 1) = 0.02\%$

Gets paid more by:

$$\frac{w}{w_*} - 1 = \left(\frac{S}{S_*}\right)^{1/3} - 1 \approx 250^{1/3} - 1 \approx 500\%$$

Calibration, II'

- This small differential in talent is a robust implication
- Suppose that there's a CEO who can increase value of firm 250 by 1%
- She's worth S* x 1% =\$25B * 1% = \$250 million
- As the CEO is paid "only" \$8 million, she must increase the pay by <0.1%</p>
- So, the differential of ~0.02% makes sense.

Why the increase in firm size?

What caused the increase in firm size?

1. Globalization (larger Earnings): General Motors sells worldwide

3. Higher valuation multiples (larger Price / Earnings ratio) for stocks and bonds, themselves due to:

- Lower interest rate r (savings glut?, demographics?)

- Lower risk premia (greater optimism about capitalism's resilience; the rich being less risk averse)?

2. IT: makes it easier to manage a very large firm

Extension: Top H executives

- Assume human cap increases firm value by factor: $1 + \sum_{h=1}^{H} C_{h} \times T_{h} \to \max S \times \left(1 + \sum_{h=1}^{H} C_{h} \times T_{h}\right) - \sum_{h=1}^{H} w(T_{h})$
- Think of firm S_i as $H C_i$ -scaled assets each looking for manager : $(C_1 \times S_i, ..., C_H \times S_i)$
- In equilibrium, executive #h at firm i earns:

$$w_{i,h} = D \times C_{h}^{1-\beta/\alpha} \times S_{*}^{\beta/\alpha} \times S_{i} \left(x \right)^{1-\beta/\alpha}$$

• Steepness of wage ratio and firm organization: $\frac{W_1}{W_h} = \left(\frac{C_1}{C_h}\right)^{1-\beta/\alpha}$

Rise in the supply of CEO talent: CEOs born in India

CEO of Google 🚅 CFO of Microsoft 🖾 CFO of Adobe 🖾 CEO of Twitter 🖾 CEO of Mastercard 🖾 CEO of Pepsi 🖾 CEO of IBM CEO of Albertsons CEO of Micron 🖾 CEO of Netapp CEO of Nokia 🖾 CEO of Palo Alto CEO of Arista 🖾 CEO of Novartis

Source: @stats_feed, 8/26/22

Extension: How wages fall when talent supply increases

- Suppose that the talent supply of is multiplied by M
- □ Then, for a given ranking n, pay falls by a factor $M^{\beta} = M^{2/3}$
- So, if you double the talent supply, wages fall by 40%
- This increase in the talent supply (from India, MBAs etc) may explain the fact that US CEO pay has increased little since 2003
- It may also explain the relatively small rise before 1970 (increase in talent supply similar to Goldin-Katz)

Extension: Model with incentives

- Lots of people opine that incentives are a part of the story
- Is that true?
- Add incentives, both in theory and in calibrated empirics: work with Edmans, Landier, Sannikov, Sadzik (09, 11ab, 12):
- Findings
 - Incentives matter to set the optimal fraction of variable vs fixed pay
 - Incentives matter in the cross-section: If a firm is riskier, it needs to pay more
 - Incentives do not matter in the aggregate for the average level of pay: that's determined by productivity
 - …if all firm are riskier, aggregate pay doesn't change

Remark: Could a "stealing" model work?

- Objection: wouldn't a "stealing" model work?
- Simplest model of stealing: a CEO in a firm of size S can extract a pay a S, for a coefficient a
- But then, you violate Roberts' law, $w(n) \sim S(n)^{1/3}$: empirically, pay is less than proportional to size
- OK, imagine that we manage to contrive a reason why w(n)~S(n)^{1/3}. Then, you still don't get the time series right, i.e. don't get

$$w(n) = D \times S_{n^*}^{2/3} \times S_n^{1/3}$$

So it seems very hard for stealing models to get the double scaling in the cross-section and time series

Caveat: of course, CEOs are not perfect

- There is a lot of extra richness:
- □ What do CEOs do? (Bloom et al, Bertrand Schoar 2003)
- There are interesting deviations from a perfect market
 - CEOs are overconfident (Malmendier and Tate 2005,8)
 - CFOs can be miscalibrated (Ben-David et al 2013)
 - Options are sticky in "number of shares" (Shue and Townsend 2017)
 - Talent is hard to identify (Tervio 2009)
 - Contagion effects might be strong (G. Landier 2008, Benabou Tirole 2016)
 - Wealth matters (Becker 2006, Edmans G. 2011)

Still, the matching model, with a huge rise in size of stakes (6x), offers a useful 1st order point of departure

Conclusion for CEOs

1. Simple CEO pay model. Under general assumptions:

$$w(n) = D \times S_{n^*}^{\kappa} \times S_n^{1-\kappa}$$

- □ "Reference firm" size, S*, matters
- 2. Empirical implications: CEO compensation across firms, time, countries, industries

3. "Size of stakes" is the key driver. Probably, incentives, social norms, etc. matter much less (Kaplan Rauh 2013)

Other superstars markets

Other markets:

- Top programmers: affect huge projects
- Top fund managers: affect large pools of money
- Top athletes: affect odds of winning, audience, value of ads
- Top actors: affect a lot the value of a movie
- Top lawyers: affect probability of success

Diffusion in market equilibrium:

- Top works of art, real estate: wealthy people buy nice real estate, works of art, hire top divorce lawyers, surgeons etc

 So, diffusion of superstars economics across the whole economy

Non-stars:

Small stakes, no scope for scaling: nurses, school teachers, construction workers

Policy?

- If talent supply is inflexible: you could have 99% tax rate, nothing is distorted
- If talent supply is flexible: optimal taxes are low, or even negative, if talented people create growth theory-type externalities! (Jones '22)
- The market tells us that we want more top programmers, surgeons, managers
 - So that people accumulate the right human capital, we should let the price signals work
 - Or if you tax them at rate T, subsidize education at rate T

- Caveat: In some markets, private rewards may be > social rewards (e.g. hedge funds? Lockwood et al. 2017, Eeckhout et al. 2022), but in many markets (esp. with research, entrepreneurship), they're < social rewards.

- Some very bad ideas: tax bonuses. Very bad, because it gives an incentives to give fixed rather than variable pay, and banks are less flexibility to cut costs in downturns

Policy

On the elasticity of supply of talent:

- We don't know the aggregate elasticity of talent. So maybe a large, uniform income tax is OK?
- The cross-sectional elasticity of talent (say, across US states) is pretty high (e.g. Akcigit et al. 2022)
- So, if you're a country, you want to have lower taxes to attract talent, ceteris paribus (as US, UK)

Policy Overall, talents markets work well

Two exceptions:

1. The public sector

- In Singapore, top public servants are highly educated, highly paid
- Probably underpaid / less qualified elsewhere
- Same for politicians: unimpressive, low quality offerings
- 2. *The discovery / nurturing of talent* may be suboptimal in many countries
- Countries spend resources fostering top athletes, not so much for other talents

- One could do the same for non-athletic talent: program for gifted children, exposure to innovation etc. (Bell et al. 2019)

Conclusion

- Sherwin Rosen (1981) was prescient
- Superstars economics very important in the past 50 years
 - In part due to rise in firm size, itself due to (i) lower interest rates and risk premium (ii) globalization (iii) IT
- We now have worked out models of superstars economics, including equilibrium wages, incentives, and empirical investigation
- Detailed studies of what CEOs do
- First order bottom line: This very high pay reflects the healthy functioning of talent markets.
- So, help the poor...
- But keep nurturing top talents, which are crucial for firm success, innovation, mankind's progress