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The spring efflux contributes significantly to annual C emissions 

Respiration, but no methanogenesis in anoxic water under ice 

Redox regime regulates carbon gas accumulation in winter 

Long-term study (2009-2018) of three subarctic lakes (<0.2 km²) in a permafrost peatland: 

 Summer sampling: 10 surface flux chamber pairs, 38 bubble traps (CH4 fluxes)  

 Year-round: eddy covariance (CH4), water sampling (CH4, CO2); loggers for temperature, DO 

 Lab: concentrations of CH4 (GC-FID), CO2 (IRGA); stable isotopes of CH4 (GC-IRMS) 

 Models: surface renewal model (CO2 flux), open system isotope fractionation model 

 ΔDIC/ΔDO mass balance: ~70% of under-ice DIC accumulation due to anaerobic respiration 

 ~50% of CH4 is oxidized in summer, but minimal ox. under ice cannot explain CH4 acc. rates 

Energy input controls summer C fluxes, but not winter accumulation 

 Hanging bottle incubations at 

two depths in the deeper lakes 

(March-April 2017) 

 

 Anaerobic methanotrophy and 

respiration active under ice 

 No evidence of water column 

methanogenesis 

How can under-ice CH4 
accumulation rates exceed 
summer fluxes? 
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 Greater under-ice buildup of CO2 and CH4 in pelagic (P) than in littoral (L) zones  

 Downslope gravity currents may redistribute carbon gas under ice 
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Synopsis 

 Under-ice carbon gas storage scales predictably with ice-cover season length 

Low CH4 production rates offset by minimal oxidation 

Anoxia enables water column methanogenesis 

Fresh C from senescing plants enhances production 

Sediment efflux of CH4 similar or higher in winter than in summer 

 Dialysis samplers 

deployed in shallows 

 Sediment flux from 

Fick’s first law 

 

 Anoxia may enable CH4 

production zone 

expansion toward the 

sediment surface where 

more labile C is available 
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Production zone expansion? 

ebullition diffusion 
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