

The Role of Catchment Properties for Mercury Transport and Bioaccumulation

Birch

Sonja Gindorf^a, Carluvy Baptista-Salazar^a, Van Liem-Nguyen^a, Reiner Giesler^b, Carl-Magnus Mörth^c, Sofi Jonsson^a ^a Department of Environmental Sciences, Stockholm University, Stockholm, Sweden ^b Department of Ecology and Environmental Science, Climate Impacts Research Centre, Umeå University, Umeå, Sweden ^c Department of Geological Sciences, Stockholm University, Stockholm, Sweden

Sonja.Gindorf@aces.su.se

Bioaccumulation factors

Tundra	
THg	4 x 10 ⁵
MeHg	4 x 10 ⁵

Birch	
THg	2 x 10 ⁵
MeHg	11 x 10 ⁵

BorealTHg 0.8×10^5 MeHg 4×10^5

we investigate how catchment properties affect the transport and bioaccumulation of Hg and MeHg in Swedish high-latitude catchments where we find tundra, birch, and boreal forest ecosystems.

• Bioaccumulation factors represent the enrichment of THg and MeHg in seston vs. water

- MeHg biomagnification: in the birch and boreal lakes consumer species might have been collected
- For all catchments bioaccumulation factors are in a similar order of magnitude

Multivariate Analysis

- Water type and catchment system differences are evident in ancillary parameters
- THg, DOC, and Fe levels rank as Boreal > Birch > Tundra in lakes and streams
- Opposing trends of THg and RFE suggest terrestrial matter as the source of aquatic THg
- Lakes exhibit higher MeHg and MeHg%
- MeHg correlates positively with NH₄ which is an indicator for anoxic conditions known to favor microbial methylation¹.
- Sulfide and pH influence MeHg and THg

Stress 0.037

Conclusions

- Our data suggest that in the Tundra lakes in-situ methylation is higher compared to the two catchments with higher terrestrial inputs
- This indicates that despite significantly lower inputs of Hg, biota accumulation at the base of the food web may be highest in the Tundra

- levels via their impact on Hg solubility²
- MeHg% positively correlates with C4%, a protein-like component, suggesting increased microbial activity linked to in-situ methylation and elevated aqueous MeHg³

Iron

Zink

Silicium

Phosphate

Phosphorous

Ammonium

Total Mercury

Methylmercury

Sulfide

	BIX	Biological Index	Fe
	C4%	% of parafac component 4	Si
	MeHg%	MeHg fraction of THg in %	PO₄
MeHg% is a proxy for net MeHg		P	
formation ⁴ Zn		Zn	
	DOC	Dissolved Organic Carbon	NH₄
	RFE	Relative fluorescence efficiency	S ²⁻
RFE is an indicator of the relative THg			
amount of algal over non-algal dissolved MeHg			MeHg
	organic matter (DOM)5		

- In the Arctic, large quantities of Hg are stored in permafrost soils⁶ which are thawing rapidly due to climate change thereby remobilizing Hg
- Our data suggests that catchment properties may play an important role for the transport and bioaccumulation of Hg

References

O. Regnell and C. J. Watras, *Environ. Sci. Technol.*, 2019, 53, 4–19.
L. T. Bailey, C. P. J. Mitchell, D. R. Engstrom, et al., *Sci. Total Environ.*, 2017, 580, 1197–1204.
A. G. Bravo, D. N. Kothawala, K. Attermeyer, et al., *Water Res.*, 2018, 144, 172–182.
A. Drott, L. Lambertsson, E. Björn and U. Skyllberg, *Environ. Sci. Technol.*, 2008, 42, 153–158.
B. D. Downing, E. Boss, B. A. Bergamaschi, at al., *Limnol. Oceanogr. Methods*, 2009, 7, 119–131.
P. F. Schuster, K. M. Schaefer, G. R. Aiken, et al., Geophys. Res. Lett., 2018, 45, 1463–1471.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 860497.