EGU2018-4323

Fast retreat of a marine outlet glacier in western Norway at the last glacial termination
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Introduction

Younger Dryas—Holocene retreat of a Jakobshavn-like outlet glacier
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Fig 4. (a) Along-flow surface and bed topography of Hardangerfjorden glacier at the end of Younger Dryas®, observed and '@ 1000 | ” . ijI"d _waters, as mani-
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Fig 2: (a) Topography in the model domain, (b) model r l'l ,’ depth (F|g 63), more % 600, $,°% oo o OOO%O;; || 02008000 FUture Work
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Fig 3. Calvingoccurs when surface and basal crevasses meet, or when surface crevasses penetrate the Fig 6: How grounding line retreat rates are influenced by (a) water depth, and (b) bedrock slopes around the grounding line.
full ice thickness. A time-adaptive grid allows for continuous tracking of groundingline migration®. Positive slopesimply a prograde (seaward-sloping) bed, negative means a retrograde bed (deepeninginland).
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