Drivers of carbon gas emissions from seasonally ice-covered lakes

Joachim Jansen¹, Mathilde Jammet², Brett Thornton¹, Martin Wik¹, Alicia Cortés³, Sally MacIntyre³, Thomas Friborg², Patrick Crill¹ ¹Department of Geological Sciences & Bolin Centre for Climate Research, Stockholm University, Sweden ²Department for Geosciences and Natural Resource Management, Copenhagen University, Denmark ³Marine Science Institute, University of California at Santa Barbara, Santa Barbara, CA, United States

Quantifying climate forcing trace gas emissions from subarctic lakes

Long-term study (2009-2018) of three subarctic lakes (<0.2 km²) in a permafrost peatland:

- Summer sampling: 10 surface flux chamber pairs, 38 bubble traps (CH₄ fluxes)
- Year-round: eddy covariance (CH₄), water sampling (CH₄, CO₂); loggers for temperature, DO
- Lab: concentrations of CH₄ (GC-FID), CO₂ (IRGA); stable isotopes of CH₄ (GC-IRMS)
- Models: surface renewal model (CO₂ flux), open system isotope fractionation model

• Greater under-ice buildup of CO_2 and CH_4 in pelagic (P) than in littoral (L) zones

• Downslope gravity currents may redistribute carbon gas under ice

Field site: the Stordalen Mire complex

Ebullition (June-October) 등 80 o Diffusion (June-October) Summer mean flux ▲Winter accumulation rate ്_ത 60 50 CH₄ 40 ວິ 30 $R^2 = 0.98$ p ≤ 0.01 žīj 20 $R^2 = 0.93$ ਸ਼੍ਰੋ 10 ີ∈ 35 $R^2 = 0.89$ p≤0.01 ပ ၅ 30 C ଚ୍ଛି 25 **CO**₂ م 20 $R^2 = 0.22$ p = 0.14² = 0.34 0 = 0.03Surface sediment temperature (°C)

- Under-ice carbon gas storage scales predictably with ice-cover season length
- How can under-ice CH₄ ? accumulation rates exceed summer fluxes?
- - (H1) Low CH_4 production rates offset by minimal oxidation
 - (H2) Anoxia enables water column methanogenesis

Redox regime regulates carbon gas accumulation in winter

• ΔDIC/ΔDO mass balance: ~70% of under-ice DIC accumulation due to anaerobic respiration 100 ~50% of CH₄ is oxidized in summer, but minimal ox. under ice cannot explain CH₄ acc. rates

Energy input controls summer C fluxes, but not winter accumulation

Bolin Centre for
Climate ResearchStockholm
University

(H3) Fresh C from senescing plants enhances production

Respiration, but no methanogenesis in anoxic water under ice

•	Dialysis samplers deployed in shallows Sediment flux from Fick's first law	Summer July 2017	Depth (cm)
НЗ	Anoxia may enable CH ₄ production zone expansion toward the sediment surface where more labile C is available	Winter April 2018	Depth (cm)

Synopsis

Summer, ice-free Energy-input regulates carbon cycling

References

sensitive controls on large spring emissions of CH₄ and CO₂ from northern lakes. J. Geophys. Res. Biogeosc., 2019JG005094.

Acknowledgements

This research is supported by grants from the Swedish Research Council to P. Crill, from the US National Science Foundation to S. MacIntyre and from the EU programme PAGE21 to T. Friborg. We thank our field assistants and staff at the Swedish Polar Research Secretariat for their support, which enabled this work.

···· incubations

• Hanging bottle incubations at two depths in the deeper lakes (March-April 2017)

Anaerobic methanotrophy and respiration active under ice No evidence of water column methanogenesis

Mav

Sediment efflux of CH₄ similar or higher in winter than in summer

