Christopher Ekman

Stockholm, Sweden

□+46766322341 | Sekmanchristopher@gmail.com

Education _____

 KTH Royal Institute of Technology MASTER OF SCIENCE IN ENGINEERING - ENGINEERING PHYSICS, THEORETICAL PHYSICS TRACK Master's thesis title: Crosscap States in Integrable Spin Chains Master's thesis advisor: Dr. Konstantin Zarembo 	Stockholm August 2017 - June 2022
Stockholm University РнD STUDENT • Working on strongly correlated systems and open quantum systems • Advisor: Dr. Emil J. Bergholtz	Stockholm January 2023 - Autumn 2027
Projects	
Crosscap states in integrable spin chains SUPERVISOR: DR. KONSTANTIN ZAREMBO • Analytically studied integrable overlaps in spin chains • Used the quantum inverse scattering method, and related concepts • Performed on my own	Nordita Spring 2022
 Calogero-Moser Pole Dynamics of the Nonlinear Schrödinger Equation SUPERVISORS: DR. EDWIN LANGMANN AND DR. BJORN BERNTSSON Studied the pole dynamics of singular solutions of the non-linear Schrödinger equation. Worked using the general tools of classical integrable systems. Performed in collaboration with another student. Resulted in a project report. 	Department of Physics, KTH January 2021- July 2021
Finite-dimensional \mathcal{PT} -symmetric Hamiltonians with an application to neutrino	Department of Physics_KTH
 physics SUPERVISOR: DR. TOMMY OHLSSON Bachelor's degree thesis. Developed a suitable definition of <i>PT</i>-symmetry for finite-dimensional 3d systems, v dimensional <i>PT</i>-symmetric Hamiltonian relevant for neutrino oscillations, and determined Performed in collaboration with another student. 	January 2020 - June 2020 vrote the most general three- the transition probabilities.
Deep UV-Lithography	Department of Applied Physics, KTH
 SUPERVISOR: DR. CARLOTA CANALIAS AND PATRICK MUTTER Successfully designed, constructed, and tested a calibration set-up to accurately measure the ings, with periodicities of order 500nm. Performed in collaboration with another student. 	January 2019 - June 2019 e periodicity of photoresist grat-
Intermodulating AFM	Department of Applied Physics,

SUPERVISOR: DR. DAVID HAVILAND

- Experimentally studied the response of an AFM when driven by a pair of non-equal frequencies.
- Programmed a computer model of the AFM using Python.
 Performed in collaboration with two other students.

Publications _____

IN REVIEW

NOVEMBER 2022

KTH

Summer 2019

Ekman, C, Bergholtz, E.J. 2024. Liouvillian skin effects and fragmented condensates in an integrable dissipative Bose-Hubbard mode

Teaching Experience _____

Spring	Machanics 2 Toaching Assistant	Stockholm
2024	Mechanics 2, reaching Assistant	University
Spring	Electromagneticm Teaching Assistant	Stockholm
2024	Electromagnetism, reaching Assistant	University

Skills and Languages _____

Programming	Python, Matlab, Go, Mathematica
languages	
Swedish	Native
English	Fluent
Spanish	Basic